用户名: 密码: 验证码:
非球面轨迹包络磨削加工机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子、光电子、太阳能光伏技术的发展以及光学与电子学的融合及国内外市场竞争的日趋激烈,以非球面光学元件为代表的先进技术日益成为一个国家制造实力的重要体现,发展新的非球面加工技术,提高加工精度和效率,降低加工成本是不懈追求的目标。非球面轨迹包络磨削法可减少对设备精度要求,从理论上大幅减少了砂轮磨损,可以实现非球面光学元件的超精密加工。发展非球面轨迹包络磨削法,深入进行相关加工工艺研究,符合我国发展需求,能迅速提高我国非球面超精密加工水平。但是目前的非球面轨迹包络磨削法仍然存在砂轮磨损不均匀、加工表面粗糙度不均匀等问题,限制了其应用。本文针对轨迹包络磨削过程中存在的问题,对轨迹包络磨削机理进行了深入研究。主要内容如下:
     根据非球面轨迹包络磨削成形原理,分析了圆弧回转面砂轮的结构、磨削过程中磨削点顺次移动提高磨粒有效利用过程,研究了轴对称非球面、非轴对称非球面加工中磨削方式、砂轮直径、砂轮宽度、砂轮端部圆弧半径等因素对轨迹包络磨削过程的影响。
     建立了非球面轨迹包络磨削中磨削点的运动模型,通过建立圆弧回转面砂轮磨削点与加工曲面位置关系数学方程,提出了非球面磨削点绕砂轮端部圆弧圆心运动的角速度概念,得出了圆弧轨迹包络磨削加工中磨削点的运动角速度方程,并推导出非球面轨迹包络磨削点的线速度方程式,分析了非球面曲率半径、砂轮端部圆弧半径、非球面二次曲线形状参数等磨削点线速度的影响,为优化砂轮磨削加工参数,实现砂轮均匀磨损提供理论基础。基于非球面磨削点速度计算,建立了描述单位时间内轴对称非球面磨削量的数学模型,通过分段进给,控制砂轮进给速度,实现轴对称非球面恒去除量磨削。实验证明恒去除量磨削可以基本实现砂轮的均匀磨损。提出单位时间砂轮去除量和参与磨削的砂轮的面积之比λ,它可以作为影响圆弧回转面砂轮均匀磨损的特征值。理论分析表明:λ与砂轮端部圆弧半径、非球面二次曲线顶点曲率半径、非球面二次曲线的形状参数以及磨削的坐标等有关,磨削实验结果与理论分析一致。
     建立圆弧回转面砂轮形状误差数学模型,分析了砂轮修整过程中砂轮对刀误差、砂轮半径、砂轮端部圆弧半径对砂轮修整误差的影响。建立轴对称非球面砂轮磨削对刀误差数学模型,得到存在对刀误差时的轴对称非球面子午截面磨削曲线方程,分析不同方向对刀误差对轴对称非球面形状精度的影响,结果表明,砂轮对刀出现误差影响轴对称轴对称非球面的母线形状和位置。
     分析圆弧回转面砂轮与被加工非球面接触弧长的基础上研究非球面零件轨迹包络磨削过程中磨削力的规律,结果表明非球面轨迹包络磨削过程中磨削力数值较小磨削力随磨削点位置变化幅度有限,砂轮的种类、性能等因素对磨削力有较大影响。
     通过对非球面轨迹包络磨削表面形成过程的分析,建立了轴对称、非轴对称非球面表面残留高度数学模型,分析了非球面曲率半径、砂轮端部圆弧半径、砂轮进给速度对非球面残留高度的影响。结果表明通过改变砂轮进给速度,控制砂轮移动间隔,可以改变磨削表面粗糙度,改善非球面磨削表面粗糙度均匀性。
     通过对非球面轨迹包络磨削机理的研究,提出了兼顾表面粗糙度和面形精度的非球面轨迹包络磨削加工新工艺。在轴对称非球面磨削中可以采用恒去除量磨削粗磨,等残留高度和等λ值精磨;在非轴对称非球面磨削中,可以采用等残留高度磨削,等λ值磨削。
With the development of microelectronics, optoelectronics, solar photovoltaic technology and continuous integration of optics and electronics and increasingly fierce competition in the domestic market, advanced manufacturing technology of aspheric optical components is increasingly becoming an important manifestation of a country's manufacturing strength. It is the constant pursuit of the goal to improve the aspheric machining accuracy, efficiency and reduce the aspheric machining costs. Arc trajectory envelope grinding method (AEGM) is not high on the equipment precision requirement, and greatly reduces the grinding wheel wear, which can realize ultra-precision machining of aspheric optical element. However, there are some problems in grinding with AEGM, such as uneven grinding wheel wear, surface roughness of uneven, which limits its application. Development of aspheric arc trajectory envelope grinding method can rapidly improve our aspheric level of ultra-precision machining, which are in line with our development needs. Aimed at the existing problems in the process of arc trajectory envelope grinding, this paper makes in-depth research on the mechanism of AEGM, the main contents are as follows:
