用户名: 密码: 验证码:
银杏复合经营生物生产力及生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工复合经营的理论与实践,已显示出强大的生命力。以银杏(Ginkgo biloba L.)为主的林农复合经营模式是全国分布较广、认可程度较高的林农复合系统类型。为全面探讨不同银杏复合经营模式的生态和经济效应,本文在综述了国内外林农复合经营研究进展的基础上,以江苏省泰兴市平原区不同年份栽植(1994、2004)的七种银杏林农复合经营系统以及对照,即银杏+油菜+花生(G+R+S)、银杏+小麦+花生(G+W+S)、银杏+蚕豆+花生(G+B+S)、银杏+桑树(G+M)、小麦+花生(W+S)、油菜+花生(R+S)和银杏(G)等,并辅之安徽省潜山县大别山区银杏+板栗+茶(G+C+T)、板栗+茶(C+T)、纯茶(T)模式为研究对象,对其小气候特征、光合特性、土壤肥力、营养输入和输出、生物生产力及目标收获物品质等进行了系统的研究,并采用数学方法对不同银杏复合经营系统的生态与经济效应进行了综合评价,主要研究结果表明:
     (1)不同复合经营系统中光照强度、气温、地表温度等的日变化在一年中各个季节基本上呈现出“低-高-低”的变化趋势,而空气相对湿度的日变化呈现出“高-低-高”的变化模式;银杏复合经营系统内表现为冬季林内光照强度下降幅度小,春季和夏季林内光照强度下降幅度较高的趋势;银杏复合经营在冬季能够有效地增加了林内温度、地表温度,降低空气湿度,在生长季节能够有效地降低气温和地表温度,增加空气湿度;银杏复合经营能够明显降低风速的同时,也降低了土壤的含水量。
     (2)不同复合经营系统中,以及同一复合经营系统土壤不同层次中土壤的pH、有机质、全氮和水解氮、有效磷、全钾、有效钾、过氧化氢酶、多酚氧化酶、蔗糖酶、脲酶、脱氢酶、磷酸酶和蛋白酶等均存在着显著差异;采用改进层次分析法对土壤肥力综合评价表明,不同复合经营模式土壤综合肥力差异较大,其泰兴各模式土壤肥力质量指数(FI)从高到低依次为94G+M模式(FI=0.684)>04G+M模式(FI=0.574)>94G+B+S模式(FI=0.563)>04G+W+S模式(FI=0.506)>94G+R+S模式(FI=0.505)>04G+R+S模式(FI=0.466)>W+S模式(FI=0.454)>94G+W+S模式(FI=0.442)>R+S模式(FI=0.434)>94G模式(FI=0.287),潜山3种经营模式土壤肥力质量指数从高到低依次为G+C+T模式(FI=0.746)>C+T模式(FI=0.557)>T模式(FI=0.453)。可见,复合经营土壤肥力要优于单作模式。
     (3)银杏复合经营系统提高了银杏根和茎中氮、磷、钾、镁的含量,而使叶中的氮、钙、镁及根、茎中钙含量下降;林农复合经营系统降低了小麦植株中氮、磷、钾的含量,以及花生中的氮、钾含量及地上部分钙含量,而小麦中镁含量,花生中磷、镁含量及地下部分的钙含量升高;94G+R+S、94G+M和94G+W+S系统增加了对营养元素的吸收、营养元素的归还量和取走量,提高了营养元素的循环率,而94G+M、W+S降低了营养元素的循环率。
     (4)不同复合经营系统单位面积总生物量和目标收获物产量达到显著差异水平,94G+W+S模式年总生物量和目标收获物产量最高,94G模式最低;与对照相比,复合经营系统中,银杏年生长量和种子产量均有不同程度的提高,而间作物的年生长量和目标收获物显著下降;复合经营系统中,主要间作物的年生物量均高于银杏的年生物量,依次为小麦>桑树>油菜>花生>银杏>蚕豆,而各种植物的生产力高低排列顺序与生物量略有不同,其次序为小麦>油菜>花生>桑树>银杏>蚕豆。潜山G+C+T、C+T模式内茶树的生物生产力显著低于T模式,但茶叶的水浸出物、咖啡碱、茶多酚、氨基酸、镁、锰等含量在复合模式中要高于纯茶模式。
     (5)不同复合经营系统的固碳价值、土壤保育价值、空气净化价值等生态价值均存在较大的差异。生态总价值以94G+M模式最高,达1.979万元·hm-2·a-1,94G+R+S模式(1.477万元·hm-2·a-1)和94G+W+S模式(0.939万元·hm-2·a-1)次之,94G模式(0.526万元·hm-2·a-1)和W+S模式(0.241万元·hm-2·a-1)最低;复合经营系统的经济效益在整体上要好于纯林和纯农模式,5种模式的经济效益高低顺序为94G+W+S模式(4.486万元·hm-2·a-1)>94G+R+S模式(3.696万元·hm-2·a-1)>94G+M模式(2.891万元·hm-2·a-1)>94G模式(2.169万元·hm-2·a-1)>W+S模式(2.047万元·hm-2·a-1);在生态经济综合效益方面,94G+W+S模式的综合效益最高,达5.425万元·hm-2·a-1,其次为94G+R+S模式(5.173万元·hm-2·a-1)、94G+M模式(4.870万元·hm-2·a-1)、94G模式(2.695万元·hm-2·a-1),W+S模式最低(2.288万元·hm-2·a-1)。
     综上所述,银杏林农复合经营系统要优于纯银杏和纯农作物栽培经营。在不同银杏复合系统中,由于复合植物的不同造成各模式生态、经济效应的差异,具体表现为:从土壤肥力角度分析,G+M、G+R+S模式优之;从养分吸收与循环角度分析,G+R+S、G+W+S模式优之;从生物量与生产力角度分析,G+W+S、G+R+S模式优之;从经济效益角度分析,G+W+S、G+R+S模式优之;从生态效益角度分析,G+M、G+R+S模式优之。在综合社会、经济、生态效益及结合劳力机会成本与产出等情况分析,在农区可首先推广应用G+R/W+S银杏复合经营系统,而在山区及丘陵区可首先推广应用G/C+T、G+M银杏复合经营系统。
The theory and practice of agroforestry, which has performed the powerful vitality, provides the effective approaches for realizing forestry ecological construction and harmonious development of forestry and agriculture. The Ginkgo agroforestry is popular to be distributed and accepted at the zone of Ginkgo cultivation. For comprehensively probing into the ecological and economical effects of Ginkgo agroforestry systems, based on the domestic and overseas study achievements, the paper studied the principal agroforestrys of the seven Ginkgo agroforestrys planted in years 1994 and 2004, monotypic Ginkgo and monotypic crop in the plain areas in Taixing Jiangsu, i.e. Ginkgo+Rape+Peanut (G+R+S), Ginkgo+Wheat+Peanut (G+W+S), Ginkgo+Broadbean+Peanut (G+B+S), Ginkgo+Mulberry (G+M), Wheat+Peanut (W+S), Rapeseed+Peanut (R+S) and monotypic Ginkgo (G), and further supplementary agroforestry systems of Ginkgo+ Chestnut+Tea (G+C+T), Chestnut+Tea (C+T) and monotypic Tea (T) in the areas of Mt.Dabie in Qianshan Anhui. The paper systematically probed the micro-climate character, photosynthesis characteristics, soil fertility, nutrition inputting and outputting, biological productivity, and quality of target harvest products, etc. And the paper used mathematic ways to comprehensively evaluate the ecological and economic effects of Ginkgo agroforestry systems. The main results were as follows:
