用户名: 密码: 验证码:
靛蓝基因表达载体的构建及香石竹CHS启动子克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在观赏植物中蓝色花普遍偏少,用作观赏的切花香石竹、郁金香、月季、玫瑰等都缺乏蓝色花系。本论文从克隆花瓣特异表达的启动子及与靛蓝色素基因连接构建表达载体等方面对蓝色花基因工程育种进行了一些研究,主要的研究内容有以下几个方面:
     (1)利用Genbank公布的两个拟南芥查尔酮合成酶(Chalcone synthase,CHS)启动子序列(AF248988和AF012810)设计序列特异性的引物,从拟南芥(Arabidopsis thialiana,Columbia)基因组DNA中进行PCR得到大小分别为533bp和2046bp的两个启动子片段(其中小片段启动子是大片段启动子的3’端部分),经过克隆测序证明与Genbank中公布的序列超过99%的同源性。将小片段启动子序列应用PlantCARE软件进行分析,表明两个序列均具有真核生物启动子普遍具有的CAAT box和TATA box等保守序列,并且具有一些CHS启动子特有的保守序列,证明两个启动子序列应该具有相应的启动子活性。
     (2)通过对两个启动子序列以及载体序列进行酶切位点分析,选择合适的限制性内切酶进行表达载体的构建,以应用于以后的遗传转化研究。大、小两个启动子片段都分别与GUS基因或与Drewlo S等人从Ralstonia eutropha(真氧产碱杆菌)中克隆到的靛蓝色素基因(bec基因)相连接,目的是分别用于鉴别相应的启动子活性和在观赏植物中启动靛蓝色素基因的表达。目前,小片段启动子的两个表达载体的构建已经完成,并进行了烟草的初步转化研究;大片段启动子载体的构建正在进行。
     (3)本课题的目的是得到能够在观赏植物中高效启动靛蓝色素基因表达的载体,但是考虑到拟南芥的CHS启动子启动靛蓝色素基因在观赏植物中的表达可能会受到种属特异性等一些因素的影响而不能很好的启动基因的表达,本研究还进行了从观赏植物香石竹(Dianthus caryophyllus,Feraceseo)中克隆CHS启动子的研究。由于到目前为止还没有见到有关香石竹中CHS启动子的报道,并且CHS启动子具有很强的种属特异性,在不同种属的植物之间具有很低的同源性,所以应用CHS启动子序列之间的同源性进行香石竹CHS启动子克隆的路线是不可行的。本文的研究通过CHS基因之间的同源性设计引物,从香石竹中进行PCR并经过克隆测序得到了三个CHS基因的5’端片段,经过Blast分析证明了它们具有很高的同源性。然后利用衔接头PCR的方法进行了香石竹CHS启动子克隆的初步研究,得到了约500bp和800bp的PCR产物,目前克隆测序工作正在进行。进一步的工作将进行启动子缺失分析等研究以验证启动子活性及其表达特异性。
     (4)本文的研究还进行了香石竹叶片再生体系的初步试验,并得到了几个相对比较理想的培养基组合,目前进一步的研究正在进行。
With the development of mordern lives, more and more flowers are needed and that indicates a prosperous prospect of ornament market. There are some restricting factors in traditionary breeding methods, and nowadays the molecular breeding methods are well developed and have succeeded in some flowers such as chrysanthemum and lily et al.
    In this paper, we introduce our study on the cloning of two petal-specific CHS (chacone synthase) promoters and the constructing of expression vectors containing of a CHS promoter and an indigo gene (bec gene) or a GUS report gene. The main contents are as follows:
    (1) We have cloned two CHS promoters from Arabidopsis thialiana (Columbia ecotype) using two pairs of sequence-specific PCR primers from two homologous sequences in the Genbank (AF248988 & AF012810). The fragments are 533bp and 2046bp separately, and the cloning sequencing results indicate that the homologous between them and the Genbank sequences excess 99%. We have also analysised the two promoters' construction using PlantCARE software on the internet, the results reveal that they have the motifs that are necessary for eukaryotes promoters such as TATA box and CAAT box et al. and they also have some motifs that are specific in CHS promoters. The results prove that these two promoters should have promoter activity.
    (2) By analysising the restriction endonucleases sites of the two promoter sequences and the vectors, we selected the profitable restriction endonucleases to construct the expression vectors. The two promoter fragments are ligated to a GUS report gene or a bec gene separately. The two expression vectors containing the shorter promoter have already been finished and the other two vectors containing the longer promoter are on finishing.