     According to aspheric grinding principle with AEGM, structure of the arc revolving surface wheel has been analyzed and the law of grinding point sequentially mobile has been studied in grinding, which can improve effective utilization of abrasive grains. And some factors affecting arc trajectory envelope grinding have been studied, such as grinding methods of axisymmetric aspheric surface and non-axisymmetric, maximum diameter of the wheel, width of the wheel, the wheel end arc radius and others.
     Firstly, the motion model of grinding point has been established in grinding aspheric surface with AEGM in this paper,. Then the concept of the angular velocity of grinding points around the arc center of the wheel end has been put forward by relationship between arc wheel grinding point and the processing curve position, and the angular velocity of grinding point has been obtained in grinding with AEGM. On this basis, the linear velocity equation of grinding point is deduced, and some factors, which affect the linear velocity, have been studied, such as the radius of the arc of the wheel end, the aspherical conic shape parameters, etc. Secondly, mathematical model of axis-symmetrical aspheric surface grinding volume within unit time has been established by velocity calculation formula of grinding point in grinding aspheric surface, and axisymmetric aspheric constant removal grinding has been realized through the sub-feed control wheel feed rate. Experiments show that constant removal grinding can basically achieve uniform wear of the wheel. Finally, the ratio (λ) of the area of the wheel in grinding and aspheric removal within a unit time has been proposed, which will affect uniform wear of the wheel. Theoretical analysis shows that the value of λ has nothing to do with the feeding speed of the wheel,but is associated with the arc radius of the wheel end, aspheric quadratic curve vertex radius of curvature, aspherical shape parameters of the quadratic curve, and a grinding coordinates, etc. The results are in accordance with the theoretic analysis.
     Based on the Mathematical model of shape error in dressing arc revolving surface wheel, some influencing factors are analyzed in dressing the wheel, such as wheel setting error, radius of the wheel and arc radius of the wheel end. At the same time, by means of establishing mathematical model of tool setting errors in grinding axisymmetric aspheric surface, meridional cross curve equation of axisymmetric aspheric surface is deduced when tool setting errors exist. And influence of tool setting error in different directions on shape accuracy of axisymmetric aspheric surface is analyzed. The results show that tool setting errors affect the generatrix shape and position of axisymmetric aspheric surface.
     Based on analyzing the contact are length between arc revolving surface wheel and aspheric surface, the rule of grinding force in grinding aspheric surface with AEGM is studied. Experiments show that the grinding force is small in grinding with AEGM, wheel types and performance and other factors have a greater impact on the grinding force.