     I. The daily change of light intensity, air temperature and soil surface temperature basically presented the Low-High-Low tendency in various agroforestry systems all the year, while the daily change of the atmosphere relative moisture presented the High-Low-High tendency. Ginkgo agroforestry systems presented that the forest interior light intensity was decreasing with small amplitude in winter, but decreasing with big amplitude in spring and summer. Ginkgo agroforestry systems could obviously keep the thermal preservation in winter through increasing the forest interior temperature, soil surface temperature and decreasing the atmosphere relative moisture. However, Ginkgo agroforestry systems could keep cooling the atmosphere temperature, soil surface temperature and increasing the atmosphere relative moisture in the growth seasons. On one hand, the Ginkgo systems could obviously reduce the wind speed, on the other hand, the soil water content becomed less.
     II. In different agroforestry systems or the same agroforestry systems along with the different depths of soils, all these (the contents of the soil oganic matters, total-N, hydrolysable N, total-P, available P, available K and the activity of sucrase, urease, dehydrogenase, phosphatase and protease) were violently different. The study comprehensively evaluated the soil fertility and quality in various models through the procedures of the improved analytic hierarchy process. The High-Low order of the soil fertility and quality in various models was 94G+M(FI=0.684)>04G+M(FI=0.574)>94G+B+S(FI=0.563)>04G+W+S(FI=0.50)>94G+R+S (FI=0.505)>04G+R+S(FI=0.466)>W+S(FI=0.454)>94G+W+S(FI=0.442)>R+S(FI=0.434)> 94G (FI=0.287) in Taixing, while G+C+T(FI=0.746)>C+T(FI=0.557) T(FI=0.453) in Qianshan. The study showed that the soil fertility is better in agroforestry systems than in monotypic models.
     III. Ginkgo agroforestry systems increased the contents of N, P, K and Mg in Ginkgo roots and stems, but decreased the contents of N, Ca and Mg in Ginkgo leaves and Ca in Ginkgo roots and stems. Agroforestry systems reduced the contents of N, P and K in Wheat, and the contents of N and K in the underneath part of Peanut and Ca in the overground part of Peanut. But the agroforestry systems increased the contents of Mg in Wheat and the contents of P, Mg and Ca in Peanut. The models 94G+R+S, 94G+M and 94G+W+S increased the ability for the absorption, return and taking amount of the nutrition elements, which increased the Circulation Ratio of the nutrition elements, but the models 94G+M and W+S decreased the Circulation Ratio.
     IV. The total biomass quantity and the target harvest yield were remarkably different among various agroforestry systems. Compared to the no-touch plots, the annual growth and the seeds yield of Ginkgo incresed to some extent, however, the annual biomass growth and the target harvest products of the intercrops decreaed obviously. In agroforestry systems, the total of the annual biomass of the main intercrops was more than that of Ginkgo, and the High-Low order was Wheat>Mulberry>Rape>Peanut>Ginkgo>Broadbean. However, the High-Low order of productivity was Wheat>Rapeseed>Peanut>Mulberry>Ginkgo>Broadbean, which was a little bit different than that of the biomass amount. The tea biological productivity in the models of G+C+T and C+T was much lower than that in the model T, but the contents of the tea chemical compositions (waterextraction, caffeine, tea polyphenol, amino acid, Mg, Mn, etc.) were higher than those of the tea monotypic model.
     V. It existed violent differences on the ecological value including carbon fixation, soil fertility maintenance and air purification, the model 94G+M had the highest total benefits, which was 19790 yuan·hm-2·a-1, and the following was the models 94G+R+S(14770 yuan·hm-2·a-1)and 94G+W+S)(9390 yuan·hm-2·a-1), and the lowest was the models 94G(5206 yuan·hm-2·a-1) and W+S(2410 yuan·hm-2·a-1). The economic benefit of agroforestry systems were generally better than that of pure forest or agriculture. The High-Low order of the economic benefit was 94G+W+S(44860 yuan·hm-2·a-1)>94G+R+S(36960 yuan·hm-2·a-1) >94G+M(28910 yuan·hm-2·a-1)>94G (21690 yuan·hm-2·a-1)>W+S (20470 yuan·hm-2·a-1). On the ecological value, the High-Low order was that the highest was the model 94G+W+S(54250 yuan·hm-2·a-1), the following was the models 94G+R+S(51730 yuan·hm-2·a-1), 94G+M(48700 yuan·hm-2·a-1) and 94G(26950 yuan·hm-2·a-1), the lowest was the model W+S(22880 yuan·hm-2·a-1).
