用户名: 密码: 验证码:
春夏过渡期青藏高原东缘非绝热加热变化特征及其影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Diabatic Heating Characteristics in the East Peripheral Area of Qinghai-Tibetan Plateau and Its Climate Effect During Spring-Summer Transition Season
  • 作者:孙绩华
  • 论文级别:博士
  • 学科专业名称:气象学
  • 学位年度:2011
  • 导师:何金海 ; 雷兆崇
  • 学科代码:070601
  • 学位授予单位:南京信息工程大学
  • 论文提交日期:2011-05-01
摘要
云南大理地处青藏高原东南侧横断山南段的非绝热加热敏感区和季风水汽输送通道的关键区,高原及周边地区对大气的各种热力和动力效应是通过边界层影响到自由大气的,因而对于高原及周边地区,特别是非绝热加热敏感区的大气边界层及近地层微气象特征的观测分析研究显得十分重要。本文利用JICA项目“中日气象灾害合作研究中心”在云南大理国家气候观象台建立的边界层综合观测系统,针对高原东南侧非绝热加热敏感区的春夏过渡季节,在探讨了涡动相关法湍流观测资料控制及处理订正方法的基础上,分析了大理湍流观测系统的能量平衡程度,应用涡动相关法观测计算结果以及土壤、梯度观测资料等,对春夏过渡季节大理雨季开始前后的近地面层微气象学特征、近地面层辐射分量变化特征、土壤参数变化特征以及近地面层的感热通量、潜热通量和动量通量变化特征进行了分析;比较分析了大理感热通量、潜热通量变化特点及其与高原核心区的昌都、北方草原为特征的锡林浩特以及江淮稻田为主的寿县的差异;利用观测结果,比较分析了大理测站非绝热加热与NCEP\NCAR再分析资料的差异;利用模式模拟工具,分析研究了区域非绝热加热异常变化的可能原因,在此基础上,对比分析了该敏感区地气通量交换异常对中国南方春季降雨气候的可能影响。论文研究主要得出了以下几点结论:
     (1)对比通量计算的三种方法,大理资料处理的结果表明,Bowen比法和涡动相关法的结果较为一致,廓线法结果与涡动法结果有一定差距,但二者的差别在干季要小很多。能量平衡程度分析结果表明,大理通量观测资料的闭合程度在合理范围内。
     (2)雨季开始前大理近地面层风速较大,5月至6月逐渐减小。大理温度日较差从雨季开始前的4月到雨季中的6月逐渐减小,4月最大而6月最小;各层之间温度梯度也以4月最大而6月较小。夜间逆温明显,4月最大,达-3°c以下,5月到6月,夜间逆温强度逐渐减小。水汽压在大理雨季开始前后的4、5、6三个月逐月增加。太阳入射辐射4月份平均的日峰值最大,5月份入射辐射日峰值最低,6月略有回升。大气逆辐射在4-6月间其月平均的日峰值逐月增加,各月平均的日最低值变化也是如此。反射辐射4月份月平均的日峰值较小,5月的日峰值最小,6月份平均的反射辐射日峰值在三个月中最大。地面辐射在5月上旬的日峰值最大。净辐射在雨季开始期间的连续阴雨天气期间其平均的日峰值最小。雨季开始前5月上旬表层地温高,雨季开始期间表层地温较雨季开始前下降,雨季开始后表层地温有所回升。深层地温基本不受降雨天气影层土壤含水量急剧增加并超过较深层次。
     (3)雨季开始前后大理地气热量交换以潜热为主,雨季开始前一旬潜热通量随时间逐渐减少,感热通量逐渐增大,二者差值减小;雨季开始后潜热通量逐渐增大而感热通量减少,差值增大。
     (4)大理测站的观测通量值与NCEP再分析资料的通量模拟值存在明显差异,春夏过渡季节这种差异主要表现在4月,再分析资料的感热通量较观测值存在显著的高估,而潜热通量的再分析值较观测值存在明显低估。WRF模式的模拟结果与此类似。
     (5)横断山区植被变化的敏感性试验结果表明,潜热通量、感热通量对植被变化较敏感,植被变化是非绝热加热变化的一个重要因子。
     (6)植被变化后的敏感性试验结果表明,横断山区下垫面植被变化可导致区域及其东面下游地区环流场、水汽场、垂直速度场的变化,通过改变植被类型从而对通量进行部分修正后的模拟试验在春季中国南方的降雨量模拟效果上得到了一定程度的改进。
Dali of Yunnan is located in the critical area of diabatic heating sensitive area and monsoon water vapor transport passage in the southern section at southeastern side of Qinghai-Tibet Plateau. Since various thermal and dynamic effects of atmosphere exerted by the plateau and peripheral areas on free air are made through boundary layers, it seems very important to observe, analyze and study the plateau and peripheral areas, especially the micrometeorological characteristics of atmospheric boundary layers and surface layers of diabatic heating sensitive area. Making use of the boundary layer comprehensive observation system built with the JICA Project of Sino-Japan Joint Research Center of Meteorological Disaster at Yunnan Dali National Climatic Station, focusing on the spring-summer transition in the diabatic heating sensitive area at the eastern side of the plateau as well as discussing the eddy covariance turbulence observation quality control and correction method, this paper analyzed the energy balance of turbulence observation system in Dali, observed the calculation results, soil data, gradient observational data, etc. with eddy covariance method and conducted a series of analyses on the micrometeorological characteristics of atmospheric surface layer, the radiation fraction variation characteristics of atmospheric surface layer, soil parameter variation characteristics as well as the variation characteristics of sensible heat flux, latent heat flux and momentum flux of atmospheric surface layer before and after the rainy season started in the spring-summer transition season in Dali; comparatively analyzed the differences of the variation characteristics of sensible heat flux and latent heat flux in Dali with those in the plateau core area—Changdu, Xilinhot featured with northern grassland and Shouxian dominated with paddy field over the Yangtze and Huaihe valleys; comparatively analyzed the differences between the diabatic heating at Dali observation station and the NCEP\NCAR reanalysis data with the observation results; analyzed and studied the possible reason for the regional diabatic heating abnormal variation with the mode simulation tool and on this basis, comparatively analyzed the possible effect of surface flux exchange abnormality in this sensitive area on the spring rainfall climate in south China. The present study has mainly drawn the conclusions as follows:
     1. Three methods for flux calculation are compared. The results of Dali data processing indicate that the results of Bowen method and eddy covariance method are more in agreement while the results of profile method and EC method are considerably different, but these differences are much smaller in dry season.
     2. The wind speed at atmospheric surface layer before rainy season in Dali is relatively faster, but it is gradually getting slower from May to June. The amplitude of diurnal temperature in Dali is gradually becoming smaller from April before rainy season starts to June in rainy season with the greatest in April but the smallest in June; the temperature gradient between each layer also shows the greatest in April but the smallest in June; the night temperature inversion is obvious and reaches the greatest in April, the temperature difference between 2m and 10m exceeds 3℃and the night temperature inversion strength is gradually becoming smaller from May to June. Vapor pressure is gradually increasing in three months—April, May and June just before and after rainy season in Dali. Water vapor is gradually increasing from the first ten-day period to the third ten-day period of May and inverse humidity at 10m and 20m exists in the three ten-day periods, but it is most obvious in the second ten-day period. The transient radiation has an average maximum daily peak value in April, a minimum daily peak value in May but a slightly increasing value in June. The monthly average daily peak value of atmospheric inverse radiation is monthly increasing from April to June and the average daily minimum value of each month changes in the same way. The monthly average daily peak value of reflection radiation is smaller in April, the daily peak value is the smallest in May and the average daily peak value of reflection radiation in June is the biggest in three months. The daily peak value of surface radiation is the greatest in the first ten-day period of May. The average daily value of net radiation is the smallest in continuous overcast and rainy weather in the period of rainy season. Surface temperature is high in the first ten-day period of May before rainy season starts, becoming lower in the beginning period of rainy season than that before rainy season starts and returning high after rainy season starts. Soil temperature at deep layers is not affected by rainfall weather but has an obvious feature of changing with seasons. Soil moisture content increases with depth increasing before rainy season starts and soil moisture content of shallow layer increases rapidly and even surpasses that of deeper layer after rainy season starts.
     3. Surface heat exchange in Dali just before and after rainy season starts is dominated by latent heat and latent heat flux is gradually decreasing with time while sensible heat flux is gradually increasing before rainy season starts and the difference between the two is decreasing; latent heat flux is gradually increasing while sensible heat flux is decreasing after rainy season starts and the difference is increasing.
     4. There is an apparent difference between the observed flux value at Dali station and the flux simulated value of NCEP reanalysis data and such difference is mainly found in April in spring-summer transition season. The sensible heat flux of reanalysis data is obviously overestimated against the observed value while the reanalysis value of latent heat flux is apparently underestimated against the observed value, to which the simulated result with WRF mode is similar.