     Through surface forming analysis in grinding aspheric surface with AEGM, residual height mathematical model of aspheric surface is established, and the influence of aspherical radius of curvature, radius of the wheel ends and wheel feed rate on residual height is analyzed. The results show that grinding surface roughness can be adjusted by changing the feeding speed of the wheel and grinding walking control interval, which is an effective means to improve uniform roughness of aspheric in grinding.
     According to study on machining mechanism of trajectory envelope grinding method for aspheric surface, a new technology is proposed in grinding aspheric surface with AEGM which compromises roughness and surface precision surface. That is coarse grinding with the constant removal grinding firstly and fine grinding with constant scallop-height grinding and constant value of λ in grinding axisymmetric aspheric surface. For non-axisymmetric aspheric surface, constant scallop-height grinding and constant value of A are adopted in grinding.
引文
[1]张学军.《非球面加工与检测技术》专题文章导读[J].光学精密工程,2006,14(4):527.
    [2]袁吕军,陈韬.高次非球面的工艺技术研究[J].应用光学,2011,32(2):335~336.
    [3]韩成顺.大型光学非球面超精密加工新方法及其几何模型研究[D].哈尔滨工业大型,2005.
    [4]陈逢军.非球面超精密在位测量与误差补偿磨削及抛光技术研究[D].湖南大学,2010.
    [5]辛企明.光学塑料非球面制造技术[M].北京:国防工业出版社,2006.
    [6]王志标,杨辉.超精密加工技术在新形势下面临的任务[J].航空精密制造技术,2004,40(3):1-5.
    [7]谢晋.光学非球面的超精密加工技术及非接触检测[J].华南理工大学学报,2004,32(2):94~98.
    [8]贾世奎,李成贵,刘春红等.玻璃材料非球面的加工方法[J].航空精密制造技术,2007,43(5):14~17
    [9]T.Tanakak. Manufacturing method of non-aspheric lens and super-precision non-aspheric surface machine[J].Optical Technology Contact,2000,38(10):592-599.
    [10]阎秋生.一种轴对称回转曲面的精密加工装置及其方法[P].ZL200310117452.X.广东工业大学.2004.12.8.
    [11]阎秋生.模具自由曲面的精密镜面磨削[J].制造技术与机床,1999,(05):28-31.
    [12]孔令叶,阎秋生,宋军辉.基于表面粗糙度均匀性的曲面磨削研究[J].中国机械工程,2008,19(21):2557-2560.
    [13]周旭光,戴珏,阎秋生,孔令叶.高精度回转曲面的砂轮磨削点运动规律研究[J].金刚石与磨料磨具工程,2009,170(2):18~21.
    [14]谢玉书,谢晋.椭圆面的等包络迹高度的数控铣削试验研究[J].新技术新工艺,2007,(51:74~76.
    [15]谢晋,朱光宇.自由曲面注塑凸模芯的数控精密磨削方法[J].中国机械:工程,2006,(19):2076~2079.
    [16]谢晋,阮兆武.光学自由曲面反射镜模芯的镜面成型磨削[J].光学精密工 程,2007,(3):344~349.
    [17]谢晋,许巍巍,陈立志等.基于曲率的自适应曲面数控磨削[J].华南理工大学学报(自然科学版),2007,(12):34~38.
    [18]孔令叶.轴对称回转曲面精密磨削加工技术研究[D].广东工业大学,2011.
    [19]李圣怡,戴一帆等.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社,2011.
    [20]2011年中国非球面光学元件行业生产与市场调查研究报告,中国市场调查研究中心网站http://www.cmrc.cn/home/report/201207/30-40184_4.html
    [21]舒朝濂.现代光学制造技术[M].国防工业出版社,2010,287~323.
    [22]余景池,张学军,孙侠菲等.计算机控制光学表面成型技术综述[J].光学技术,1998,3(2),5-8.
    [23]陆永贵,杨建东.光学非球面先进制造关键技术的探讨[J].长春理工大学学报,2006,29(2)31-33.
