水相碲化镉半导体纳米晶体的合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Aqueous Synthesis and Application of CdTe Semiconductor Nanocrystals
  • 作者:刘岩
  • 论文级别:博士
  • 学科专业名称:分析化学
  • 学位年度:2008
  • 导师:金钦汉 ; 周建光
  • 学科代码:070302
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-06-01
  • 答辩委员会主席:曾宪津
摘要
半导体纳米晶体(又称量子点,Quantum dot,简称QD)由于其独特的光学和电学性质,在光电转换、生命科学等领域备受广大科研工作者的关注,就其光致发光性质来说,比一些有机染料更适合生物标记。目前生物学上应用的半导体纳米晶体大多来自有机相合成,该方法工艺较成熟,纳米晶体质量好。但是制备条件苛刻、步骤繁琐、成本高、毒性大,稳定性差。相比之下,水相合成方法简单、毒性小、成本低、重复性好,并且从根本上克服了在水溶液中溶解度和稳定性的问题,具有非常大的潜在应用价值。如何提高水相合成半导体纳米晶体的质量,降低制备成本和毒性,与有机物或无机物复合,实现其荧光信号的放大,并最终应用于生命科学的研究是本论文研究的初衷和目标。
     本论文采用多种合成方法提高CdTe纳米晶体的质量,形成了一系列绿色、快速、节能、重复性好的合成体系。成功利用微波、超声波、微波—超声波技术、微波—水热技术制备高质量的CdTe纳米晶体,纳米晶体的荧光光谱覆盖范围广,覆盖了从可见光到近红外(500~830nm),量子产率(≤80%)可以与有机相合成的纳米晶体相媲美,并且将晶体生长时间缩短了两个数量级(≤55秒)。首次发现了化学试剂诱导半导体纳米晶体生长的现象,开发出常温常压下水相合成CdTe纳米晶体的新方法,突破了低温下(≤100℃)无法生长高质量纳米晶体的瓶颈,并且该方法的重现性非常好,可以实现大批量制备,值得指出的是在纳米晶体的生长过程中,其荧光发射光谱几乎完全对称(拟合度超过99%),并且没有出现明显的“散焦”现象,显著地区别于其他方法合成出的纳米晶体。我们还将制备的纳米晶体与无机硅复合,得到了纳米尺度的荧光复合晶体和微球,实现了荧光信号的富集,还可以自行设计具有不同荧光颜色的硅玻璃。最后我们将CdTe纳米晶体用于莱姆病螺旋体微生物的活体标记,潜在指纹的显现等。
Due to the unique size-dependent optical and electronic properties, high quality semiconductor nanocrystals (NCs) have widely applied in the fields of optoelectronic conversion, immune sensor and, especially, biological imaging. According to the practical requirements, these NCs need to be improved in some properties or construction. In this paper, we had synthesized high quality CdTe NCs in water by some special methods, such as microwave-asistant, ultrasonic wave-assistant, ultrasonic-microwave-assistant, or microwave- hydrothermal. And a new green synthesis way of CdTe NCs was developed. In this way, the growth of NCs was accelerated by one reagent instead of energy. We also received the composites of CdTe NCs and SiO_2 by different methods. Finally, the CdTe NCs and CdTe/SiO_2 were applied to the microorganism imaging and latent fingerprint detection.
     Firstly, high quality CdTe NCs was synthesized by microwave-, ultrasonic wave-, ultrasonic-microwave-, microwave-hydrothermal- assistant procedures. In these methods, not only the quantum yield was improved greatly (max. ~80%), but also the spectra of fluorescence emission covered the region from visible to near infrared (500~830nm). It only took less than 55 seconds to synthesize NCs, which saved a great deal of time (72 hours in other methods) and energy. Moreover, it was shown that there was some effect on growth of CdTe NCs that was not reported before when using different mode of microwave instruments. For instance, fluorescence emission of CdTe NCs would split when a multimode microwave instruments is used.
     Secondly, a new chemical reagent other than energy was found to accelerate the growth of semiconductor nanocrystals (cadmium telluride), which was applied to the synthesis of high quality CdTe nanocrystals at room temperature and under ambient conditions for several hours. Under the mild conditions the mercapto-stabilizers were not destroyed, and the CdTe nanocrystals particle sizes with narrow and uniform distribution over the largest possible range was guaranteed. CdTe nanocrystals synthesized in this way had very good spectral properties. For example, the highest photoluminescence quantum yield up to 60% was obtained.