    (3) The aim of our experiment is to get high efficient expression vetors to express the bec gene in ornaments. For fearing that the CHS promoters from Arabidopsis maybe couldn't promote the gene expression in ornaments, we tried to clone a CHS promoter from carnation. But the homologous between the CHS promoters of different plants are very low, so we designed a pare of PCR primers from carnation CHS gene sequence and have got three clones of carnation CHS gene 5' end sequences by PCR. With these three sequences we used adapter ligation PCR method to clone the promoter, and now we have got two fragments which are about 500bp and about 800bp separately, the cloning sequencing of them are on finishing. The results prove that adapter ligation PCR method is workable to clone carnation CHS promoter. And the next step we will do the deletion analysis of the promoter fragments.
    (4) We have also done some experiments on establishing the regeneration system of carnation, and have selected several kinds of comparativly ideal cultures. The following works are on proceeding.
引文
[1] Holton T A, Brugliera F, Lester D R, et al. Cloning and expression off cytochrome P450 genes controlling flower colour. Nature, 1993, 366: 276~279;
    [2] Van der Krol A R, Mur L A, Beld M, et al. Flavonoid genes in Petunia: Additional of a limited number of gene copies may lead to suppression of gene expression. The Plant Cell,1990, 2: 291~299;
    [3] Meyer P, Heidmann I, Forkmann G, et al. A new petunia flower colour generationed by transformation of a mutant with a maize gene. Nature, 1987, 330: 677~678;
    [4] Takashi Araki. Transition from vegetative to reproductive phase. Current Opinion in Plant Biology, 2001, 4: 63~68;
    [5] Moyano E, Martinez-Garcia J F , Martin C, et al. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. The Plant Cell, 1996, 8: 1519~1532;
    [6] 张石宝、胡虹、李树云.花卉基因工程研究进展Ⅰ:花色,云南植物研究.2001,23(4):479~487:
    [7] 傅荣昭、马江生、曹光诚、李文彬、孙勇如.观赏植物色香形基因工程研究进展,园艺学报,1995,22(4):381~385;
    [8] Courtney-Gutterson N, Napoli C, Lemieux C, et al. Modification of flower color in florist's chrysanthemum: production of a white-flowering variety through molecular genetics. Bio/Technoloy, 1994, 12:268~271;
    [9] Elomaa P, Honkanen J, Psuka R, et al. Agrobacterium-Mediated trasfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Techonology,1993, 11: 508~511;
    [10] Van der Korl A R, Lenting P E, Veenstra J, et al. An antisense chalcone synthase gene in gransgenic plants inhibits flower pigmentation. Nature, 1998, 33: 866~869;
    [11] Zuker A, Tzfira J, Ben-Meir H, et al. Modification of flower color and fragrance by antisense suppression of the flvonone 3-hydroxylase gene. Molecular Breeding, 2002 , 9:33~41;
    [12] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 1990,2: 279~289;
    [13] Tanaka Y, Tsuda S, Kusumi T. Matebolic engineering to modify flower color. Plant Cell Physiol, 1998, 39: 1119~1126;
    [14] 黄胤怡、沈明山、李鹏、陈睦传.蓝色花的基因工程.植物生理学通讯,2002,38(2):203~206;
    [15] Fukui Y, Tanaka Y, Kusumi T, et al. A rational for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3',5'-hydroxylase gene. Phytochemistry, 2003, 63(1): 15~23;
    [16] Jorgeson R A. Cosupression flower color patterns and metastable gene expression states. Science, 1995, 268: 686~691;
    [17] Holton T A, Brugliera F, Tanaka Y. Cloning and expression of flavonol synthase from
    
    Petunia hybrida . Plant J, 1993, 4(6): 1003~1010;
    [18] De Vlaming P, Scharm A W, Wiering H. Genes affecting flower colour and pH of flower limb homoenates in Petunia hybrida. Theory Appl Genet, 1983, 66: 271~278;
    [19] Chuck G, Robbins T, Nijjar C, et al. Taffing and cloning of a petunia flower color gene with the maize transposable element activator. The Plant Cell, 1993, 5:371~378;
    [20] 孙晓红,陈明杰,潘迎捷.启动子克隆概述.食用菌学报,2002,9(3):57~62;
    [21] 王新国,肖成祖,张国华,方荣祥.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学与分子生物学报,2001,17(1):61~65;
    [22] 刘复权,张艳文,许智宏.烟草NFLl基因启动子区的克隆和初步的功能分析.北京大学学报(自然科学版),2000,36(2):263~267;
    [23] Watts F Z, Butt N, Layfield P, Machuka J, et al. Floral expression of a gene encoding an E2-relatedubiquitin-cnojugating protein from Arabidopsis thaliana. PMB, 1994, 26:445~451;
    [24] Zhu Q, Dabi T, Beeche A, et al. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. PMB, 1995, 29: 535~550;