     As the conclusion, Ginkgo agroforestry systems were superior to monotypic Ginkgo or crops cultivation. Different Ginkgo agroforestry systems had different ecological and economic benefits because of the different plants combinations. When soil fertility was considered, the models G+M, G+R+S were superior; when absorption and cycling of nutrition elements were considered, the models G+R+S, G+W+S were superior; when biomass and productivity were considered, the models G+W+S, G+R+S were superior; when economic benefits were considered, the models G+W+S, G+R+S were superior; when ecological benefits were considered, the models G+M, G+R+S were superior. Based on the comprehensive analysis of social, economic and ecological benefits, cost and output, etc., the models G+R/W+S could be promoted in rural areas, while the models G/C+T, G+M could be promoted in the mountains .
引文
1.安利峰,胜利,范桂香.硒的功能及其相关疾病[J].国外医学地理分册, 2005, 26(2): 56-58.
    2.安韶山,黄懿梅,李壁成,等.用典范相关分析研究宁南宽谷丘陵区不同土地利用方式土壤酶活性与肥力因子的关系[J].植物营养与肥料学报, 2005, 11 (5): 704-709.
    3.白翠霞,耿玉清,梁伟,等.八达岭地区主要森林类型土壤脲酶活性研究[J].四川农业大学学报, 2005, 23(4): 424-427.
    4.比晓丽,洪伟.生态环境综合评价方法的研究进展[J].农业系统科学与综合研究, 2001, 17(2): 122-124.
    5.曹福亮.中国银杏[M].南京:江苏科学技术出版社, 2002.
    6.陈长青,何园球,卞新民.东南部红壤区农林复合生态系统分类体系研究[J].国农学通报, 2005, 21(9): 385-388.
    7.陈佳瀛,宋永昌,王爱民.上海外环林带小气候效应的研究(Ⅰ)[J].生态环境, 2005, 14(1): 67-74.
    8.陈炜俊,蔡美琴.微量元素锌与代谢综合征相关疾病的研究进展[J].中国临床营养杂志, 2007, 15(1):
    61-65.
    9.陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学博士学位论文, 2003.
    10.陈毓荃.生物化学实验方法和技术[M].北京:科学出版社, 2003.
    11.陈展宇,吴磊,凌凤楼,等.旱稻叶片净光合速率日变化及其与影响因子关系的研究[J].吉林农业大学学报, 2008, 30(3): 237-240.
    12.程鹏等著.现代林业生态工程建设理论与实践[M].合肥:安徽科学技术出版社, 2003.
    13.程鹏.森林可持续经营是发展现代林业的必然抉择[R].柏林:中德对话会议, 2010.
    14.代巍,郭小平,毕华兴,等.晋西地区果树——农作物复合模式的光合特点[J].吉林农业大学学报, 2009, 31(6): 688-693.
    15.单宏年.农林复合经营的生态效益研究[J].现代农业科技, 2008, (6): 203-204.
    16.邓先瑞.气候资源概论[M].武汉:华中师范大学出版社, 1995.
    17.樊巍,高喜荣,郭良,等.灌木状白蜡-农作物间作系统的生物量及养分分配的初步研究[J].林业科学, 2000, 36(5): 109-113.
    18.樊巍,孟平,李芳东.河南平原复合农林业[M].郑州:黄河水利出版社, 2001.
    19.方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报, 2001, 25(4): 414-419.
    20.方路斌,李玉灵,黄大庄,等.不同立地下白桑-花生间作系统生物量及营养元素的积累[J].林业科学, 2008, 44(1): 13-18.
    21.方升佐,黄宝龙,徐锡增.高效杨树人工林复合经营体系的构建与应用[J].西南林学院学报, 2005, 25(4): 36-41.
    22.方升佐,徐锡增,余相,等.杨-小麦复合经营模式的立地生产力及生态经济效益评价[J].林业科学, 2004, 40(3): 88-95.
    23.冯宗炜.农林业系统结构和功能[M].北京:中国林业出版社, 1992.
    24.高城雄,朱首军,赵智鹏,等.陕北长城沿线风沙区农林复合经营模式与效益研究[J].水土保持研究, 2007, 14(1): 60-63.
    25.高椿翔,高杰,邓国胜,等.林粮间作生态效果分析[J].防护林科技, 2000, 44(3): 97-98.
    26.高祥斌,刘增文,潘开文.岷江上游典型森林生态系统土壤酶活性初步研究[J].西北林学院学报, 2005, 20 (3): 1-5.
    27.高英旭,刘红民,张敏,等.辽西低山丘陵区农林复合经营的效应[J].辽宁林业科技, 2008, (1): 31-34.
    28.耿玉清,白翠霞,赵铁蕊,等.滨海盐碱地枣园土壤酶活性与土壤养分、微生物的关系[J].北京林业大学学报, 2006, 28: 57-11.
    29.关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社, 1986.
    30.官春云.油菜品质改良和分析方法[M].长沙:湖南科学技术出版社, 1985.
    31.郭桂义,刘海芳,陈延彪,等.不同茶树品种桐柏玉叶茶叶的主要化学成分比较[J].食品科学, 2007, (12): 75-77.
    32.国家质量技术监督局.林木种子检验规程[S].北京:中国标准出版社, 1999.
    33.郝云庆,王金锡,李力,等.北川退耕还林农林复合经营模式的水土保持效应研究[J].水土保持学报, 2006, 20(4): 16-19.
    34.何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社, 1985.
    35.何宗明,杨玉盛.杉木不同复合经营模式综合效益的研究[J].南京林业大学学报(自然科学版), 1996, 20(4): 57-60.
    36.贺明荣,冷寿慈.桃粮间作对土壤养分状况及土壤生物活性的影响[J].土壤通报, 1994, 25 (4): 188-189.
    37.胡海波,王汉杰,鲁小珍,等.中国干旱半干旱地区防护林气候效应的分析[J].南京林业大学学报, 2001, 25(3): 77-82.
