用户名: 密码: 验证码:
激光无裂纹切割陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程结构陶瓷广泛应用于各种工业领域当中,但其本征硬脆性导致其难以通过传统机械加工方式进行低成本高效率的加工。激光切割技术已表明,激光可对低热导率的陶瓷进行去除加工。但是,由于具有较高的热膨胀系数,在激光切割过程中,陶瓷工件内会产生较大的热应力,导致裂纹产生并发生断裂,该现象在陶瓷厚板中极为明显,严重阻碍了陶瓷应用的工业化进程。本论文针对现阶段激光切割陶瓷厚板面临的主要挑战——裂纹产生、切割效率低、切割表面质量差、加工定位精度低的问题进行了系统的理论和实验研究,获得了以下研究成果。
     实现激光无裂纹切割的首要目标是实现无裂纹打孔。激光打孔过程中的热应力是裂纹产生的主要诱因。通过理论分析、数值模拟和实验研究相结合的方式优化了激光峰值功率、占空比及脉冲重复频率参数组合,通过CO_2激光加工出孔径小、锥度小、熔渣残留少的无裂纹通孔。
     激光切割陶瓷厚板的研究表明,当采用高峰值功率、短脉宽、低重复频率和快速切割可以有效地降低工件中热应力分布,抑制裂纹的产生;基于该研究提出了通孔密排切割技术,实现了无裂纹切割10mm厚致密氧化铝陶瓷。进一步提出的低脉冲重复频率切割模式,实现了CO_2和光纤激光低脉冲重复频率高速无裂纹切割6mm厚氧化铝陶瓷,最大切割速度达到90mm/min。
     提出了激光控制断裂剥离技术,实现了陶瓷工件激光切割面重凝层的热应力无损剥离。形成的亚表面粗糙度(Ra)为2.18μm,亚表面显微形貌与陶瓷基材相同,显著提高了激光切割厚板陶瓷的加工质量和精度。针对电子陶瓷基板切割中高绝对定位精度的工业要求,发明了基于“二次定位法”的非同轴定位装置。该技术最大限度地发挥了激光加工机床高定位精度及重复定位精度的特点,使传统激光切割机床应用于需要精确定位的陶瓷印刷电路基板精细切割中。针对陶瓷的直接微纳结构成像,发现了激光扫描微球超透镜可实现了<50nm(λ/8)横向分辨率的超衍射极限光学成像,为非导电陶瓷微纳结构检测提供了新的技术可能。
Structural ceramic is one of the most used engineering materials for a variety ofindustrial applications. Unfortunately, conventional machining techniques areunsuitable to machine ceramics due to their high hardness and brittleness. Lasermachining has offered an alternative for rapid processing of brittle and hardengineering ceramics. However, the material properties, especially the high thermalexpansion coefficient, would cause ceramic workpiece fracture due to thermal crackformation. It is a barrier of ceramics to be applied in industries. The major challengesto laser cutting of ceramics are crack formation, low process efficiency, low finishsurface quality, and low processing precision. In order to face these challenges, theprocess in laser cutting of ceramics was theoretically and experimentally studied inthis work.
     Crack-free drilling is the first step for crack-free laser cutting. The crackformation in laser drilling is attributed to the thermal-stress development. Based onthe theoretical study, experimental investigation and numerical simulation, the processparameters of laser peak power, pulse duty cycle and pulse repetition rate wereoptimized, by which crack-free, low-taper and low-spatter-deposition through-holedrilling was achieved.
     In laser cutting of thick-section ceramics, the high laser peak power, short pulseduration, low pulse repetition rate and high feed rate contribute to significantly reducethermal stress distribution and hence resist crack formation. The laser close-piercinglapping (CPL) cutting technique was therefore presented, by which crack-free cuttingof10-mm-thick alumina ceramics can be achieved. Based on the CPL technique, alow pulse rate cutting strategy was proposed. Crack-free cutting of6-mm-thickalumina ceramics was achieved by a CO_2laser and a fiber laser, respectively. Thecutting speeds were both increased to90mm/min.
