InP与ZnSe基荧光量子点的合成及其在指纹显现中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体量子点一般指是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族等元素组成,粒径为2~10nm的零维纳米材料。由于其具有强的量子尺寸效应,在电子,光学和表面可修饰性方面显示出优越的性质,在光电转换、半导体器件及生物标记等领域,显示出极大的研究和应用价值。量子点作为一种新型的荧光材料,与传统的有机荧光染料相比,具有宽的激发光谱,窄而对称的发射光谱、高的荧光量子产率、荧光寿命长、光稳定性好等优点。半导体量子点的制备方法主要包括有机相合成、微乳液合成和水相合成等。由于有机相和微乳液合成等方法合成量子点条件苛刻,原料成本高,毒性大,限制了该方法的实际应用。采用简单的水相合成的量子点具有很好的生物相容性,可以直接应用于生物标记。对于Ⅱ-Ⅵ族的Cd系列量子点的研究目前已经比较成熟,但由于重金属Cd的毒性,限制了其作为生物标记材料的研究和应用。在本论文中,我们通过紫外光照和相转移方法合成了水溶性的InP/ZnS复合结构量子点及系列ZnSe基荧光量子点,这些量子点低毒或无毒,作为“绿色”荧光量子点,在生物标记领域具有更广阔的应用前景。同时我们对不同量子点的制备工艺、结构和荧光性能进行了系统的研究,并考察了其对各种客体指纹显现效果的影响。实验研究结果如下:
     1、分别采用溶剂热法和化学法合成了InP量子点,其中溶剂热合成中,以甲苯为溶剂,十二烷胺(DDA)为包覆剂,通过改变溶剂热合成温度(150℃、165℃、180℃),可以得到颗粒尺寸为3-4nm的InP量子点,经巯基乙酸修饰后得到水溶性InP/ZnS量子点。不同温度合成InP后包覆的InP/ZnS量子点的荧光最佳发射波长分别为438nm,508nm和575nm。在紫外光照及弱碱条件下合成的水溶性InP/ZnS荧光量子点溶液可以清晰的显现出光滑客体表面的指纹细节。
     2、以硒粉、亚硫酸钠、硝酸锌和硝酸镉为原料,巯基乙酸为修饰剂,合成了粒径较小且分散均匀的ZnxCd1-xSe量子点水溶液,考察了反应时间、初始pH值和掺杂Cd含量的不同对ZnxCd1-xSe量子点粒径及荧光强度的影响。分析结果表明,合成量子点为球形,粒径为5nm左右,不同掺杂Cd含量的ZnxCd1-xSe量子点的荧光最佳发射波长随掺杂Cd含量增加由430nm红移到585nm。未掺杂的ZnSe量子点显现油汗指纹为蓝色,掺杂比例为Zn0.77Cd0.23Se量子点的指纹显现效果最好,ZnxCd1-xSe荧光量子点溶液可以清晰的显现出不同颜色的光滑客体表面的指纹细节,同时对血潜指纹的显现效果也较好。
     3、以Na2SeSO3为硒源,合成锰掺杂的水溶性Mn2+:ZnSe量子点。通过对不同修饰剂(巯基乙酸、巯基丙酸、巯基乙醇)的对比,以巯基丙酸(MPA)为修饰剂合成的Mn2+:ZnSe量子点最稳定,荧光强度最强,最佳荧光发射波长在485nm左右。XRD、TEM结果表明合成的Mn2+:ZnSe为球形颗粒,分散均匀。水溶性Mn2+:ZnSe量子点对不同客体的指纹显现效果较好,显现指纹较清晰。紫外光照合成的ZnSe/ZnS量子点荧光强度明显增强,其颗粒尺寸在4.8nm左右,显现指纹颜色为紫色或浅蓝色。
The semiconductor quantum dots (QDs) are zero dimension nanocrystal composing ofⅡ-ⅥandⅢ-Ⅴelements with the particle sizes ranging from 2nm to 10nm. Due to their strong quantum size effect,QDs exhibit unique and superior electronic, optics and surface function and show great research and application value in photoelectric conversion, semiconductor devices and biomarker areas. As a new fluorescent material, the QDs have wide excitation spectrum, narrow symmetrical emission spectrum, longer fluorescence life, better light stability and high photoluminescence yield compared with traditional organic fluorescencent dyes. QDs were mainly synthesized via orgnaic phase, microemulsion and aqueous synthesis, because of harsh reaction conditions, high costs of raw material and toxicity, the method of orgnaic phase and microemulsion synthesis were limited to practical application. QDs in aqueous synthesis have the good biological compitability and are directly used as labeling material. It has been mature for synthesis and research ofⅡ-ⅥCd-containing series QDs, but the toxity of heavy metals Cd limits their research and application in biomarkers field. In this thesis, highly fluorescent water-soluble InP/ZnS QDs were prepared via phase transfer and UV-irradiation processing, a series of ZnSe based luminescent QDs were also prepared. These QDs are low-toxic or non-toxic attributing to be as green luminescent ones leading to more broad prospects in biomarkers areas. The effects of preparation routes, structure and fluorescent property of QDs on the fingerprint developing on the surface of different objects were also systematically studied and discussed. The experimental results are given as follows:
     1、InP QDs were synthesized via solvothermal and chemical method, respectively. Then the water-soluble InP/ZnS QDs with different particle size of 3-4nm were synthesized by changing the synthesis temperature using toluene as solvent, DDA as coating agent and mercaptoacetic acid as modifier. The best emission wavelength of InP/ZnS QDs synthesized at different temperature are 438nm,508nm and 575nm respectively. The fingerprint details on the surface of smooth objects were clearly developed with water-soluble QDs solution synthesized at weaker alkaline conditions under irradiation of UV lights.
     2、The aqueous solutions of ZnxCd1-xSe QDs with smaller and homogeneous particle sizes were synthesized by using Se、Na2SO3 and Cd(NO)3·2H2O as precursor and thioglycollic acid (TGA) as modifier. The effects of refluxing time, initial pH value of the reaction and the molar ratio between Zn and Cd on the particle size and fluorescence intensity of ZnxCd1-xSe QDs were studied. Through XRD、HRTEM and fluorecence spectra, it is found that the content of Cd-doped ZnxCd1-xSe QDs with crystalline size of about 5nm increases, the best fluorescent emission wavelength were changed from 430nm to 585nm. The color of mimeograph fingerprint details on the surface of smooth objects is blue. The doped Zno.77Cdo.23Se QDs has the best result for developing fingerprint. The fingerprint details on the surface of smooth objects with different background colors were clearly developed with ZnxCd1-xSe QDs solution under UV irradiation, the effect of blood latent fingerprints is also well.
     3、The water-soluble fluorescent Mn2+:ZnSe QDs was synthesized by using Na2SeSO3 as Se precursor. Compared with mercaptoacetic acid and mercaptoacetic ethanol as the modifiers, Mn2+:ZnSe QDs synthesized with mercaptopropionic acid as modifier are most stable and strongest fluorescence intensity around 485nm. The XRD and HRTEM were also employed to characterize the sample. It is found that Mn2+:ZnSe QDs are small crystalline size and uniform dispersion. The fingerprint details on the surface of different smooth objects were clearly developed with Mn2+:ZnSe QDs. After UV- irradiation, fluorescent intensity of ZnSe/ZnS QDs was obvious enhanced, XRD characterization showed that the particle size was about 4.8nm, the color of fingerprint was purple or shallow blue.