     Thirdly, the composites of CdTe NCs and SiO_2 were prepared by immersed self-assembled, in-situ methods and reverse microemulsion, respectively. These methods had their own merits. The immersed self-assembled means was so simple that CdTe NCs and MCM-41 were mixed together without any pretreatments. In reverse microemulsion, the size of silica nanoparticles of CdTe/SiO_2 was uniform and tunable. Moreover, we could disperse CdTe NCs into glass through sol-gel processing and a devised luminescent-glass was obtained.
     Finally, we had succeeded to detect the living Borrelia burgdorferi of Lyme disease by its photoluminescence image of microorganism. Since the CdTe NCs could form a photoluminescent nanocomposite with amino acid of fingerprints, a feasible and rapid detection procedure of latent fingerprints adapted well to collection of fingerprints in the location of a crime. We also studied on four medicines including Caffein, Berberine Hydrochloride, Cefalexin and Chloramphenicol, the spectra of fluorescence emission of the composites of these medicines with the CdTe NCs were affected differently.
引文
[1] M. A. Kastner, Artificial Atoms. Phys. Today, 1993, 46, 24
    [2] L. Brus, Quantum Crystallites and Nonlinear Optics. Appl. Phys. A: Solids Surf 1991, 53, 465
    [3] L. N. Lewis, Chemical catalysis by colloids and clusters. Chem. Rev. 1993, 93, 2693
    [4] R. Freer, Nanoceramics. London, Institute of Materials, 1993
    [5] D. D. Awschalom and D. P. Divincenzo, Complex Dynamics Of Mesoscopic Magnets. Phys. Today, 1995, 48, 43
    [6] D. Awschalom, D. DiVincenzo, and J. F. Smyth, Macroscopic Quantum Effects in Nanometer-Scale Magnets. Science. 1992, 258,414
    [7] Y. Wang, N. Herron, Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties. J. Phys. Chem. 1991, 95, 525.
    [8] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933.
    [9] L. E. Brus, Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. J. Phys. Chem. 1986, 90, 2555.
    [10] A. Henglein, Electronics of colloidal nanometer particles. Ber. Bunsenges. Phys. Chem. 1995, 99, 903.
    [11] W. P. Halperin, Quantum size effects in metal particles. Rev. of Modern Phys. 1986, 58, 532.
    [12] P. Ball, L. Garwin, Science at the atomic scale. Nature. 1992, 355, 761.
    [13] 苏品书, 超微粒子材料技术. 复汉出版社, 1989.
    [14] 张立德, 牟季美, 物理学与新型(功能)材料专题系列介绍(Ⅲ) 开拓原子和物质的中间领域──纳米微粒与纳米固体. 物理, 1992, 21, 167.
    [15] B. S. Berry and W. C. Pritchett, Effect of interdiffusion on the elasticity and internal friction of compositionally modulated copper-nickel thin films. Thin Solid Films. 1976, 33, 19
    [16] C. M. Su, R. R. Oberle, M. Wuttig, and R. C. Cammarata, Mater. Res. Soc. Symp. Proc. 1993, 280,527
    [17] A. S. Edelstein and R. C. Cammarata, Lonod, Insitite of phys. Publ., 1996, chapter 13, 323
    [18] L.Gunther, Quantum Tunneling Of Magnetization. Phys. World. 1990, 3, 28
    [19] R.G. Audran and A. P. Huguenard, Magnetic recording elements containing transparent recording layer. U. S. Patent ,1981,4 302 523
    [20] R. F. Ziolo, Developer composition containing superparamagnetic polymers. U. S. Patent,1984, 4 474 866
    [21] R. H. Marchessault, S. Ricard and P. Rioux, In situ synthesis of ferrites in lignocellulosics. Carbohydrate Res. 1992, 224, 133
    [22] R. D. Mcmichael, R. D. Shull, L. J. Swartzendruber, L.H. Bennett, R. E. Watson, Magnetocaloric effect in superparamagnets. J. Magn. Magnsm Mater,1992, 111, 29
    [23] I. Anton et al., Application orientated researches on magnetic fluids. J. Magn. Magnsm. Mater. 1990, 85, 219
    [24] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van dau, F. Petroff, P. Etienne, G. Greuzet, A. Friedrich and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472.