     5. The sensitive run result of vegetation variation in the Hengduan Mountain area indicates that latent heat flux and sensible heat flux are more sensitive to vegetation variation and vegetation variation is an important factor of diabatic heating change.
     6. The results of the sensitivity test after vegetation variation suggest that the underlying surface vegetation variation in the Hengduan Mountain area may lead to the change of the circulation field, water vapor field and vertical velocity field in the region and the downstream area in the east. The simulation test with the flux partly revised by changing the vegetation type is improved to a certain degree in the rainfall simulation effect in spring in south China.
引文
1.徐祥德,周明煜,陈家宜等,青藏高原地-气过程动力热力结构、综合物理图象,中国科学(D辑),2001,vol.31(5),428-440。
    2.周明煜,徐祥德,卞林根等,青藏高原大气边界层观测分析与动力学研究,2000,北京,气象出版社。
    3.吴国雄,刘新等,青藏高原抬升加热气候效应研究的新进展,气候与环境研究,2002,Vol.7(2),184-201。
    4. Wan Rijin & Wu Guoxiong. Mechanism of the Spring Persistent Rains over Southeastern China,. Science in China Series D:Earth Sciences,2007,130~144。
    5.刘伯奇,何金海等,4-5月南亚高压在中南半岛上空建立过程特征及其可能机制,大气科学,2009,Vo1.33(6),1320~1332。
    6.华维,范广洲等,青藏高原前期植被变化及其对西南地区夏季降水的影响,2008,气象科学,13-19。
    7. Yu rucong, Li Wei, Climatic Features Related to Eastern China Summer Rainfalls in the NCAR CCM3, Advances in Atmospheric Sciences,2000,503~518。
    8.包澄澜.热带天气学[M].北京:科学出版社,1980,27
    9. Tian S F, Yasunari T Climatologi cal aspect s and mechanism of spring persistent rains over central China[J]. J Met eor Soc Japan,1998, vol.76(1),57-71.
    10.陈隆勋,李薇,赵平,等.东亚地区夏季风爆发过程[J].气候与环境研究,2000,vol.5(4),345-355.
    11池艳珍,何金海,吴志伟.华南前汛期不同降水时段的特征分析[J].南京气象学院学报,2005,vol.28(2),163-171.
    12.万日金,吴国雄.江南春雨的气候成因机制研究[J].中国科学(D辑),2006,vol.36(1),936-950.
    13.万日金,吴国雄.江南春雨的时空分布[J].气象学报,2008,vol.66(3),311-319.
    14.祁莉,何金海,张祖强,等.纬向海陆热力差异的季节转换与东亚副热带季风环流[J].科学通报,2007,vol.52(24),2895-2899.
    15.何金海,祁莉,韦晋,等.关于东亚副热带季风和热带季风的再认识[J].大气科学,2007,vol.31(6),1257-1265
    16.李超,徐海明等,江南春雨形成机制的数值模拟,高原气象,2010,vol.29(1),99-108.
    17.赵平,周秀骥,陈隆勋,何金海,中国东部—西太平洋副热带季风和降水的气候特征及成因分析,气象学报,2008,vol.66(6),940-954.
    18.何金海,赵平,祝从文等,关于东亚副热带季风若干问题的讨论,气象学报,2008,vol.66(5),683-696.
    19. Kaimal J C, Finnigan J J. Atmospheric Boundary Layer Flows. New York:Oxford University Press,1994.1-65。
    20. Stull R.D., An introduction to boundary layer meteorology, Kluwer Academic Publishers, Netherlands,1988,666.
    21. Kaimal J.C. and Businger J.A., A continuous wave sonic anemometer-thermometer, Journal of applied meteorology,1963,Vol.2,156-164.
    22. Coppin P.A and Taylor K.J., A three-component sonic anemometer/thermometer system for general micrometeorological research. Boundary-Layer Meteorology,1983, Vol.27,27-42.
    23. Kaimal J.C. and Wyngaard J.C., Deriving power spectra from a three-component sonic anemometer. Journal of applied meteorology,1968,Vol.7,827-837.
    24. Horst T.W. Spectral transfer function for a three-component sonic anemometer. Journal of applied meteorology,1973,Vol.12,1072-1075.
    25. Ohtaki E. and Matsui T, Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor. Boundary-Layer Meteorology,1982,Vol.24,109-119.
    26. Baldocchi, D. D., Falge E., Gu L.H. et al. Fluxnet:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities. Bulletin of American Meteorological Society,2001,vol.82,2415-2434.