    38.胡明贵,张德魁.盐渍地人工苜蓿草地生产力与土壤改良研究[J].安徽农业科学, 2008, 36(17): 7421-7422, 7436.
    39.华爱萍,朱程英,孙庆刚.百合银杏林下种植试验研究[J].山东林业科技, 2009, (4): 65-67.
    40.黄枢,沈国舫.中国造林技术[M].北京:中国林业出版社, 1993.
    41.黄宝龙,黄文丁,林伯颜,等.立体林业[M].南京:江苏科学技术出版社, 1991.
    42.黄文丁,王汉杰.林农复合经营技术[M].北京:中国林业出版社, 1992.
    43.季永华,张纪林.海岸带农林复合系统可持续经营技术研究述评[J].林业科技开发, 2008, 22(4): 5-8.
    44.姜志林.我国农林复合经营的兴起[J].林业科技开发, 1998, (3): 54-56.
    45.蒋玉超.论农林复合经营[J].林业勘查设计, 2004, 130(2): 3-7.
    46.金继运.土壤钾素研究进展[J].土壤学报, 1992, 30(1): 94-101.
    47.鞠建明,段金廒,钱大玮,等.不同栽培模式的银杏叶在不同生长季节中总黄酮醇苷和总内酯的含量变化[J].药物分析杂志, 2003, 23(3): 195-199.
    48.黎华寿,骆世明.高州市典型坡地不同利用方式对土壤理化性状的影响[J].华南农业大学学报, 2001, 22(2): 1-4.
    49.李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展[J].世界林业研究, 1999, 12(5): 10-14.
    50.李传荣,许景伟,宋海燕,等.黄河三角洲滩地不同造林模式的土壤酶活性[J].植物生态学报, 2006, 30 (5): 802-809.
    51.李春霞,陈阜,王俊忠,等.不同耕作措施对土壤酶活性的影响[J].土壤通报, 2007, 38(3): 601-603.
    52.李阜棣.土壤微生物学[M].北京:中国农业出版社, 1996.
    53.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2004.
    54.李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报, 2002, 13(4): 390-394.
    55.李荣标,吴发启,王红红,等.黄土高原南部丘陵沟壑区果畜沼复合经营模式生态经济效益分析[J].水土保持通报, 2008, 28(3): 178-181.
    56.李增嘉,张明亮,李凤超,等.粮果间作复合群体地上部分生态因子变化动态研究[J].作物杂志, 1994, (2): 13-15.
    57.李志杰,李守正,田昌玉,等.土壤有机质对小麦光合作用系统的影响[J].自然资源学报, 2000, 15(B06): 83-86.
    58.梁迪,董海.系统工程[M].北京:机械工业出版社, 2005.
    59.梁玉斯,蒋菊生,曹建华.农林复合生态系统研究综述[J].安徽农业科学, 2007, 35(2): 567-569.
    60.林锦仪,马华明,陈增华.银杏-黄花梨不同复合经营模式生长效益的研究[J].经济林研究, 2000,
    18(4): 14-16.
    61.林开敏,俞新妥,洪伟,等.杉木人工林林下植物对土壤肥力的影响[J].林业科学, 2001, 37(S1):
    94-98.
    62.刘慧,刘景辉,李倩,等.燕麦与不同作物间作群体效应研究[J].华北农学报, 2007, 22(专辑):
    10-15.
    63.刘福德,姜岳忠,刘颜泉,等.连作-107杨树无性系苗圃地的土壤酶活性特征[J].中国水土保持科学, 2005, 3( 2): 119-124.
    64.刘俊杰,陈瑶.农林复合经营的研究进展[J].内蒙古林业调查设计, 2005, 28(2): 30-33.
    65.刘荣坤,胡艳,李永政.沈介陨石山森林公园SO2污染现状与植物反应的研究[J].生态学杂志, 1998, 17(2): 26-31.
    66.刘玉萃,吴明作,郭宗民,等.宝天曼自然保护区栓皮栎林生物量和净生产力研究[J].应用生态学报, 1998, 9 (6) : 569-574.
    67.刘祖贵,陈金平,段爱旺,等.不同土壤水分处理对夏玉米叶片光合等生理特性的影响[J].干旱地区农业研究, 2006, 24(1): 90-95.
    68.卢琦,阳含熙,慈龙骏,等.农桐间作系统辐射传输对农作物产量和品质的影响[J].生态学报, 1999, 17(1): 36-44.
    69.陆松侯,施兆鹏.茶叶审评与检验[M].北京:中国农业出版社, 2001.
    70.吕晓男,陆允甫,王人潮.土壤肥力综合评价初步研究[J].浙江大学学报(农业与生命科学版), 1999, 25(4): 378-382.
    71.吕志英,罗诚彬,方升佐,等.杨-农复合模式对水稻产量和品质的影响[J].南京林业大学学报, 2006, 30(6): 83-86.
    72.马履一,翟明普.京西山地土壤理化性质的分布[J].北京林业大学学报, 1999, 21(1): 1-8.
    73.孟平,张劲松,樊巍.中国复合农林业研究[M].北京:中国林业出版社, 2003.
    74.孟平,张劲松.梨麦间作系统水分效应与土地利用效应的研究[J].林业科学研究, 2004, 17( (2): 167-171.
    75.孟庆岩,王兆骞,姜曙千.我国热带地区胶-茶-鸡农林复合系统能流分析[J].应用生态学报, 1999, 10(2): 172-174.
    76.孟庆岩,王兆赛,姜曙千.我国热带地区胶-茶-鸡农林复合系统物质循环研究[J].自然资源学报, 2000, 15(l): 61-65.
    77.孟祥楠,赵雨森.农林复合经营对土壤化学性质的影响[J].防护林科技, 2006, (4): 38-40.
    78.彭方仁,黄宝龙.椰子-菠萝复合系统营养元素循环的研究[J].南京林业大学学报, 1998, 22(1): 9-12.
    79.彭方仁,李杰,黄宝龙,等.海岸带不同复合农林业系统的小气候特征[J].植物资源与环境学报, 2001, 10(1): 16-20.