     The laser controlled fracture peeling technique was developed for damage-freeremoval of recast layer on laser cut surface. The formed subsurface roughness is2.18μm. The microstructure of the formed subsurface is same as the base material. A paraxial positioning device based on “twice positioning” method was also proposed inorder to meet the requirement of the high absolute positioning precision in laserfine-cutting of electronic ceramics. This technique increases the absolute positioningprecision up to the stage precision and makes the laser cutting stage suitable to cuttingof ceramic substrate with pre-printed circuit. A new approach of opticalsuper-resolution imaging: scanning particle-lens imaging (SPI) was also demonstratedin this work. The imaging resolution is <50nm (λ/8), which would open newopportunities to direct imaging of nano-structures on electrical insulating ceramics.
引文
[1] LIANG Y, DUTTA S P. Application trend in advanced ceramic technologies [J]. Technovation,2001,21:61-65.
    [2] SAMANT A N, DAHOTRE N B. Laser machining of structural ceramics–a review [J].Journal of the European Ceramic Society,2009,29:969-993.
    [3] RICHLEN S. Opportunities for the industrial application of continuous fiber ceramiccomposites [C]. Ceramic Engineering and Science Proceedings,1990,7/8:576-577.
    [4] HEINRICH J G, ALDINGER F. Ceramic materials and components for engines [M].Weinheim: Wiley-VCH Verlag GmbH,2007.
    [5] BCC Research. Technical and advanced structural ceramics [R/OL].2012-11-01.http://www.bccresearch.com/report/advanced-structural-ceramics-avm011c.html.
    [6] WRAY P. Market for structural ceramics to reach$3.7billion by2012. Complier: TheAmerican Ceramic Society [R/OL].2011-03-10.http://ceramics.org/ceramictechtoday/2008/10/31/market-for-structural-ceramics-to-reach-37-billion-by-2012/.
    [7]肖汉宁,高朋召.高性能结构陶瓷及应用[M].北京:化学工业出版社,2006.
    [8] SHEN J Y, LUO C B, ZENG W M, XU X P, GAO Y S. Ceramics grinding under the conditionof constant pressure [J]. Journal of Materials Processing Technology,2002,129:176-181.
    [9] CHRYSSOLOURIS G, ANIFANTIS N, KARAGIANNIS S. Laser assisted machining: anoverview [J]. Journal of Manufacturing Science and Engineering,1997,119:766-769.
    [10] PENDEY P C, SHAN H S. Modern machining processing [M]. New Delhi: McGraw Hill,1980.
    [11] HORIO K, TERABAYASHI T, TANIGUCHI N. Beam defocus effect in electron beammachining of green ceramic sheet [J]. CIRP Annals–Manufacturing Technology,1987,36:95-98.
    [12] SAVRUN E, TAYA M. Surface characterization of SiC whisker/2124aluminium of Al2O3composites machined by abrasive water jet [J]. Journal of Materials Science,1988,23:1453-1458.
    [13]郑雷,袁军堂,李少华.陶瓷复合装甲的孔加工及机理[J].硅酸盐学报,2007,35(5):568-573.
    [14]袁明权,凌宏芝,彭勃.石英玻璃薄板激光精密切割技术[L].激光技术,2006,30(4):406-408.
    [15] SHALUPAEV S V, MAKSIMENKO A V, MYSHKOVETS V N, NIKIYUK Y V. Lasercutting of ceramic materials with a metallized surface [J]. Journal of Optical Technology,2001,68(10):758-760.
    [16] ISLAM M U, CAMPBELL G. Laser machining of ceramics: A review [J]. Material andManufacturing Processes,1993,8:611-630.
    [17] Rofin-Baasel UK Ltd. Laser cutting [OL].2012-03-21.http://www.rofin.co.uk/applications/laser-cutting
    [18] BELFORTE D A, BUSCHOW K H J, ROBERT W C, MERTON C F, BERNARD I,EDWARD J K, SUBHASH M, PATRICK V. Laser cutting, in encyclopedia of materials:science and technology [M]. Oxford: Elsevier,2010.