    [25] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. Mceuen, A single-electron transistor made from cadmium selenide nanocrystal. Nature, 1997, 389, 699.
    [26] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A. El-sayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272, 1924.
    [27] S. Link, M. B. Mohamed, M. A. El-Sayed. Simulation of theOptical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B. 1999, 103, 3073.
    [28] S. M. Prokes, Light emission in thermally oxidized porous silicon: Evidence for oxide-related luminescence. Appl. Phys. Lett. 1993, 62, 3244
    [29] L. Brus, Quantum crystallites and nonlinear optics. Appl.Phys. A: Mater. Sci. & Processing, 1991, 53,465
    [30] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271, 933
    [31] C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am.Chem. Soc. 1993, 115, 8706
    [32] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. Mceuen, A single-electron transistor made from cadmium selenide nanocrystal. Nature, 1997, 389, 699
    [33] C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson and R. Greef, Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon. J. Phys. C: Solid State Phys. 1984, 17,6536
    [34] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046
    [35] Z. L. Wang, Structural Analysis of Self-Assembling Nanocrystal Superlattices. Adv. Mater. 1998, 10,13
    [36] S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar and R. L. Whetten, Highly Oriented Molecular Ag Nanocrystal Arrays. J. Phys. Chem. 1996, 100, 13904.
    [37] C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs and J. R. Heath, Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science, 1997, 277, 1978.
    [38] Y. Tian, T. Newton, N. Kotov, A. D. Guldi, J. H.Fendler, Coupled Composite CdS-CdSe and Core-Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles. J. Phys. Chem. 1996, 100, 8927.
    [39] X. G. Peng, M. C.Schlamp, A. V. Kadavanich, A. P.Alivisatos, Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 1997, 119, 7019.
    [40] A.Kumar, S. Kumar, Hydroxyapatite Formation on/in Poly(vinyl alcohol) Hydrogel Matrices Using a Novel Alternate Soaking Process. Chem. Lett. 1998, 27, 711.
    [41] L. Spanhel, H. Weller, A. Fojtik, A. Henglein, Ber.Bunsenges. Phys. Chem. 1987, 91, 88.
    [42] A. Haesselbarth, A. Eychmüller, R. Eichberger, M.Giersig, A. Mews, H. Weller, Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids. J. Phys. Chem. 1993, 97,5333.
    [43] M. A.Hines, P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. B. 1996, 100, 468.
    [44] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R.Heine, H.Mattoussi, R. Ober, K. F. Jensen, M. G..Bawendi, (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B. 1997, 101, 9463.
    [45] M. A.Fox, M. T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341.
    [46] A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. J. Weller, Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 1994, 98, 934.
    [47] V. F. Kamalov, R. Little, S. L. Logunov, M. A. Elsayed, Picosecond Electronic Relaxation in CdS/HgS/CdS Quantum Dot Quantum Well Semiconductor Nanoparticles. J. Phys. Chem. 1996, 100, 6381.
    [48] M. Y. Han, W. Huang, C. H. Chew, L. M. Gan, X. J.Zhang, W. J. Ji, Large Nonlinear Absorption in Coated Ag2S/CdS Nanoparticles by Inverse Microemulsion. J. Phys Chem. B. 1998, 102, 1884.
    [49] T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovie, K.Diesner, A. Chemseddine, A. Eychmüller, H. Weller, CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. J. Phys. Chem. 1994, 98, 7665.
    [50] H. Arnim, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861.
    [51] D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A.Kornowski, M. Haase, H. Weller, Dynamic Distribution of Growth Rates within the Ensembles of Colloidal II-VI and III-V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency. J. Am. Chem. Soc., 2002, 124, 5782.
    [52] W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han, S. M. Nie, Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40.
    [53] M. Jr Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as flourescent biological labels. Science, 1998, 281, 2013.
    [54] 林章碧, 苏星光, 张家骅, 金钦汉. 纳米粒子在生物分析中的应用.分析化学, 2002,30, 237.
    [55] L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am.Chem. Soc. 1987, 109, 5649.