    80.彭方仁,李杰,黄宝龙,等.海岸带不同复合农林业系统种群生态特征[J].南京林业大学学报, 2002b, 26(1): 45-49.
    81.彭方仁,李杰,黄宝龙.海岸带复合农林业系统植物种群光环境特征研究[J].生态科学, 2002a,
    21(1): 11-15.
    82.彭方仁,李杰,张纪林,等.海岸带不同林农复合经营模式的生物生产力研究[J].南京林业大学学报, 2000, 24(2) 78-82.
    83.彭晓邦,蔡靖,姜在民,等.光能竞争对农林复合生态系统生产力的影响[J].生态学报, 2009,
    29(1): 545-552.
    84.彭晓邦,仲崇高,沈平,等.玉米大豆对农林复合系统小气候的光合响应[J].生态学报, 2010, 30(3): 0710-0716.
    85.彭镇华,江泽慧.迎接21世纪生态环境新时代:论中国森林生态网络系统工程[J].安徽农业大学学报, 1998, 28(2): 1-4.
    86.彭镇华.有螺滩地林农复合生态系统的建立及其效果分析[C]. //王志宝.中国高级专家研讨会-兴林灭螺论文集.北京:中国林业出版社, 1995.
    87.戚英,虞依娜,彭少麟.广东鹤山林-果-草-鱼复合生态系统生态服务功能价值评估[J].生态环境, 2007, 16(2): 584-591.
    88.丘秀灵,刘正富,阮云泽,等.海南胶园土壤肥力评价及影响因素分析[J].广东农业科学, 2009, (9): 81-85.
    89.裘福庚,方嘉兴.农林复合经营系统及其实践[J].林业科学研究, 1996, 9(3): 318-322.
    90.沈立新.银杏混农林间作模式栽培技术研究[J].中国生态农业学报, 2003, 11(2): 117-118.
    91.沈雨志,栾炳群,季荣.银杏桑树高效套栽技术及其推广[J].中国蚕业, 2004, 25(3): 36-37.
    92.孙辉,唐亚,黄雪菊.金沙江干旱河谷坡地复合经营系统内竞争及养分平衡研究[J].干旱地区农业研究, 2005b, 23(1): 166-172.
    93.孙辉,谢嘉穗,唐亚.坡耕地等高固氮植物篱复合经营系统根系分布格局研究[J].林业科学, 2005a, 41(2): 8-15.
    94.孙述涛.林农复合系统分类及命名[J].南京林业大学学报, 1995, 19(4): 75-79.
    95.孙叶林,刘勤.黄淮海平原封丘县土壤肥力变异与农田生产力相关研究[J].土壤, 2009, 41(2): 274-277.
    96.田大伦,康文星,文仕知,等.杉木林生态系统学[M].北京:科学出版社, 2003.
    97.田晶会,贺康宁.不同土壤水分下黄土高原侧柏生理生态特点分析[J].水土保持学报, 2005, 19 (2) : 175-183.
    98.宛志沪,蒋跃林,严平,等.平原绿化区域气候的影响[C]. //中国林业科学研究院林业研究所.平原农区农林复合系统结构功能与功能研究论文集.北京:中国林业出版社, 1996.
    99.万开元,陈防,余常兵,等.杨树-农作物复合系统中的化感作用[J].生态科学, 2005, 24(1): 57-60.
    100.汪涛,杨元合,马文红.中国土壤磷库的大小、分布及其影响因素[J].北京大学学报(自然科学版), 2008, 44(6): 945-952.
    101.汪东风.食品科学实验技术[M].北京:中国轻工业出版社, 2006.
    102.王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用[J].农业环境科学学报, 2006, 25(4): 934-938.
    103.王旭,曾昭海,朱波,等.箭舌豌豆与燕麦不同间作混播模式对产量和品质的影响[J].作物学报, 2007, 33(11): 1892-1895.
    104.王颖,袁玉欣,魏红霞,等.杨粮间作系统小气候研究[J].中国生态农业学报, 2001, 9(3): 40-42.
    105.王德艺,张维梅,袁玉欣,等.中林-46杨他感作用初探[J].河北林果研究, 2000, 15(1): 1-5.
    106.王宏燕,周东兴,孙聪妹,等.松嫩平原玉米带农业生态系统研究[J].东北林业大学学报, 1999, 30(2): 111-115.
    107.王立刚,赵岭,许成启,等.黑龙江省西部农林复合经营类型、模式及其效益分析[J].防护林科技, 2000, 44(3): 32-38.
    108.王启其.杉木薏米复合经营模式结构与生物量的研究[J].福建林学院学报, 1996, 16(2): 126-129.
    109.王维才.投资项目可行性分析与项目管理[M].北京:冶金工业出版社, 2000.
    110.王晓娟.合群体中小麦光合特性的日变化研究[J].作物杂志, 2007 (5): 39-40.
    111.王兴祥,何园球,张桃林,等.低丘红壤花生南酸枣间作系统研究III[J].土壤, 2003, 35(3): 232-235.
    112.卫春,陈建群,张鹏飞,等.复合农林系统中水杉他感作用的生物测定[J].南京林业大学学报, 1999, 23(4): 85-88.
    113.温作民.森林生态会计[M].北京:科学出版社, 2008.
    114.吴晓婷,陈亮中.农林复合系统分类体系与研究方法综述[J].林业调查规划, 2006, 31(3): 101-104.
    115.席承藩.中国土壤[M].北京:中国农业出版社, 1998.
    116.夏青,何丙辉,谢洲,等.紫色土农林复合经营土壤理化性状研究[J].水土保持学报, 2006, 20(2): 86-89.
    117.夏凤禹,魏胜利,周胜利.土壤磷素形态及有效化途径的研究进展[J].林业勘查设计, 2009, (3): 65-67.
    118.邢尚军,张建锋,郗金标,等.黄河三角洲地区农林复膈经营模式构建技术及效益分析[J].东北林业大学学报, 2003, 31(6): 102-103.