    [24]B. Krauskopf. Diamond Turning:Reflecting Demands for Precision[J].Manufacturing Engineering.1984,92(5):90-100.
    [25]T.Sugano,K.Takeuchi,T.Goto,etc.Diamond Turning of an Aluminium Alloy for Mirror. Annals of the CIRRP.1987,36(1):17-20.
    [26]http://www.nanotechsys.com/machines/nanotech-250upl-ultra-precision-lathe/
    [27]牛景丽,陈东海.现代超精密加工机床的发展及对策[J].机床与液压,2001,38(2),94~97.
    [28]余景池,张学军,孙侠菲等.计算机控制光学表面成型技术综述[J].光学技术,1998,(2):5-8.
    [29]陆永贵,杨建东.计算机控制光学表面成形法初值的确定[J].光学技术,2006,32(6),939~940.
    [30]马彦东,李圣怡,彭小强,陈浩锋.KDP晶体的磁流变抛光研究[J].航空精密制造技术,2007,43(4):9-12
    [31]孙希威,张飞虎,董申,栾殿荣.磁流变抛光光学曲面的两级插补算法[J].光电工程,2006,33(2):61~64
    [32]LLE Review Volume96. Polishing PMMA and other optical polymers with magnetorheological finishing. http://www.lle.rochester.edu/pub/review/V96
    [33]J.E.DeGroote, A.E.Marino,J.P.Wilson, etal. Removal rate model for magnetorheological finishing of glass[J].Applied Optics,2007,46(32):7927-7941.
    [34]William I.Kordonsky.et al. Magnetorheological polishing devices and methods: US,5449313[P].1994.04.15.
    [35]张峰,张斌智.磁流变体辅助抛光工件表面粗糙度研究[J].光学精密工程,2005,(1):38-43.
    [36]程灏波,冯之敬等.超光滑光学表面的磁性类Bingham流体确定性抛光[J].科学通报,2005,50(1):84-91.
    [37]袁巨龙,张飞虎等.精密加工领域科学技术发展研究[J].机械工程学报,,2010,46(15):161~177.
    [38]堪桂萍,杨力.计算机数控应力盘面形研究[J].光电工程,2000,27(3):20-23.
    [39]H. M. Martin, R. G. Allen, J. H.Burge et al. Fabrication of mirrors for the Magellan telescopes and large binocular telescope [J]. Proceeding of SPIE,2002,4837:609-618.
    [40]陆永贵,杨建东.高陡度光学非球面高效制造的探讨[J].航空精密制造技术,2007,43(2):8-10.
    [41]Oliver W. Fahnle, Hedser van Brug, and Hans J. Frankena. Fluid jet polishing of optical surfaces [J]. Appl. Opt.,1998,37 (28):6671-6673.
    [42]施春燕,袁家虎,伍凡,万勇建.射流抛光误差分析与材料去除稳定性研究[J].光学学报,2011,31(1):1-5.
    [43]袁哲俊.国内外精密加工技术最新进展[J].工具技术,2008,42(10),8~13.
    [44]戴一帆,周林等.离子束修形技术[J].应用光学,2011,32(4):753~760.
    [45]Bifano T G.Dow T A,Scattergood RO. Ductile-regime grinding:a new technology for machining brittle materials[J]. ASME J Eng Ind,1991,13:184-189.
    [46]陈明君,董申,李旦,张飞虎.脆性材料超精密磨削时影响表面质量因素的研究[J].机械工程学报,2001,37(3):1-4.
    [47]陈明君,张飞虎,董申等.光学玻璃塑性模式超精密磨削加工的研究[J].中国机械工程,2001,12(4):460~462.
    [48]William J, Wills-Moren, Keith Carlisle, et al. Ductile regime grinding of glass and other brittle materials by the use of ultrastiff machine tools[C],Proc,SPIE,1990.
    [49]MUHAMMAD A, MUSTAFIZUR R. Analytical model to determine the critical feed per edge for ductile-brittle transition in milling process of brittle materials [J].International Journal of Machine Tools & Manufacture,2011,51(3):170-181.