引文
[I]Talapin D V, Murray C B. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors [J], Science,2005,310:86-89
    [2]Rogach A L, Eychmuller A, Hickey S G, et al. Infrared emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small,2007,3(4):536-557
    [3]Banyai L, Koch S W. Semiconductor quantum dots. Singapore:World Scientific,1993
    [4]Rossetti R, Ellison J L, Gibson J M,et al.Size effects in the excited electronic states of small colloidal CdS crystallites[J].J.Chem.Phys,1984,80(9):4464-4469
    [5]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=S,Se,Te)semiconductor nanocrystallites[J].J.Am.Chem.Soc,1993, 115:8706-8715
    [6]任国兰.Ⅱ-Ⅵ型量子点在分析中的应用[J].山西师大学报.2003,17(3):39-42
    [7]Nazzal A Y, Wang X Y, Qu L H, et al. Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films [J]. J. Phys. Chem. B,2004,108(18):5507-5515
    [8]Roberti T W, Cherepy N J, Zhang J Z, et al. Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers in II-VI semiconductor quantum dots: effects of particle size, surface, and electronic structure [J]. J. Chem. Phys,1998,108(5): 2143-2151
    [9]Alivisatos A P. Perspective on the physical chemistry of semieonductor nanocrystals [J].J.Phys.Chem,1996(100):13226-13239
    [10]张立德,牟季美编著.纳米材料和纳米结构,第一版.[M].科技出版社,2001:1-523
    [11]Wang Y, Suna A, Mchugh J, et al. Optical transient bleaching of quantum-confined cadmium sulfide clusters:the effects of surface-trapped electron-hole pairs [J]. J. Chem. Phys,1990,92(11):6927-6939
    [12]聂波,张建成,沈悦,等.水溶量子点的制备及其荧光性能的研究[A].国际材料科学与工程学术研讨会论文集(上册)[C],2005,150:247-249
    [13]Kairdof B A, Smith A M, Nie S. One-pot synthesis, encapsulation,and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands[J].J.Am.Chem.Soc,2008,130(39):12866-12867
    [14]Chan W C W, Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281:2016-2018
    [15]Rogach A L, Frazl T, Klar T A, et al. Aqueous synthesis of thiol-capped CdTe nanocrystals:state-of-the-art[J]. J.Phys.Chem.C,2007,111:14628-14637
    [16]Catherine J M. Optical sensing with quantum dots [J]. Anal.Chem,2002,74(19):520-526
    [17]ChenY F, Ji T H, Rosenzweig Z. Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots [J]. Nano Lett,2003,3(5):581-584
    [18]Yang Y G, Chen O, Angerhofer A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J]. J. Am. Chem. Soc,2006,128,124(38):12428-12429
    [19]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001年:51-65,112-141
    [20]Murray C B, NOtris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J.Am.Chem. Soc,1993,115:8706-8715
    [21]Peng Z, Adam, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J].J.Am.Chem.Soc,2001,123(1):183-184
    [22]Qu L, William Y W, Peng X G In situ observation of the nucleation and growth of CdSe nanocrystals[J].Nano lett,2004,4(3):465-469
    [23]Li L S, Pradhan N, Wang Y, Peng X G High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors[J]. Nano lett,2004,4(11):2261-2264
    [24]Yu W, Peng X. Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents:tunable reactivity of monomers[J].Angew.Chem, Int.Ed,2002,41:2368-2371
    [25]Sapra S, Rogach A L, Feldmann J. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil[J]. J Mater Chem,2006,16:3391-3395
    [26]Jasieniak J, Bullen C, van E J,et al. Phosphine-free synthesis of CdSe nanocrystals[J]. J.Phys.Chem.B,2005,109:20665-20668
    [27]Herron N, Calabrese J C, Fameth W E, et al.Crystal structure and optical properties of Cd32Si4(SC6H5)36.DMF4, a cluster with a 15 angstrom cadmium sulfide core[J].Science.1993,259(5100):1426-1428