    [56] A. R.Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L.Steigerwald, P. J.Carrikk, L. E.Brus, Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc.1990, 112, 1327.
    [57] C. B. Murray, D. J.Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem.Soc. 1993, 115, 8706.
    [58] B. K. H. Yen, N. E. Stott, K. F. Jensen, M. G. Bawendi, A Continuous-Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals. Adv. Mater. 2003, 15, 1858.
    [59] H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara, P. Mulvaney, Preparation of CdSe nanocrystals in a micro-flow-reactor. Chem. Commun. 2002, 2844.
    [60] M. Green, P. O’Brien, Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots. Chem. Commun. 1999, 2235.
    [61] X. Peng, Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals. Chem. Eur. 2002, 8, 334.
    [62] L. R. Becerra, C. B. Murray, R. G. Griffin, M. G. Bawendi, Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance. J. Chem. Phys. 1994, 100, 3297.
    [63] J. E. B. Katari, V. L. Colvin, A. P. Alivisatos, X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface. J. Phys.Chem. 1994, 98, 4109.
    [64] H. Weller, U. Koch, M. Gutierrez, A. Henglein, Ber. Bunsenges. J. Phys. Chem. 1984, 88, 649.
    [65] H. S. Zhou, I. Honma, H. Komiyama, J. W. Haus, Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system's synthesis and properties. J.Phys. Chem. 1993, 97, 895.
    [66] H. S. Zhou, H. Sasahara, I. Honma, H. Komiyama, J. W. Haus, Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties. Chem. Mater. 1994, 6, 1534.
    [67] I. Bedja, P. V. Kamat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites. J. Phys. Chem. 1995, 99, 9182.
    [68] P. V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 1993, 93, 267.
    [69] M. T. Harrison, S. V. Kershaw, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals. Adv. Mater. 2000, 12, 123.
    [70] M. T. Harrison, S. V. Kershaw, M. G. Burt, A. Eychmüller, H. Weller, A. L. Rogach, Spectroscopic and optical properties of an azo-metal chelate dye as optical recording medium. Materials Science and Engineering B. 2000, 69.
    [71] Robert E. Bailey and Shuming Nie, Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc.2003, 125, 7100
    [72] T. Rajh, O. L. Micic, A. Nozik, Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem. 1993, 97, 11999.
    [73] M. Y. Gao, S. Kirstein, H. M?hwald, A. L. Rogach, A. Kornowski, A. Eychmüller, H. Weller, Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B., 1998, 102, 8360.
    [74] N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmüller, H.Weller, Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B. 2002, 106, 7177.
    [75] A. J. Sutherland, Sutherland A J. Quantum dots as luminescent probes in biological systems. Current Opinion in Solid State and Materials Science, 2002, 6, 365.
    [76] U. Woggon, I. Rueckmann, J. Koruack, M. Mueller, J. Cesnulevicius, J. Kolenda and M. Petrauskas, Growth, surface passivation, and characterization of CdSe microcrystallites in glass with respect to their application in nonlinear optics. SPIE Proc. 1991, 1362, 100
    [77] L .C. Liu, S. H. Risdud, Quantum Dot Size Distribution Analysis and Precipitation Stages in Semiconductor Doped Glasses. J. Appl. Phys. 1990, 68, 28
    [78] A. Eychmuller, A. Hitselbarth, L. Katsikas and H. Weller, Lumin. 1991, 48, 745
    [79] X. Peng, J. Wickham, A. P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions. J. Am. Chem. Soc. 1998, 120, 5343.
    [80] C. de Mello Donegá, S. G. Hickey, S. F. Wuister, D.Vanmaekelbergh, A. Meijerink, Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals. J. Phys. Chem. B. 2003, 107, 489.
    [81] D. V. Talapin, A. L. Rogach, M. Haase, H. Weller, Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study. J.Phys. Chem. B. 2001,105, 12278.
    [82] W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854.
    [83] K. Jacobs, J. Wickham and A. P. Alivisatos, Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals. J. Phys. Chem. B., 2002, 106, 3759.
    [84] S. T. Selvan, C. Bullen, M. Muthupandian, P. Mulvaney, Synthesis of Tunable, Highly Luminescent QD-Glasses Through Sol-Gel Processing. Adv. Mater. 2001, 13, 985.