    [25] Hauffe K D, Paszkowski U, Lefert P S, et al. A parsly 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco. The Plant Cell, 1991, 3, 435~443;
    [26] Koch M A, Weisshaar B, Kroymann J, et al. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol. Biol. Evol, 2001,18 (10), 1882-1891;
    [27] Trezzini G F, Horrichs A, Somssich I E. Isolation of putative defense-related genes from Arabidopsis thaliana and expression in fungal elicitor-treated cells. Plant Mol. Biol, 1993, 21(2): 385-389;
    [28] Hartmann U, Valentine W J, Christie J M, et al. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol. Biol, 1998, 36 (5), 741-754;
    [29] Koes R E, Spelt C E and Mol J N M. The chalcone synthase multigene family of Ptunia hyrida differential, light-regulated expression during flower development and UV light induction. PMB 1989, 12: 213~225;
    [30] Schulze-Lefert P, Dangl J L, Becker-Andre M, et al. Inducible in vivo DNA footprints define sequences necessary for UV light activition of the parsley chalcone synthase gene. The EMBO Journal, 1989, 18(3): 651~656;
    [31] Faktor O, Kooter J M, Dixon R A, et al. Functional dissection of a bean chalcone synthase gene promoter in transgenic tobacco plants reveals sequence motifs essential for floral expression. PMB, 1996, 32: 849~859;
    [32] Gynheung An, Costa M A, Mitre A, et al. Organ-specific and development regulation of the Nopaline synthase promoter in transgenic tobacco plants. Plant Phisiology, 1998, 88:547~552;
    [33] Takakura Y, Ito T, Saito H, et al. Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza Sativa L.). PMB, 2000, 42:883~897;
    [34] Yu H, Yang S H, Goh C J. Spetial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. PMB, 2002, 49:225~237;
    [35] Yu H, Goh C J. Identification of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiology, 2000, 23:1325~1336;
    
    
    [36] Cunillera N, Boronat A, Ferrer A. Spetial and temporal patterns of GUS expression directed by 5' regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. PMB, 2000 44: 747~758;
    [37] Datla R, Anderson J W, Selvaraj G. Plant promoters for transgene expression. Biotech, Ann, Rev, 1997, 3: 269~296;
    [38] 周音,张智奇,殷丽青,张建军.观赏植物基因工程研究进展及存在的问题.上海农业学报,2000,1:90~96;
    [39] 琰芳,贾文薇,刘春.香石竹无土栽培研究.园艺学报,1990,17(4):304~307:
    [40] 刘思颖,王泰哲.丝石竹玻璃苗的研究.园艺学报,1988,15(4):272~275:
    [41] 胡继金.青霉素在香石竹组织培养中的作用.园艺学报,1991,18(1):87~90;
    [42] Gottlieb O, Micromolecular evolution, systematics and ecology. Berlin: Springer, 1982:142~148;
    [43] Kondo T, Suzuki K, Nadagawa A et al. Commelinin, a highly associated metalloathocyanin present in the blue flower petals of commelina communis. Nature, 1992, 358:515~517;
    [44] 许智宏,刘春明.植物发育的分子机理.北京:科学出版社,1998:115~116;
    [45] Holton TA, Tanaka T. Blue rases—a pigment of our imagination. Trends Biotechnology,1994, 12: 40~42;
    [46] Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flower color. Plant cell physiology, 1998, 39: 1119~1126;
    [47] 严群,堵国成,陈坚 真氧产碱杆菌利用短链有机酸合成聚羟基烷酸酯 过程工程学报2002,2(5):453~458;
    [48] 宋水山.Ralstonia eutropha CH34酯酶基因的克隆和序列分析.微生物学报,2001,41(4):402~407;
    [49] 宋水山,贾振华,高振贤.Ralstonia eutropha CH34酯酶基因在大肠杆菌中的表达及酶学特性.河北省科学院学报,2001,18(1):39~42;
    [50] Srinivasan S, Barnard G C, and Gerngross T U. A novel high-cell-density protein expression system based on Ralstonia eutropha. Applied and Enviornmental microbiology.2002, 68(12): 5925~5932;
    [51] Ensley B D, Ratzkin B J, and Osslund T D et al. Expression of Naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 1983,222:167~169;
    [52] Drewlo S, Bramer C O and madkour M, et al. Cloning and expression of a Ralstonia eutropha HF39 gene mediating indigo formation in Escherichia coli. Applied and Enviornmental microbiology. 2001: 1964~1969;
    [53] O'Conner KE, Dobson AD & Hartmans S. Indigo formation by microorganisms expression styrene monooxygenase activity. Applied Environmental Microbiology, 1997, 63(11):4287~4291;
    [54] Keil H, Saint CM & Williams PA. Gene organization of the first catabolic operon of TOL plasmid pWW53: production of Indigo by the XylA gene product. Journal of Bacteriology, 1987: 746~770;