    119.徐舰.银杏、柑桔不同复合经营模式生长效益评价[J].经济林研究, 2006, 24 (2): 32-34.
    120.许峰,蔡强国,吴淑安,等.坡地农林复合系统土壤养分时间过程初步研究[J].水土保持学报, 2000, 14(3): 46-51.
    121.许大全.光合作用效率[M].上海:上海科学技术出版社, 2002.
    122.许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社, 2000.
    123.薛立,杨鹏.森林生物量研究综述[J].福建林学院学报, 2004, 23 (3) : 283-288.
    124.薛立,陈红跃,毕鸿雁,等.湿地松混交林地土壤养分、微生物和酶活性的研究[J].应用生态学报, 2003, 14 (1) : 157-159.
    125.薛智德.农桐间作生态系统养分循环的研究[J].陕西林业科技, 1997, (1): 1-5.
    126.闫德仁,刘永军,冯立岭,等.农林复合经营土壤养分的变化[J].东北林业大学学报, 2001, 29(1): 53-56.
    127.严红,刘德玉,何万云.黑龙江省农田生态系统氮磷钾盈亏平衡的研究[J].东北农业大学学报, 1996, 27(3): 219-222.
    128.杨修,赵体顺,张存义.农桐间作的养分循环[J].农村生态环境, 1994, 10(4): 7-11.
    129.杨和健.黄山市农林复合经营模式研究[J].安徽农学通报, 2007, 13(16): 176-177.
    130.余叔文.大气污染生物监测方法[M].广州:中山大学出版社, 1993.
    131.余晓章.农林复合模式研究与进展[J].四川林勘设计, 2003, (3): 7-10.
    132.俞涛,宋锋惠,卓热木,等.枣麦间作系统小气候效应研究初报[J].新疆农业科学, 2009, 46(2):
    338-345.
    133.袁玉欣,贾渝彬,邵吉祥.杨粮间作系统小气候水平分布特征研究[J].中国生态农业学报, 2002, 10(3): 21-23.
    134.袁正科,袁穗波,姚敏,等.板粟复合经营模式的土壤流失规律[J].中国水土保持科学, 2005, 3(4): 115-118.
    135.云雷,毕华兴,任怡,等.晋西黄土区果农间作界面土壤水分分布[J].东北林业大学学报, 2009, 37(9): 70-78.
    136.张昌顺,李昆.人工林养分循环研究现状与进展[J].世界林业研究, 2005, 18(4): 35-39.
    137.张朝辉.杉木薏米复合经营模式土壤肥力的研究[J].福建农林大学学报, 1999, 19(1): 84-86.
    138.张纪林,葛明宏.复合农林业技术创新的探讨[J].世界林业研究, 2000, 13(4): 70-76.
    139.张继祥,刘克长,任中兴,等.间作型人工林气象效应的研究[J].山东林业科技, 1996, (5): 39-41.
    140.张劲松.农林复合系统水分运移模型与水分生态特征的研究[D].北京:中国农业大学博士学位论文, 2001.
    141.张立宇,董玉芝,陈虹,等.核(桃)农间作系统小气候水平分布特征研究[J].新疆农业大学学报, 2009, 32 (3): 5-10.
    142.张玉铭,胡春胜,毛任钊,等.华北太行山前平原农田生态系统中氮、磷、钾循环与平衡研究[J].应用生态学报, 2003, 14(11): 1863-1867.
    143.张源沛,董立国,李娜.黄土丘陵区坡地林草间作土壤水分的动态变化[J].防护林科技, 2009, (5): 1-2.
    144.张智明,曹承绵,周礼恺.耕作棕壤酶活性的研究[J].土壤通报, 1985, 16(6): 281-285.
    145.章铁,黄显鹏,杨斌.低丘李园复合经营模式间作物生态效应研究[J].应用生态学报, 2005a, 16(6): 1022-1025.
    146.章铁,李宏开,祝有刚,等.大山示范区经果林复合经营模式及其生态和经济效益分析[J].应用生态学报, 2005b, 16(7): 124-125.
    147.章铁,刘秀清,孙晓莉.栗茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报, 2008, 24(4): 265-268.
    148.章铁,谢虎超.低丘果园生草栽培复合效应[J].经济林研究, 2003, 21(1): 56-57.
    149.章铁,杨斌.果农复合经营模式系统对土壤肥力的影响[J].安徽农业科学, 2005, 33(1): 65-66.
    150.章海波,骆永明,赵其国,等.香港土壤研究Ⅵ.基于改进层次分析法的土壤肥力质量综合评价[J].土壤学报, 2006, 43(4): 577-583.
    151.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报, 2006, 26(6): 1792-1801.
    152.赵林森,王九龄.杨槐混交林生长及土壤酶活性与肥力的关系[J].北京林业大学学报, 1995, 17(4): 1-8.
    153.郑洪元,张德生,郑莲嫡.土壤中具有蛋白酶活性的酶-腐殖质复合物的提取及其性质的研究[J].土壤学报, 1985, 22(4): 357-364.
    154.中国标准出版社总编室.中国国家标准汇编[S].北京:中国标准出版社, 1999.
    155.中国标准出版社总编室.中国国家标准汇编[S].北京:中国标准出版社, 2002.
    156.中国标准出版社总编室.中国国家标准汇编[S].北京:中国标准出版社, 2008.
    157.钟功甫,王增骇,吴厚水.基塘系统的水陆相互作用[M].北京:科学出版社, 1993.
    158.周再知,郑海水,杨曾奖,等.橡胶与砂仁间作复合生态系统营养元素循环的研究[J].林业科学研究, 1997, 10(5): 464-471.
    159.朱广廉,钟海文,张爱琴.植物生理学实验[M].北京:北京大学出版社, 1990.
    160.朱海燕,刘忠德,王长荣,等.茶柿间作系统中茶树根际微环境的研究[J].西南师范大学学报, 2005,
    30(4): 715-718.
    161.朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报, 2006, 28(2): 57-63.