    [85] V. C. Sundar, H. Eisler, M. G. Bawendi, Room-Temperature, Tunable Gain Media from Novel II-VI Nanocrystal-Titania Composite Matrices. Adv. Mater. 2002, 14, 739.
    [86] M. A. Petruska, A. V. Malko, P. M. Voyles, V. I. Klimov, High-Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications. Adv. Mater. 2003, 15, 610.
    [87] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D.Zanchet, S. Weiss, A.P. Alivisatos, Synthesis and Properties of BiocompatibleWater-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B., 2001, 105, 8861.
    [88] M. Darbandi, R. Thomann, and T. Nann, Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chem. Mater. 2005, 17, 5720.
    [89] A. Y. Nazzal, L. Qu, X. Peng, M. Xiao, Photoactivated CdSe Nanocrystals as Nanosensors for Gases. Nano. Lett. 2003, 3, 819.
    [90] L. Li, J. Walda, L. Manna, A. P. Alivisatos, Semiconductor Nanorod Liquid Crystals. Nano. Lett. 2002, 2, 557.
    [91] M. Han, X. Gao, J. Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules Nat. Biotechnol. 2001, 19, 631.
    [92] A.Y. Nazzal, X.Wang, L. Qu, W. Yu, Y. Wang, X. Peng and M. Xiao, Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films. J. Phys. Chem. B. 2004, 108, 5507
    [93] W. Jiang, A. Singhal, J. Zheng, C. Wang, and W. C. W. Chan, Optimizing the Synthesis of Red- to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging. Chem. Mater. 2006, 18, 4845
    [94] I. L. Radtchenko, G. B. Sukhorukov, N. Gaponik, A. Kornowski, A. L. Rogach, H. M?hwald, Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres. Adv. Mater. 2001, 13, 1684.
    [95] N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov, H.Weller, A. L. Rogach, Toward Encoding Combinatorial Libraries: Charge-Driven Microencapsulation of Semiconductor Nanocrystals Luminescing in the Visible and Near IR. Adv. Mater. 2002, 14, 879.
    [96] N. Gaponik, I. L. Radtchenko, M. R. Gerstenberger, Y.A. Fedutik, G. B. Sukhorukov, A. L. Rogach, Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals. Nano. Lett. 2003, 3, 369.
    [97] D. Wang, A. L. Rogach, F. Caruso, Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano. Lett. 2002, 2,857.
    [98] Y. Chen, T. Ji, Z. Rosenzweig, Synthesis of Glyconanospheres Containing Luminescent CdSe-ZnS Quantum Dots. Nano. Lett. 2003, 3, 581.
    [99] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298, 1759.
    [100] J. A. Kloepfer, R. E. Mielke, M. S. Wong, K. H. Nealson, G. Stucky, and J. L. Nadeau, Quantum Dots as Strain- and Metabolism-Specific Microbiological Labels. Appl. Environ. Microb. 69, 4205
    [101] W. C. W. Chan, S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281, 2016.
    [102] J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47
    [103] W. J. Parak, D. Gerion, D. Zanchet, A. S.Woerz, T.Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E.Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi, A. P. Alivisatos, Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chem. Mater. 2002, 14, 2113.
    [104] D. Gerion, W. J. Parak, S. C. Williams, D. Zanchet, C.M. Micheel, A. P. Alivisatos, Sorting Fluorescent Nanocrystals with DNA. J. Am. Chem. Soc. 2002,124, 7070.
    [105] G. P. Mitchell, C. AMirkin, R. L. Letsinger, Programmed Assembly of DNA Functionalized Quantum Dots. J. Am. Chem. Soc. 1999, 121, 8122.
    [106] S. Pathak, S. Choi, N. Arnheim, M. E. Thompson, Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization. J. Am. Chem. Soc. 2001, 123, 4103.185
    [107] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H.Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298, 1759.
    [108] Z. Kaul, T. Yaguchi, S. C Kaul, T. Hirano, R. Wadwha,K. Taira, Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell research, 2003, 13, 503.
    [109] X. Gao, Y. Cui, R. M Levenson, L. W K Chung S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22, 969
    [110] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A.Treadway, J. P.Larson, N. Ge, F. Peale, and M. P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41.