    [28]Zhang H, Wang L P, Xiong H M,et al. Hydrothermal synthesis for high-quality CdTe nanocrystals[J].Adv Mater,2003,15(20):1712-1715
    [29]Zheng Y G, Gao S J. Synthesis and cell-imaging applications of glutathione capped CdTe quantum dots[J].Adv Mater,2007,19(3):376-380
    [30]Ge Y X, Chen Q F, Li M Y. Direct aqueous synthesis of high quality cysteamine-stablized CdTe crystal(R). Beijing, BCEIA,C56,2005-10
    [311 Petit C, Pileni M P. Synthesis of cadmium sulfide in situ in reverse micelles andin hydrocarbon gels[J].J Phys Chem,1988,92(8):2282-2286
    [32]Quinlan F T, Kuther J, Stroeve P, et al. Reverse micelle synthesis and characterization of ZnSe nanoparticles[J].Langmuir,2000,16(8):4049-4051
    [33]Li G L,Wang G H. Synthesis of nanometer-sized TiO2 particles by amicroemulsion method[J]. Nanostruct Mater,1999,11 (5):663-668
    [34]Kortan A R, Hull R, Opila R L,et al. Nucleation and growth of cadmium selendieon zinc sulfide quantum crystallite seeds and vice versa in inverse micellemedia[J].J Am Chem Soc,1990,112(4):1327-1332
    [35]Hoener C F, Allan K A, Bard A J, et al. Demonstration of a shell-core structure inlayered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies[J].J Phys Chem,1992,96(9):3812-3817
    [36]Caroline Seydel. Biological imaging:quantum dots get wet [J]. Science,2003,300(5626): 80-81
    [37]刘建忠.纳米生物标记技术研究进展[J].化学与生物工程,2005,8:4-6
    [38]Ryu E, Sungwoo K, Eunjoo, et al. Step-wise synthesis of InP/ZnS core-shell.quantum dots and the role of zinc acetate[J]. J Am Chem. Soc,2009,1(23):1211-1213
    [39]Zheng Y Q Yang Z C, Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCdxSe alloyed quantum dots[J].Adv Mater,2007,19:1475-1479
    [40]Zhong X H, Han M Y, Dong Z L,et al. Compostion-tunable ZnxCd1-xSe nanocrystals with high luminescence ang stablility.J Am Chem Soc,2003,125:8589-8594
    [41]Chan W C W, Maxwell D J, Gao X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Opin Biotechnology,2002,13:40-46
    [42]Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots[J].J Am Chem Soc,1999,121:8122-8123
    [43]Ergstrand A B, Svanberg C, Langton M, et al. Aggregation behavior and size of lipopolysacch-aride from escherichia [J],Colloids Surf,B,2006,53:9-14
    [44]Larsen N E, Sullivan R. Interaction between endotoxin and human-monocytes characteristics of the binding of H-3-labeled lipopolysaccharide and Cr-51-labeled lipid-A before and after the induction of endotoxin tolerance [J], Proc Natl Acad Sci USA,1984,81:3491-3495
    [45]Bruchez M J, Moronne M, Gin P,et al. Semiconductor nanocrystals as fluotescent biologicla labels[J].Science,1998,281:2013-2016
    [46]Lacoste T D, Michalet X, Pinaud F,et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes[J]. Natl Acad Sci USA,2000,97(17):9461-9466
    [47]Peng H, Zhang L J, Tanja H M. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA [J]. J Am Chem Soc,2007,129(11): 3048-3049
    [48]Sudeep P K, Shibu Joseph S T, Thomas K G Selective detection of cysteine and glutathione using gold nanorods [J]. J Am Chem Soc,2005,127(18):6516-6517
    [49]Miehalet X, Pinand F F, Bentolila L A. Quantum dots for live cells, in vivo imaging, and diagnosties [J]. Science,2005,307(5709):538-544
    [50]Larson D R, Zipfel W R, Williams R M. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science,2003,300(5624):1434-1437