    [19] LI K, SHENG P. Plane stress model for fracture of ceramics during laser cutting [J].International Journal of Machine Tools and Manufacture,1995,35(11):1493-1506.
    [20] LU G, SIORES E, WANG B. An empirical equation for crack formation in the laser cutting ofceramic plates [J]. Journal of Materials Processing technology,1999,88:154-158.
    [21] BLACK I, CHUA K L. Laser cutting of thick ceramic tile [J]. Optics and Laser Technology,1997,29(4):193-205.
    [22] DURAND C, RAMULU M, PIERRE R S T, MACHAN J. An experimental analysis of a Nd:YAG laser cutting process for machining silicon nitride [J]. International Journal ofProduct Res.1996,34(5):1417-1428.
    [23]张珊,康少英.激光加工陶瓷强度的实验研究[J].应用激光,1996,16(5):218-220.
    [24] QUINTERO F, POU J, LUSQUINOS F, BOUTINGUIZA M, SOTO R, PEREZ-AMOR M.Nd: YAG laser cutting of advanced ceramics [C]. Proceedings of SPIE,2001,4419:756-760.
    [25] KNOWLES M R H, RUTTERORD G, KARNAKIS D, FERGUSON A. Micro-machining ofmetals, ceramics and polymers using nanosecond lasers [J]. International Journal ofAdvanced Manufacturing Technology,2007,33:95-102.
    [26] KARNAKIS D M, KNOWLES M R H, PETKOV P V, DOBREV T, DIMOV S S. Surfaceintegrity optimisation in ps-laser milling of advanced engineering materials [C]. Proceedingsof the Fourth International WLT–Conference on Laser manufacturing, Munich:2007
    [27] WANG X C, ZHENG H Y, CHU P L, TAN J L, THE K M, LIU T, ANG B C Y, TAY G H.High quality femtosecond laser cutting of alumina substrates [J]. Optics and Lasers inEngineering,2010,48:657-663.
    [28] LI K, SHENG P. Plane stress model for fracture of ceramics during laser cutting [J].International Journal of Machine Tools and Manufacture,1995,35(11):1493-1506.
    [29]张珊,康少英.激光加工工程结构陶瓷的实验研究[J].中国激光,1995,22(10):797-800.
    [30] BLACK I, LIVINGSTONE S A J. CHUA K L. A laser beam machining (LBM) database forthe cutting of ceramic tile [J]. Journal of Materials Processing Technology,1998,84:47-55.
    [31] BLACK I. Laser cutting speeds for ceramic tile: a theoretical-empirical comparison [J].Optics and Laser Technology,1998,30:95-101.
    [32] SAMANT A N, DAHTORE N B. Differences in physical phenomena governing lasermachining of structural ceramics [J]. Ceramics International,2009,35:2093-2097.
    [33] MAZURIN O V, STRELTSINA M V, SHVAIKOVSKAYA T P. Handbook of glass data, PartA: Silica glass and binary silicate glasses [M]. Amsterdam: Elseiver.1983.
    [34] PARADIS P F, ISHIKAWA T. Surface tension and viscosity measurements of liquid andundercooled alumina by containerless techniques [J]. Japanese Journal of Applied Physics,2005,44(7A):6082-6085.
    [35] DINSDALE A T, QUESTED P N. The viscosity of aluminium and its alloys–a review ofdata and models [J]. Jouranl of Materials Science,2003,39(24):7221-7228.
    [36] QUINTERO F, POU J, LUSQUINOS F, LAROSI M, SOTO R, PEREZ-AMOR M. Cuttingof ceramics plates by optical fiber guided Nd: YAG laser [J]. Journal of Laser Applications,2001,13(2):84-88.
    [37] QUINTERO F, POU J, LUSQUINOS F, BOUTINGUIZA M, SOTO R, PEREZ-AMOR M.Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics [J]. Review of ScientificInstruments,2003,74(9):4199-4205.