    [50]陈明君,王立松,梁迎春,卢泽生.脆性材料塑性域的超精密加工方法[J],航空精密制造技术,2001,37(2):10~12.
    [51]陈明君.超精密非球面磨削技术的研究[D].哈尔滨工业大学博士论文.2001.
    [52]李圣怡.超精密加工技术成就现代国防[J].国防制造技术,1996(2):16~21.
    [53]杨福兴.非球面零件超精密加工技术[J].航空精密制造技术,1997,33(5):4~7.
    [54]H.Ohmori,etal.Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding[J]. Journal of Materials Processing Technology,1996,57 (3-4):212-211.
    [55]H.Ohmori,etal. Electrolytic In-process Dressing(ELID) Grinding Technique for Ultra-precision Mirror Surface Machining[J]. Journal of JSPE.1992,26(4):54-57.
    [56]H.Ohmori, etal.Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing[J]. Journal of Materials Processing Technology,2000, 98 (3):322-327.
    [57]K. Katahira,etal.ELID grinding characteristics and surface modifying effects of aluminum nitride (A1N) ceramics [J]. International Journal of Machine Tools & Manufacture,2005,45 (7-8):891-896.
    [58]Jun Qian,etal.Precision internal grinding with a metal-bonded diamond grinding wheel [J]. Journal of Materials Processing Technology,2000,105 (1-2):80-86.
    [59]Jun Qian,etal.Internal mirror grinding with a metal/metal-resin bonded abrasive wheel [J]. International Journal of Machine Tools & Manufacture,2001,41 (2):193-208.
    [60]B.P. Bandyopadhyay,H.Ohmori. The effect of ELID grinding on the flexural strength of silicon nitride [J]. International Journal of Machine Tools & Manufacture,1999,39 (5):839-853.
    [61]H.S. Lim, etal.A fundamental study on the mechanism of electrolytic in-process dressing (ELID) grinding [J]. International Journal of Machine Tools & Manufacture, 2002,42(8):935-943.
    [62]Radu Pavel, etal.Investigation of pre-dressing time for ELID grinding technique [J]. Journal of Materials Processing Technology,2004,149 (1-3):591-596.
    [63]Shaohui Yin, ELID precision grinding of large special Schmidt plate for fibre multi-object spectrograph for 8.2 m Subaru telescope [J]. International Journal of Machine Tools & Manufacture 45(2005)1598-1604.
    [64]关佳亮,袁哲俊等ELID镜面磨削用金属结合剂砂轮的研制[J].哈尔滨工业大学学报,1998(5):90~93.
    [68]徐燕申等ELID超精密镜面磨削力变化规律的分析[J].制造技术与机床,1998(9):32~34.
    [66]张春河等ELID超精密镜面磨削过程中磨削力变化规律的试验分析[J],航空精密制造技术,1998(1):8-11.
    [67]王平等.光学玻璃的磨削加工方法[J],光学精密工程,1996(2):53~58.
    [68]北京航空精密机械研究所,http://www.bj303.com/.
    [69]郭隐彪,杨炜,王振忠.磨削加工工艺及应用.国防工业出版社,2010.
    [70]郭隐彪,黄元庆.非轴对称非球面平行磨削误差补偿技术研究[J].机械工程学报,2002,38(5):118~121.
    [71]林晓辉,王振忠,郭隐彪等.光学非球面磨削中的圆弧砂轮修整误差分析[J兵工学报,2013,169(1):60-65.
    [72]林晓辉,王振忠,郭隐彪等.矩形非球面圆弧半径误差分离及补偿技术析[J].强激光与粒子束,2013,25(1):17~21.
    [73]张宁宁,王振忠等.平行磨削非轴对称非球面光学元件表面形貌[J].强激光与粒子束,2013,24(6):1391~1395.