    [51]Jaiswal J K, Mattoussi H, Mauro J M,et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nat Biotechnology,2002,21(1):47-51
    [52]Olshavsky M A, Goldstein A N, Alivisatos A P.Organometallic synthesis of GaAs crystallites exhibiting quantum confinement[J].J Am Chem Soc,1990,112(25):9438-9440
    [53]Uchida H, Curtis C J, Kamat P V,et al. Optical properties of GaAs nanocrystals[J].J Phys Chem,1992,96(3):1156-1160
    [54]Kher S S, Wells R L. A straightforward,new method for the synthesis of nanocrystalline GaAs and GaP[J].Chem Mater,1994,6(11):2056-2062
    [55]Wells R L, Aubuchon S R, Kher S S,et al. Synthesis,characterization,and decomposition behavior of I3In.cntdot.P(SiMe3)3[J].Chem Mater,1995,7(4):793-800
    [561 Uchida H, Matsunaga T, Yoneyama H,et al. Preparation and optical nonlinearity of quantized indium arsenide nanocrystals[J].Chem Mater,1993,5(5):716-719
    [57]Micic O I, Sprague J R, Curtis C J,et al. Synthesis and characterization of InP, GaP,and GaInP2 quantum dots[J].J Phys Chem,1995,99(19):7754-7759
    [58]Micic O I, Curtis C J, Jones K M,et al. Synthesis and characterization of InP quantum dots[J].J Phys Chem,1994,98(19):4966-4969
    [59]Li C L, Ando M, Mnomoto H, et al. Highly luminescent water-soluble InP/ZnS nanocrystals prepared via reactive phase transfer and photochemical processing [J]. J Phys Chem C,2008,112(51):20190-20199
    [60]Shu X, Jan Z, Thomas N. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals[J]. J Mater Chem,2008,18:2653-2656
    [61]Ung Thi Dieu Thuy. Low temperature synthesis of InP nanocrystals[J]. Mater Chem Phys,2008,112:1120-1123
    [62]Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection[J]. J Am Chem Soc,2008,130 (35):11588-11589
    [63]Li C L, Ando M, Murase N. Facile preparation of highly luminescent InP nanocrystals by a solvothermal route[J]. Chem Lett,2008,37(8):856-857
    [64]Xie R G, Battaglia D, Peng X G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared[J]. J Am Chem Soc,2007,129:15432-15433
    [65]Langof L, Fradkin E. Ehrenfreund, et al. Colloidal InP/ZnS core-shell nanocrystals studied by linearly and circularly polarized photoluminescence[J].Chem Phys,297 (2004): 93-98
    [66]Dhruba J, Bharali, Derrick W,et al. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy[J].J Am Chem Soc,2005, 127:11364-11371
    [67]Euidock R, Sungwoo K, Eunjoo J, et al. Step-wise synthesis of InP/ZnS core-shell quantum dots and the role of zinc acetate[J]. J Am Chem Soc,2009,21(4):573-575
    [68]王大鸷,崔励,曹传宝.微乳液法制备不同形貌低维硒化锌纳米晶[J].人工晶体学报,2006,35(3):470-473
    [69]Norman Y J, Magana D, Wilson T, et al. Optical and surface structural properties of Mn2+-doped ZnSe nanoparticles [J]. J Phys Chem B,2003,107(26):6309-6317
    [70]Suyver J F, Wuister S F, Kelly J J, et al. Luminescence of nanocrystalline ZnSe:Cu[J]. Appl Phys Lett,2001,79(25):4222-4224
    [71]冯秋菊,申德振,张吉英,等.ZnS纳米棒阵列的结构和光学特性[J].发光学报,2005,26(5):515-518
    [72]Mika P V, Seppo L, Markku L. CdxZn1-xS solid solution thin films,CdS thin films and CdS/ZnS multilayer thin films grown by SILAR technique[J]. App1 Surf Sci,1998,134: 283-291
    [73]黄风华.硫脲表面修饰的ZnS:Cd纳米晶的合成与表征[J].分子科学学报,2006,22(1):63-66
    [74]Margaret A, Hines, Philippe G S. Bright UV-blue luminescent collidal ZnSe nanocrystals[J]. J Phys Chem B,1998,102(19):3655-3657
    [75]Lin S L, Narayan P, Yun J W. High quality ZnSe and ZnS nanocrystals forned by activating zinc carboxylate[J]. Nano Lett,2004,4(11):2261-2264