    27. Kaimal, J. C. and Haugen, D. A. Some Errors in the Measurement of Reynolds Stress, J. App. Meteorol. 1969, Vol.8,460-462.
    28. Gordon A. and Mcbean, Instrument requirements for eddy correlation measurements. Journal of applied meteorology,1972,Vol.11,1078-1084.
    29. Desjardins R.L. and Lemon E. R., Limitations of an eddy-correlation technique for the determination of the carbon dioxide and sensible heat fluxes. Boundary-Layer Meteorology,1974,Vol.5,475-488.
    30. Freihe C. A., Effects of sound speed fluctuations on sonic anmometer measurements. Journal of applied meteorology,1976, Vol.15,607-610.
    31. Wyngaard J.C. The effects of probe-induced flow distortion on atmospheric turbulence measurements. Journal of applied meteorology,1981, Vol.20,784-794.
    32. Kaimal J.C., Gaynoy J.E., Zimmerman H.A. et al., Mininizing flow distortion errors in a sonic anemometer, Boundary-Layer Meteorology,1990,Vol.53,103-115;
    33. Wilczak, J. Oncley S. and Stage S.A.,Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology,2001,Vol.99,127-150.
    34. Finnigan J J, Clement R, Malhi Y, Leuning R, Cleugh H,. A revaluation of long-term flux measurement techniques. Part I:Averaging and coordinate rotation. Boundary-Layer Meteorology,2003,vol.107,1-48.
    35. Kaimal J.C., Atmospheric Boundary Layer Flows, Oxford University Press, New York Oxford,1994, 289.
    36. Finnigan J J,. A revaluation of long-term flux measurement techniques. Part Ⅱ:Coordinate systems. Boundary-Layer Meteorology,2004,vol.113,1-41.
    37. Paw U.K.T., Baldocchi D.D.,Meyers T., and Wilson K.B., Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology,2000, Vol.97,487-511.
    38. Baldocchi D., Finnigan J., Wilson K.T., Paw U., and Falge E., On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology,2000, Vol.96,257-291.
    39. Lee X, Massman W and Law B., Handbook of Micrometeorology:A Guide for surface Flux measurement and analysis. Kluwer Academic Publisherd,2004,250.
    40. Sakai R K., Fitzjarrald D R. and Moore K. E., Importance of low-frequency contributions to eddy fluxes observed over rough surfaces, J. Appl. Meteorol.,2001,vol.40,2178-2192.
    41. Berger B W, Davis K J, Yi C et al., Long-term carbon dioxide fluxes from a very tall tower in a Northern forest:flux measurement methodology. Journal of Atmospheric and Oceanic Technology,2001, vol.18,529-542.
    42. Jones E P, and Smith S D. A first measurement of sea-air CO2 flux by eddy correlation, J.Geophys. Res. 1977,vol.82,5990-5992.
    43. Bakan S. Note on the eddy covariance method for CO2 flux measurements. Boundary-Layer Meteorology,1978,vol.14,597-600.
    44. Jones E P, and Smith S D. The air density correction to eddy flux measurements. Boundary-Layer Meteorology,1978,vol.15,357-360.
    45. Brook R R. The influence of water vapour fluctuations on turbulent fluxes. Boundary-Layer Meteorology,1978,vol.15,481-487.
    46. Smith S D, and Jones E P. Dry-air boundary conditions for correction of eddy flux measurement. Boundary-Layer Meteorology,1979,vol.17,375-379.
    47. Webb E.K., Pearman G.I. and Leuning R., Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteotol. Soc.1980,Vol.106,85-100.
    48. Kramm G, Dlugi R., and Lenschow D H. A re-evluation of the Webb Correctio using density-weighted averages. J.Hydrol.1995,vol.166:283-292.
    49. Lee X. On Micrometeorological observations of surface-air exchange over tall vegetation., Agricultural and Forest Meteorology,1998,Vol.91,39-50.
    50. Charney J GDynamics of deserts and drought in the Sahel[J].Q J R Meteorol Soc, 1975,vol.101 (428),193-202.
    51. Charney J QW J Quirk,S M Chew,et al. A comparative study of the effects of albedo change on drought in semi-arid region[J].J Atmos Sci,1977,vol.34(9),1366-1385.
    52. Cunnington W M,Rowntree P R.Simulations of Saharan atmosphere dependence on moisture and albedo[J].Q J R Meteorol Soc,1986,vol.112,971-999.