    [74]姜晨,郭隐彪,潘日,韩春光,张世汉.离轴楔形非球面平行磨削及补偿技术研究[J].机械工程学报.2011,47(03):193~198.
    [75]韩成顺,董申,唐余勇.轴对称非球面超精密磨削的几何模型研究[J].光学技术2003,29(3):329~333.
    [76]阎秋生,林彬,张自强等.缓变自由曲面圆弧包络加工法的表面误差分析[J].天津大学学报,2001,(5):619~622.
    [77]孔繁星.切线回转法加工高次非球面光学元件轨迹成形控制研究[D].长春理工大学,2010.
    [78]李立军,张飞虎,董申.非球面磨削加工设备现状与发展趋势[J].机床与液压 2007,35(7):229-230.
    [79]李伯民,赵波.现代磨削技术[M].机械工业出版社,,2004.
    [80]康念辉.大中型非球面磨削成型的理论与实验研究[D].国防科学技术大学,2004.
    [81]庄司克雄(著),郭隐彪/王振忠(译).磨削加工技术[M],机械工业出版社,2007.
    [82]Hwang Y, Kuriyagawa T, Lee S K. Wheel curve generation error of aspheric microgrinding in parallel grinding method[J]. International Journal of Machine Tools & Manufacture,2006,46(15):1929-1933.
    [83]吴琦,胡德金,张永宏.精密数控曲线磨削中的砂轮法向跟踪建模及实验[J].上海交通大学学报,2006,40(10):1707~1710
    [84]Huang H, Chen W K, Kuriyagawa T. Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts[J]. International Journal of Machine Tools & Manufacture,2007,47(15):2237-2245.
    [85]T. Kuriyagawa, M. S. S. Zahmaty, K. Syoji. A new grinding method for aspheric ceramic mirrors. Journal of Materials Technology,62 (1996) 387-392
    [86]T. Kuriyagawa, T. Tachibana, K. Syoji, Y. Mori. Nonaxisymmetric aspheric ceramic mirror machining using arc envelope grinding method. Journal of The JSME(C) 63 (1997)611:2532-2537.
    [87]Saeki, Masaru; Kuriyagawa, Tsunemoto;Syoji.Machining of aspherical molding dies utilizing parallel grinding method [J]. Journal of the Japan Society for Precision Engineering,2002,68:1067-1071.
    [88]王振忠,郭隐彪等.杯先进光学磨削中杯形修整技术开发及应用[J].金刚石与磨料磨具工程,2009(1):18~22.
    [89]Kuriyagawa, Tsunemoto, Tachibana, Toru,Syoji. Nonaxisymmetric aspheric ceramic mirror machining using arc envelope grinding method[J].Transactions of the Japan Society of Mechanical Engineers, Part C,1997,63:2532-2537.
    [90]庄司克雄.陶瓷结合剂金刚石砂轮的修整研究(I)一各种修整方法的修整效果比较[J].磨料磨具与磨削,1992,(5):6~12.
    [91]应宝阁,王先遗,刘为刚.电火花修整金刚石微粉砂轮的磨削特性制[J].造技术与机床,1996(5):8-12
    [92]王红妍.在线电火花修整砂轮磨削技术.机械工艺师[J].2006,(4):103~105.
    [93]Babu N R, Radhakrishnan V. Surface topography of a laser dressed grinding wheel. ASME, Production Engineering Division (Publication) PED,1988,34:199-212.
    [94]康仁科,原京庭.超硬磨料砂轮的激光修锐技术研究.中国机械工程,2000,11(5):493~496.
    [95]彭庚新.树脂CBN砂轮激光修整及其高速磨削性能的试验研究[D].湖南大学,2004.
    [96]王艳,胡德金,邓琦林等.金刚石砂轮的激光修整技术[J].上海交通大学学报,2004,(7):1069~1072.