    [38] QUINTERO F, POU J, LUSQUINOS F, BOUTINGUIZA M, SOTO R, PEREZ-AMOR M.Quantitative evaluation of the quality of the cuts perfomed on mullite-alumina by Nd: YAGlaser [J]. Optics and Lasers in Engineering,2004,42:327-340.
    [39] QUINTERO F, POU J, LUSQUINOS F, BOUTINGUIZA, SOTO R, PEREZ-AMOR M.Comprehensive assessment of the CO2laser cut quality of ceramics with different assist gasinjection systems [J]. Journal of Laser Applications,2004,16(4):212-220.
    [40] QUINTERO F, POU J, FERNANDEZ J L, DOVAL A F, LUSQUINOS F, BOUTINGUIZAM, SOTO R, PEREZ-AMOR M. Optimization of an off-axis nozzle for assist gas injection inlaser fusion cutting [J]. Optics and Lasers in Engineering,2006,44:1158-1171.
    [41] PENA P, BARTOLOME J, REQUENA J, MOYA J S. Mullite-alumina functionally gradientceramics [J]. Journal de Physique IV France,1993,03(C7):1261-1266.
    [42] LI L, SOBIH M, CROUSE P L. Striation-free laser cutting of mild still sheets [J]. Annals ofthe CIRP,2007,56(1):193-196.
    [43] SOBIH M, CROUSE P L, LI, L. Elimination of striation in laser cutting of mild steel [J].Journal of Physics D: Applied Physics,2007,40:6908-6916.
    [44] YAN Y, LI L, SEZER K, WHITEHEAD D, JI L, BAO Y, JIANG Y. Nano-second pulsedDPSS Nd: YAG laser striation-free cutting of alumina sheets [J]. International Journal ofMachine Tools and Manufacture,2011,53(1):15-26.
    [45] SOBIH, CROUSE P L, LI L. Striation-free fibre laser cutting of mild steel sheets [J]. AppliedPhysics A–Materials Science&Processing,2008,90:171-174.
    [46] CHEN X, JI L, BAO Y, JIANG Y. High quality fibre laser cutting of electronic aluminaceramics [J]. Advanced Materials Research,2011,154-155:911-922.
    [47] HARIMAKAR S, DAHOTRE N B. Laser assisted densification of surface porosity instructural alumina ceramic [J]. Physical State Solid,2007,204(4):1105-1113.
    [48] SAMANT A N, DAHOTRE N B. Physical effects of multipass two-dimensional lasermachining of structural ceramics [J]. Advanced Engineering Materials,2009,11(7):579-585.
    [49] MORITA N, WATANBE T, YOSHIDA T. Crack-free processing of hot-pressed silicon nitrideceramics using pulse YAG laser (3rdreport, analysis of fracture strength and residual stress)[J]. Transactions of the Japan Society of Mechanical Engineers,1991,57:537.
    [50] HONG L, LI L. A study of laser cutting engineering ceramics [J]. Optics and LaserTechnology,1999,31:531-538.
    [51] QUINTERO F, POU J, LUSQUINOS F, RIVERO A, PEREZ-AMOR. Single-pass andmulti-pass laser cutting of Si-SiC: Assessment of the cut quality and microstructure in theheat affected zone [J]. Journal of Laser Applications,2007,19(3):170-176.
    [52] QUINTERO F, VARAS F, POU J, LUSQUINOS F, BOUTINGUIZA M, SOTO R,PEREZ-AMOR M. Theoretical analysis of material removal mechanisms in pulsed laserfusion cutting of ceramics [J]. Journal of Physics D: Applied Physics,2005,38:655-666.
    [53] SAMANT A N, DAHOTRE N B. Three-dimensional laser machining of structural ceramics[J]. Journal of Manufacturing Processes,2010,12:1-7.
    [54] WANG C, ZENG, X. Study of laser caving three-dimensional structures on ceramics: qualitycontrolling and mechanisms [J]. Optics and Laser Technology,2007,37(7):1400-1405.