    162.朱礼学,邓泽锦.土壤pH值及CaCO3在多目标地球化学调查中的研究意义[J].物探化探计算技术, 2001, 23(2): 140-141.
    163.朱清科,沈应柏,朱金兆.黄土区农林复合系统分类体系研究[J].北京林业大学学报, 1999, 21(3): 36-40.
    164.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科技出版社, 1992.
    165.庄伊美,王仁矶,谢志南,等.福建丰产荔枝园土坡徽里元素含量的研究[J],土壤与环境, 1994, 3(4): 199-205.
    166. Abdul K S, Kimura K A. Activities of some soil enzymes in different land use system after deforestation in hilly areas of west Lampung, South Sumatra, Indonesia [J]. Soil Sci, 2000, 80: 91-97.
    167. Acosta M V, Zobeck T M, Gill T E, et al. Enzyme activities and microbial community structure in semiarid agricultural soils [J]. Biology and Fertility of Soils, 2003, 3: 216-227.
    168. Alkorta I, Aizpurua A, Riga P, et al. Soil enzyme activities as biological indicators of soil health[J]. Rev Environ Health, 2003, 18(1): 65-73.
    169. Allen S C, Jose S, Nair P K R, et al. Safety-net role of tree roots: Evidence from a pecan (Carya illinoensis K. Koach)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States[J]. ForestEcology and Management, 2004, 192: 395-407.
    170. Anthofer J, Hanson J, Jutzi S C. Wheat growth as influenced by application of agroforestry-tree prunings in Ethiopian highlands[J]. Agroforestry Systems, 1998, 40: 1-18.
    171. Badiane N N Y, Chotte J L, Pate E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions [J]. Applied Soil Ecology, 2001, 18(3): 229-238.
    172. Banful B, Dzietror A, Ofori I, et al. Yield of plantain alley cropped with Leucaena leucocephala and Flemingia macrophylla in Kumasi, Ghana[J]. Agroforestry Systems, 2000, 49: 189-199.
    173. Barnette R M, Busk E F, Hester J B, et al. The mineral analysis of nineteen years old Marsh seedless grapefruit tree[J]. CitrusInd, 1973, (12): 5-6.
    174. Bayala J, Ouedraogo S J, Teklehaimanot Z. Rejuvenating indigenous trees in agroforestry parkland systems for better fruit production using crown pruning[J]. Agroforest Systems, 2008, 72: 187-194.
    175. Berry J A, Downton W J S. Environmental regulation of photosynthesis. In: Govindjee(ed). Photosynthesis VolⅡ[M]. New York: Academic Press, 1982.
    176. Beukema H, Danielsen F, Vincent G, et al. Plant and bird diversity in rubber agroforests in the lowlands of Sumatra, Indonesia[J]. Agrofoestry Systems, 2007, 70: 217-242.
    177. Blumental C S. Seasonal change in wheat grain quality associated with high temperatures during grain filling[J]. Aust J Agric Res, 1991, 42: 21-30.
    178. Burns R G. Enzyme activity in soil: Location and a possible role in microbial activity[J]. Soil Biol & Bicohem, 1982, 14: 423-427.
    179. Cao F L. Ecological Basis for Ginkgo Agroforestry Systems[M]. Beijing: China Forestry Publishing House, 2007.
    180. Chan K J, Heenan D P, Oares A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J]. Soill Tillage Res, 2002, 63: 133-139.
    181. Chander K, Goyal S, Nandal D P, et al. Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system[J]. Biol Fertil Soils, 1998, 27: 168-172.
    182. Chen Y B, Lin C W, Huang J J, et al. Energy flow characteristics of alley cropping on hillsides in Sichuan, China[J]. Journal of Plant Ecology, 2007, 31(5): 960-968.
    183. Costa W A, Surenthran P, Attanayake K B. Tree-crop interactions in hedgerow intercropping with different tree species and tea in Sir Lanka: 2. Soil and plant nutrients[J]. Agroforestry Forum, 2005, 63: 211-218.
    184. Domingo F. Evapotranspriation model for semi-arid shrub-lands tested against data from SE Spain[J]. Agriculture Forestry Meteorology, 1999, 95: 67-84.
    185. Doran J W. Defining soil quality for a sustainable environment [J]. Soil Society of America Special Publication, 1994, 35: 32-34.
    186. Droppelmann K J, Lehmann J, Ephrath J E, et al. Water use efficiency and uptake patterns in a runoff agroforestry system in an arid environment[J]. Agroforestry Systems, 2000, 49: 223-243.
    187. Fang S Z, Xu X Z, Yu X, et al. Polar in wetland agroforestry: a case study of ecological benefits, site productivity and economics[J]. Wetlands Ecology and Management, 2005, 13: 93-104.
    188. Feigenbaum S, Bielorai H, EmerY, et al. The fate of N-labeled nitrogen applied tomature citrus trees[J].Plant Soil, 1987, 97: 179-187.
    189. Franklin J F. Scientific basis for new perspectives in forests and streams[C]. //Naiman R J. Watershed management: balancing sustainability and environmental change. New York: Springer Verlag, 1992.
    190. Fung L E, Wang S E, Altman A. Effect of NaCl on growth, photosynthesis, ion and water relation of four poplar genotypes[J]. Forest Ecology Magazine, 1998, 107: 135-146.
    191. Gardner L R. The role of rock weathering in the phosphorus budget of terrestrial watersheds[J]. Biogeochemistry, 1990, 11: 97-110.
    192. Gianfreda L, Sannino F, Vtoante A. Pesticide effects on the activity of free, immobilized and invertase[J]. Soil Biol & Bicohem, 1995, 27 (9): 1201-1208.
    193. Harper J L. Population biology of plants[M]. London: Academic Press, 1977.
    194. Hartemink A E, Buresh R J, Jama B, et al. Soil nitrate and water dynamics in sesbania fallows, weed fallows and maize[J]. Soil Sci Soc Am J, 1996, 60: 568-574.
    195. Hellin J, Welchez L A, Cherrett I. The quezungual system: an indigenous agrofrestry system from western Honduras[J]. Agroforestry Systems, 1999, 46: 229-237.