    [97]陈根余,谢小柱,李力钧,刘劲松,容锦泉.超硬磨料砂轮修整与激光修整新进展.金刚石与磨料磨具工程,2002,(128):8-12.
    [98]王续跃,汲丛平,康仁科等.青铜结合剂金刚石砂轮激光修锐试验研究[J].大连理工大学学报,2007,47(6):823~828.
    [99]潘君骅.光学非球面设计、加工与检验[M].科学出版社,2007
    [100]Xuguang Zhou.Qiusheng Yan,Guangli Zhu,Lingye Kong. Velocity characteristics of the wheel in grinding axisymmetric aspheric with AEGM [J]. Advanced Materials Research,2012 (472-475):921-926.
    [101]Xuguang Zhou.Qiusheng Yan,Jue Dai,Lingye Kong. Characteristic analysis of grinding point movement in grinding aspheric with arc envelope grinding method [J]. Advanced Materials Research,2012 (418-420):202-1207.
    [102]项灏.等距型面数控磨削过程的研究[D].河南理工大学,2004.
    [103]华宣积.等距曲线和等距曲面[J].新浪潮,1993(1):1~5.
    [104]刘群,杨建东,田春林等.等距面误差对抛物面廓形精度的影响[J].光学精密工程,2006,(6):1048~1051.
    [105]张自强,阎秋生等.新型砂轮修整器结构及其装配误差影响分析[J].金刚石与磨料磨具工程,2004,141(3):35~38.
    [106]Q.S.Yan,X.G..Zhou,B.Q.He, L.Y.Kong.A new grinding method for large-scale surface of revolution and error analyzing of its wheel dressing [J]. Key Engineering Materials, 2007(329):111-116.
    [107]方德植.微分几何基础[M].北京:科学技术出版社,1988.
    [108]李玉光,苗彦.非球面激光反射镜超精密加工的对刀方法及误差分析[J].大连大学学报,2000,21(4):27~33.
    [109]Q.S.Yan, L.Y. Kong, N.Q. Wu. Development of new device for form-grinding and research on the pro file-accuracy [J]. Key Engineering Materials,2005,291-292.
    [110]Yi Li, P.D.Funkenbusch, S.M..Gracewski, J.Ruckman.Tool wear and profile development in contour grinding of optical components [J]. International Journal of Machine Tools &Manufacture,2004 (44):427-438.
    [111]http://www.polyu.edu.hk/cpa/polyu/main/main_e.php
    [112]张坤领.光学玻璃非球面廓形的数控磨削技术研究[D].天津大学,2007.
    [113]Werner G,Konig W. Influence of work material on grinding forces[J]. Annals of the CIRP,1978,27(1):243:248.
    [114]王帅.金刚石砂轮修整技术研究[D].南京航空航天大学,2011.
    [115]李力钧,付杰才.磨削力的数学模型的研究[J].机械工程学报,1981,17(4):31~41.
    [116]Jinyuan Tang, Jin Dua, Yong ping Chena. Modeling and experimental study of grinding forces in surface grinding [J].Journal of materials processing technology,2009 (209):2847-2854.
    [117]陈勇平.平面磨削力建模及其应用研究[D].中南大学,2007.
    [118]王玉珏.高硬度球面磨削的磨削几何学及磨削力的研究[D].上海交通大学,2012.
    [119]王明君,叶人珍,汤漾平,宾红赞.55钢CBN砂轮平面磨削的磨削力模型研究[J].金刚石与磨料磨具工程,2010(175):67~70.
    [120]诸兴华.磨削原理[M].北京:机械工业出版社,1988.
    [121]王龙山,李国发.磨削过程模型的建立及其计算机仿真[J].中国机械工程,2002,13(1):1~4.
    [122]贺长生,石玉祥,丁宁.外圆纵向磨削力的研究[J].煤矿机械,2006,27(2):239~241.
    [123]马尔金著,蔡光起等译.磨削技术理论与应用[M].东北大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700