    [76]Ekoko B G, Zhou R, Li J, et al. Synthesis of nanocompostie,(CdxZn1-x)S by gamma-irradiation in an aqueous ststem[J]. J Radioanal Nuc1 Ch,2004,262(3):751-754
    [77]Ekoko B G, Zhou R, Li H X. Synthesis of nanacrystalline zinc sulfide in a non-aqueous system by gamma-irradiation [J]. J Radioanal Nucl Ch,2005,265(1):3-6
    [78]Zheng Y G, Yang Z C, Ying Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCdxSe alloyed quantum dots[J]. AdvMater,2007,19:1475-1479
    [79]Narayan P, David M, Peng X G. Efficent, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomdical labels[J].Nano Lett,2007,7(2):312-315
    [80]Suyver J F, Wuister S F, Kelly J J, et al. Luminescence of nanocrystalline ZnSe:Mn2+[J]. Phys Chem,2000,2:5445-5448
    [81]Norris D J, Yao N, Charnock F T, et al.High-quality manganese-doped ZnSe nanocrystals [J].Nano Lett,2001,1:3-7
    [82]Wargacki S P, Lewis L A, Dadmun M D, et al. Enhancing the quality of aged latent fingerprints developed by superglue fuming:loss and replenishment of initiator[J]. J Forensic Sci,2008,53(5):1138-1144
    [83]王元凤,杨瑞琴,王彦吉.纳米材料显现潜在指纹的研究[J].中国人民公安大学学报(自然科学版),2007,2:1-7
    [84]Menzel E R, Savoy S M, Ulvick S J, et al. Photoluminescent semiconductor nanocrystals for fingerprint detection[J].J Forensic Sci,2000,45(3):545-551
    [85]Bouldin K K, Menzel E R, Takatsu M,et al. Diimide-enhanced fingerprint detectionwith photo luminescent CdS/dendrimer nanocomposites[J].J Forensic Sci,2000,45(6):1239-1242
    [86]陈振乾,王贵容,董学彬,等.不同纸张上手印的茚二酮显现研究[J].四川警官高等专科学校学报,2005,17(6):57-62
    [87]Liu J J, Shi Z X, Yu Y C, et al. Water-soluble multicolored fluorescent CdTe quantum dots:synthesis and application for fingerprint developing [J]. J Colloid Interf Sci,2010, 342(2):278-282
    [88]杨瑞琴,王元凤,周庆颖.等.纳米CdS/PAMAM G5.0显现胶带粘面油潜指纹应用[J].无机化学学报,2008,24(11):1874-1879
    [89]Serpone N. Relative photonic efficiencies and quantum yields in heterogeneous photocatal ysis [J]. J Photochem Photobiol A,1997,104(1-3):1-11
    [90]Bharali D J, Lucey D W, Jayakumar H,et al. Folate-receptor-me-diated delivery of InP quantum dots for bioimaging using confocal and two-photon micoscopy[J]. J Am Chem Soc,2005,127(32):11364-11371
    [91]Gaponik N, Talapin D V, Rogach A L, et al. Etching of colloidal InP nanocrystals with fluorides:photochemical nature of the process resulting in high photoluminescence efficiency[J].J Phys Chem B,2002,106(49):12659-12663
    [92]Furis M, Chen F, Cartwright A N, et al. Room-temperature time-resolved photoluminescence studies of UV emission from GaN/AIN quantum wells[J]. Mater Res Soc Symp Proc,2003,743:689-694
    [93]Rajh T, Micic O I, Nozik A J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots[J]. J Phys Chem.1993,97(46):11999-12003
    [94]Han H Y, Sheng Z H, Liang J G. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution[J]. Anal Chim.Acta,2007,596(1):73-78
    [95]高芒来,孟秀霞,孟庆民.分子沉积膜驱剂在原油/水中的分配及油水界面张力.石油大学学报:自然科学版,2005,29(3):124-129
    [96]Aldana J, Wang Y A, Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols[J].J Am Chem Soc,2001,123(36):8844-8850
    [97]Hines M A, Guyot-Sionnest P. Bright UV-blue luminescent colloidal ZnSe nanocrystals [J]. J Phys Chem B,1998,102(19):3655-3657
    [98]Zhang H, Wang D Y,Yang B, et al. Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures[J].J Am Chem Soc,2006, 128(31):10171-10180
    [99]Bao Haobo, Gong Yanjun, Li Zhen, et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core/Shell Structure [J]. Chem Mater,2004,16(20):3853-3859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700