    [55] Eaton RW & Chapman PJ. Formation of indigo and related compounds from indole carboxylic acids by aromatic acid degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. Journal of Bacteriology, 1995, 177(23):
    
    6983~6988;
    [56] Allen CCR, Boyd DR and Larkin MJ et al. Matabolism of Naphthalene, 1-Naphthol, Indene, and indole by Rhodococcus SP strain NCIMB12038. Applied and Enviromental Microbiology. 1997, 63(1): 151~155;
    [57] O'Conner KE, Buckley CM and Hartmans S et al. Possible regulatory role for Nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Applied Environmental Microbiology, 1995, 61 (2): 544~548;
    [58] Panke S, Withott B and Schmid A et al. Towards a biocatalyst for (S)-styrene oxide production characterization of the styrene degradation pathway of Pseudomonas SP strain VLB 120. Applied Environmental Microbiology, 1998, 64(60): 2032~2043;
    [59] Kim D, Kim YS and Kim SK et al. Momocyclic aromatic hydrocarbon degradation by Phodococcus SP strain DK17. Applied Environmental Microbiology, 2002,68(7): 3270~3278;
    [60] Madison LL & Huisman GW. Matabolic engineering of poly (3-Hydroxyalkanoates) from DNA to plastic. Microbiology and molecular biology reviews, 1999, 63(1): 21~53;
    [61] Iumft WG. Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews, 1997, 61(4): 533~616;
    [62] Harbome JB. Chemotaxonomy of anthocyanins and phytoanexins in the composite. In: Hind DJN, Boentje HJ (eds). Compositae: Systematics. (London) Kew: Royal Botanic Gardens, 1998:207~218;
    [63] Takeda K, Kariuda M, Itoi H. Blueing od sepal colour of Hydrangea macrophylla. Phytochem, 1985, 24:2251~2254;
    [64] Bradley D. What give cornflower its blue hue. New Sci, 1994, 16:15;
    [65] Barton, Nakanishi and Cohn Eds. Adapted from Comprehensive Natural Products Chemistry. Elsevier: Amsterdam, 1999, 1:716;
    [66] Serafini M, Maiani G, Ferro-Luzzi A. Alcohol-free red wine enhances plasma antioxidant capacity in humans, Journal of Nutrition, 1998, 128:1003~1007;
    [67] Serafini M, Laranhjinha J, Almeida L & Maiani G. Inhibition of human LDL lipid peroxidation by phenol-rich beverages and their impact on plasma Total Antioxidant Capacity(TRAP) in humans. Journal of Nutritional Biochemistry, 2000, 11: 585~590;
    [68] Skaper SD, Fabris M, Ferrari V, et al. Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free Radical Biology & Medicine, 1997, 22: 669~678;
    [69] Pannala AS, Rice-Evans C. In: Flavonoids and Other Polyphenols (Methods in Enzymology Vol. 335); Packer, L. Ed. Academic Press: San Diego, 2001: 266~272;
    [70] Bors W, Michel C, Stettmaier K. In: Flavonoids and Other Polyphenols (Methods in Enzymology Vol. 335); Packer, L. Ed. Academic Press: San Diego, 2001: 166~180;
    [71] Schafer E, Kunkel T and Frohnmeyer. Signal transduction in the photocontrol of chalcone synthase gene expression. Plant, Cell and Environment 1997, 20: 722~727;
    [72] Jenkins G I. UV and blue light signal transduction in Arabidopsisi. Plant, Cell and Environment. 1997, 20: 773~778;
    [73] Yoshida I; Yamagata H; and Hirasawa E. Signal transduction controlling tne blue- and red-light mediated gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil.Journal of Experimental Botany, 2002, 53(373): 1525~1529;
    [74] Frohnmeyer H, Bower C, Zhu J-K et al. Different roles for calcium and calmodulin in
    
    phytochrome and UV-regulated expression of chalcone synthase. The plant journals, 1998, 13:763~772;
    [75] Lin chentao. Blue light receptors and signal transduction. The plant cell, 2002: 207~225;
    [76] Fuglevand G, Jackson J A, and Jenkins G I. UV-A, UV-B, and Blue Light Signal Transduction Pathways Interact Synergistically to Regulate Chalcone Synthase Gene Expression in Arabidopsis. The Plant Cell, 1996, 8: 2347~2357;
    [77] Christie JM and Jenkins GI. Distinct UV-B and UV-A/blue light signal transduction pathways induced chalcone synthase gene expression in Arabidopsis cells. The plant cell,1996, 8: 1555-1567;
    [78] Loyall L, Uchida K, Braun S et al. Glutathione and a UV light-induced Glutathione-S-transferase are involved in signaling to chalcone synthase in cell culture. The plant cell, 2000, 12: 1939~1950;
    [79] 罗克.转基因动物的原理、技术、应用与问题.福建畜牧兽医,2000,22:37~40;
    [80] 魏伟,赵波.转基因植物安全性评价的由来和发展.植物杂志,2000,2:42~43;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700