    [111] K. Kerman, T. Endo, M. Tsukamoto, M. Chikae, Y. Takamura, E. Tamiya, Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta, 2007, 71, 1494
    [112] J. N. Demasa and G. A. Crosby, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 1971, 75,991
    [113] R. M. Dagnall, S. J. Pratt, R. Smith, and T. S. West, The fluorescence quantum efficiencies of some analytically useful chelate complexes Analyst (London), 1968, 93, 638.
    [114] H. Bao, Y. Gong, Z. Li, M.Gao, Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure. Chem. Mater., 2004, 16, 3853.
    [115] 李廷盛,尹其光, 超声化学, 科学出版社, 36-39.
    [116] J. Sostaric, P. Mulvaney and F. Grieser, Ultrasound-induced formation and dissolution of colloidal CdS. J. Chem. Soc., Faraday Trans. 1997, 93, 1791.
    [117] W. W. Yu, Y. A. Wang and X. Peng, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals: Ligand Effects on Monomers and Nanocrystals. Chem. Mater.2003, 15, 4300.
    [118] G. J. Wilson, A. S. Matijasevich, D. R. G. Mitchell, J. C.Schulz, and G. D. Will, Modification of TiO2 for Enhanced Surface Properties: Finite Ostwald Ripening by a Microwave Hydrothermal Process. Langmuir 2006, 22, 2016
    [119] A. Chemseddine, H. Weller, Ber. Bunsen-Ges. J. Phys. Chem. 1993, 97, 636.
    [120] H. Zhang, L.Wang, H. Xiong, L. Hu, B.Yang and W. Li, Hydrothermal Synthesis for High-Quality CdTe Nanocrystals. Adv. Mater. 2003, 15, 1712.
    [121] K. Jacobs, J. Wickham and A. P. Alivisatos, Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals. J. Phys. Chem. B. 2002, 106, 3759.
    [122] X. Y. Shi, T. R. Ganser, K. Sun, L.P. Balogh and J. R.Baker, Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology, 2006, 17, 1072.
    [123] H. Zhu, C. Zhang, Y. Yin, Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology, 2005, 16, 3079.
    [124] C. O. Bae, Y. H. Kim, J. H. Son, S. J. Hwang, Y. U. Kwon, B. Y. Lee and Y. S. Kim, J. Ind. Eng. Chem.2005, 11, 902.
    [125] Q. Cai, W. Y. Lin, F. S. Xiao, W. Q. Pang, X. H. Chen, B .S. Zou, The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous Mesoporous Mat. 1999, 32, 1
    [126] H. Dobllefeld, H. Weller, A. Eychmüller, Particle-Particle Interactions in Semiconductor Nanocrystal Assemblies. Nano. Lett. 2001, 1, 267
    [127] E. F. Vansant, P. V. Voort, K. C.Vrancken, Characterisation and Chemical Modification of the Silica Surface, Elsevier, 1995. 149
    [128] X. J. Zhao, R. P. Bagwe and W. H. Tan, Development of Organic-Dye-Doped Silica Nanoparticles in a ReverseMicroemulsion. Adv. Mater. 2004, 16, 173
    [129] A. P. Silva , H. Q. N. Gunaratne, T. Gunnlaugsson , A. J.M. Huxley, C. P. McCoy , J. T. Rademacher , T. E.Rice, Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997 , 97, 1515
    [130] F. P. Schmidtchen, M. Berger, Artificial Organic Host Molecules for Anions. Chem. Rev. 1997, 97, 1609.
    [131] 汪尔康. 21 世纪的分析化学. 科学出版社, 1999.
    [132] 高鸿. 分析化学前沿. 科学出版社, 1991.
    [133] E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, and G. P. Anderson, Avidin: a natural bridge for quantum dot - antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378.
    [134] E. R. Menzel, M. Takatsu, R. H. Murdock, K. Bouldin, K. H. Cheng, Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection. J. Forensic. Sci. 2000, 45, 758.
    [135] Y. Yan, Y. Mu, G. Feng, L. Zhang, L. Zhu, Li. Xu, R. Yang And Q. Jin, Novel Strategy for Synthesis of High Quality CdTe Nanocrystals in Aqueous Solution, Chem. Res. Chinese Universities, 2008, 24(1), 1.
    [136] L. Li, H. Qian and J. Ren, Chem. Commun. 2005, 528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700