    196. John B. Raintree, the state of the art of agroforestry diagnosis and design[J]. Agroforestry Systems, 1987,
    5: 219-254.
    197. Jose S, Gillespie A R, Pallardy S G. Interspecific interactions in temperate agroforestry[J]. Agroforestry Systems, 2004, 61: 237-255.
    198. Jose S, Gillespie A R. Allelopathy in black walnut (Juglans nigra L.) alley cropping: 2. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology[J]. Plant and Soil, 1998, 203: 199-205.
    199. Karlen D L, Mausbach M J, Doran J W, et al. Soil quality: A concept, definition, and framework for evaluation(a guest editoria1) [J]. Soil Sci, 1997, 61: 4-10.
    200. Kaur B, Gupta S R, Singh G. Bio amelioration of asodic soil by silvopastoral systems in northwestern India[J]. Agroforestry Systems, 2002, 54: 13-20.
    201. Lehmann J, Günther D, Socorro M M, et al. Inorganic and organic soil phosphorus and sulfur pools in an Amazonian multistrata agroforestry system[J]. Agroforestry Systems, 2001, 53: 113-124.
    202. Livesley S J, Gregory P J, Buresh R J. Competition in tree row agroforestry system: 2. Distribution, dynamics and uptake of soil inorganic N[J]. Plant and Soil, 2002, 247: 177-187.
    203. Lott J E, Howard S B, Black C R, et al. Allometric estimation of above-ground biomass and leaf area in managed Grevillea robusta agroforestry systems[J]. Agroforestry Systems, 2000, 49: 1-15.
    204. Lundgren B O. Introduction of agroforestry[J]. Agroforestry Systems, 1982, (1): 53-61.
    205. Mercer D E. Adoption of agroforestry innovations in the tropics: A review[J]. Agroforestry Systems, 2004, 11: 311-328.
    206. Mohsin F, Singh R P, Singh K. Nutrient cycling of poplar plantation in relation to stand age in agroforestry system[J]. Indian J For, 1996, 19: 302-310.
    207. Montagnini F, Nair P K R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems[J]. Agroforestry Systems, 2004, 61: 281-295.
    208. Moreno G, Obrador J J, Gracia A. Impact of evergreen oaks on soil fertility and crop production in intercropped dehesas[J]. Agriculture, Ecosystems and Environment, 2007, 119: 270-280.
    209. Mugendi D N, Nair P K R. Predicting the decomposition patterns of tree biomass in tropical highland microregions of Kenya[J]. Agroforestry Systems, 1997, 35: 187-201.
    210. Munoz E, Beer J. Fine root dynamics of shaded cacao plantations in Costa Rica[J]. Agroforestry Systems, 2001, 51: 119-130.
    211. Nainan R J, Decamps H, Pollock M. The role of riparian corridors in maintaining regional biodiversity[J]. Ecological Applications, 1993, 21: 209-212.
    212. Nair P K R. Classification of agroforestry system[J]. Agroforestry Systems, 1985, 3(2): 383-394.
    213. Neufeldt H, Silva J E, Ayarza M A , et al. Land-use effects on phosphorus fractions in Cerrado oxisols[J]. Biol Fertil Soils, 2000, 31: 30-37.
    214. Newman S M, Bennett K, Wu Y. Performance of maize, beans and ginger as intercrop s in Paulownia p lantations in China. Agroforestry Systems, 1998, 39: 23-30.
    215. Odhiambo H O, Ong C K, Deans J D, et al. Roots, soil water and crop yield: Tree crop interactions in a semi-arid agroforestry system in Kenya[J]. Plant and Soil, 2001, 235: 221-233.
    216. Osman M, Emminhgam W H, Sharrow S H. Growth and yield of sorghum or cowpea in an agrisilviculture system in semiarid India[J]. Agroforestry Systems, 1998, 42: 91-105.
    217. Pinto L S, Perfecto I, Hernandez J C, et al. Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico[J]. Agriculture, Ecosystems and Environment, 2000, 80: 61-69.
    218. Schoen D. Primary productivity: the link to global health[J]. Bio Science, 1997, 47: 477-480.
    219. Schroth G, Lehmann J, Rodrigues M R L, et al. Plant-soil interactions in multistrata agroforestry in the humid tropics[J]. Agroforestry Systems, 2001, 53: 85-102.
    220. Singh B, Sharma K N. Tree growth and nutrient status of soil in a poplar (Populus deltoides Bartr.)-based agroforestry system in Punjab, India[J]. Agroforestry Systems, 2007, 70: 125–134.
    221. Singh K, Chauhan H S, Rajput D K, et al. Report of a 60 month study on litter production, changes in soil chemical properties and productivity under poplar (P. deltoides) and Eucalyptus (E. hybrid) interplanted with aromatic grasses[J]. Agroforestry Systems, 1989, 9: 37-45.
    222. Sood K K. Role of social aspects in extent of on-farm tree growing in subsistence agroforestry systems of western Himalaya[J]. Small-scale Forest Economics, Management and Policy, 2005, 4(3): 293-310.
    223. Stewart A D, Jay F M, Samuel I L. Emergy evaluation of lacanda maya indigenous swidden agroforestry in Chiapas, Mexico[J]. Agroforestry Systems, 2006, 66(1): 23-42.
    224. Szott L T, Fernandes E C M, Sanchez P A. Soil plant interactions in agroforestry systems[J]. For Ecol Manage, 1991, 45: 127–152.
    225. Wan F X, Chen P. Soil enzyme activities under agroforestry systems in Northern Jiangsu province [J]. Forestry Studies in China, 2004, 6(2): 21-26.
    226. Wang H, Huang Y, Huang H, et al. Soil properties under young Chinese fir-based agroforestry system in mid-subtropical China [J]. Agroforestry Systems, 2005, 64: 131-141.
    227. Wanvestraut R H, Jose S, Nair P K R, et al. Competition for water in a pecan (Carya illinoensis K.Koach)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States[J]. Agrofestry Systems, 2004, 60: 167-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700