    53. Sud Y C,W E Smith.The influence of surface roughness of deserts in the July circulation[J].Bound-Layer Meteor,1985,vol.33,15-40.
    54. Shukal J,Y Mintz.The influence of land-surface evapotranspiration on Earth's Climate[J].Science,1982,vol.215,1498-1501.
    55. Walker J,P R Rowntree,The effect of soil moisture on circulation and rainfall in a tropical model[J].Q.J R Meteorol Soc,1977,vol.103,29-46.
    56. Huang J,H M Van den Dool,K P Georgakakos.Analysis of model-calculated soil moisture over the United States(1931-1993) and applications to long-range temperature fore-casts[J].J Climate,1996,vol.9,1350-1362.
    57. Durre I,J M Wallace,D P Lettenmaier.Dependence of extreme daily maximum temperatures on antecedent soil moisture in the contiguous United States during summer[J].J Climate,2000(13):2641-2651.
    58. Randal D,Koster. Regions of Strong Coupling Between Soil Moisture and Precipitation[J].Science,2004,vol.305,1138-1140.
    59.王介民.陆面过程实验和地气相互作用研究—从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象,1999,vol18(3),280-294.
    60.胡隐樵,高由禧.黑河试验(HEIFE)—对干旱地区陆面过程的一些新认识[J].气象学报,1994,vol.52(3),285-296.
    61.吕达仁,陈佐忠,陈家宜,等.内蒙古半干旱草地土壤—植被—大气相互作用(IMGRASS)综合研究[J].地学前缘,2002,vol.9(2),295-306.
    62.张强,吕世华.城市表面粗糙长度的确定[J].高原气象,2003,vol22(1),24-32
    63.张强,王胜.西北地区戈壁地表物理过程参数化的研究[J].地球物理学报,2003,vol46(5),616-623.
    64.胡非等,大气边界层和大气环境研究进展,大气科学,2003,vol.27(4),712-728。
    65.刘辉志,洪钟祥,北京城市下垫面边界层湍流统计特征,大气科学,2002,vol.26(2),241-248。
    66.张强,胡隐樵,大气边界层物理学的研究进展和面临的科学问题,地球科学进展,2001,vol.16(4),526-532.
    67.王咏薇,蒋维楣等,城市布局规模与大气环境影响的数值研究,地球物理学报,2008,vol.51(1), 88-100.
    68.陈家宜等,涡旋相关法测定湍流通量偏低的研究,大气科学,2006,vol.30(3),423-432.
    69.周成,陈家宜,蔡旭辉,非均匀地表的湍流通量和掺混高度,北京大学学报(自然科学版),2006,vol.42(3),315-319.
    70.王介民,王维真等,复杂条件下湍流通量的观测与分析,地球科学进展,2007,vol.22(8),791-797.
    71蔡旭辉,陈家宜,非均匀对流边界层的地转强迫流动和动量输送,大气科学,2003,vol.27(3),381-388.
    72.左洪超,吕世华,胡隐樵等,非均匀下垫面边界层的观测和数值模拟研究,高原气象,2004,vol.23(2),155-162.
    73.杨胜朋,吕世华等,山地复杂下垫面湍流特征观测分析,高原气象,2008,vol.27(2),272-278.
    74.胡非,洪钟祥,陈家宜等,白洋淀地区非均匀大气边界层的综合观测研究-实验介绍及近地层微气象特征分析,大气科学,2006,vol.30(5),883-893。
    75.李振朝,韦志刚等,河西地区地表感热特征分析,高原气象,2007,vol.26(2),293-299。
    76.郑海雷,王介民等,河西走廊沙漠和绿洲下垫面生态条件下能量交换若干特征,生态学报,2000,vol.20(1),88-92。
    77.卞林根,高志球等,长江下游农业生态区C02通量的观测实验,应用气象学报,2005,vol.16(6),828-834。
    78.郑益群,钱永甫,苗曼倩等,,植被变化对中国区域气候的影响Ⅰ:初步模拟结果,气象学报,2002Vol.60(1),1-16。
    79.郑益群,钱永甫,苗曼倩等,植被变化对中国区域气候的影响Ⅱ:机理分析,2002,气象学报,Vol.60(1),17~30。
    80.王兰宁,郑庆林,宋青丽,青藏高原下垫面对中国夏季环流影响的研究,南京气象学院学报,2002,Vol.25(2),186-191。
    81.张井勇,董文杰,叶笃正,符淙斌,中国植被覆盖对夏季气候影响的新证据,科学通报,2003,Vol.48(1),91~95。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700