    [55] WANG X, SHEPHARD J D, DEAR F C, HAND D P. Optimized nanosecond pulsed lasermicromachining of Y-TZP ceramics [J]. Journal of the American Ceramic Society,2008,91(2):391-397.
    [56] DEAR F C, SHEPHARD J D, WANG X, JONES J D C, HAND D P. Pulsed lasermicromachining of yttria-stabilized zirconia dental ceramic for manufacturing [J].International Journal of Applied Ceramic Technology,2008,5(2):188-197.
    [57] PARRY J P, SHEPHARD J D, DEAR F C, JONES N, WASTON N, HAND D P.Nanosecond-laser postprocessing of millisecond-laser-machined zirconia (Y-TZP) surface [J].International Journal of Applied Ceramic Technology,2008,5(3):249-257.
    [58] PARRY J P, SHEPHARD J D, HAND D P. Laser micromachining of zirconia (Y-TZP)ceramics in the picosecond regime and the impact on material strength [J]. InternationalJournal of Applied Ceramic Technology,2011,8(1):163-171
    [59] PERRIE W, RUSHTON A, GILL M, FOX P, O’NEILL W. Femtosecond lasermicro-structuring of alumina ceramic [J]. Applied Surface Science,2005,248:213-217.
    [60] ROY S, MODEST M F. CW laser machining of hard ceramics–I. Effects ofthree-dimensional conduction variable properties and various laser parameters [J].International Journal of Heat and Mass Transfer,1993,36(14):3515-3528.
    [61] ROY S, MODEST M F. CW laser machining of hard ceramics–II. Effects of multiplereflections [J]. International Journal of Heat and Mass Transfer,1993,36(14):3529-3540.
    [62] HONG L, LI L, JU C. Investigation of cutting of engineering ceramics with Q-switched pulseCO2laser [J]. Optics and Laser in Engineering,2002,38:279-289.
    [63] SAMANT A N, DAHOTRE N B. Computational predictions in single-dimensional lasermachining of alumina [J]. International Journal of Machine Tools and Manufacture,2008,48:1345-1353.
    [64] SAMANT A N, DAHOTRE N B. Absorptivity transition in the1.06μm wavelength lasermachining of structural ceramics [J]. International Journal of Applied CeramicTechnology,2011,8(1):137-139.
    [65] SAMANT A N, DAHOTRE N B. Physical effect of multipass two-dimensional lasermachining of structural ceramics [J]. Advanced Engineering Materials,2009,11(7):579-585.
    [66] TSAI C H, CHEN C J. Formation of the breaking surface of alumina in laser cutting with acontrolled fracture technique [J]. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture,2003,247(4):489-497.
    [67] LUMLEY R M. Controlled separation of brittle materials using a laser [J]. AmericanCeramic Society Bulletin,1969,48:850-854.
    [68] KONDRATENKO V S. Method of splitting non-metallic materials [P]. U.S. Patent,1997:5609284
    [69] UNGER U, WITTENBECHER W. The cutting edge of laser technology [J]. Glass,1998,75:101-102.
    [70] TSAI C H, LIOU C S. Fracture mechanism of laser cutting with controlled fracture [J].Journal of Manufacturing Science and Engineering,2003,125:519-528.
    [71] TSAI C H, LIOU C S. Applying an on-line crack detection technique for laser cutting bycontrolled fracture [J]. International Journal of Advanced Manufacturing Technology,2001,18:724-730.
    [72] TSAI, C H, CHEN H W. Laser cutting of thick ceramic substrates by controlled fracturetechnique [J]. Journal of Materials Processing Technology,2003,136:166-173.
    [73] TSAI C H, CHEN C J. Application of iterative path revision technique for laser cutting wothcontrolled fracture [J]. Optics and Lasers in Engineering,2004,41:189-204.
    [74] BRUGAN O, CAI G, AKARAPU R, SEGALL A E. Controlled-fracture of prescored aluminaceramics using simultaneous CO2laser [J]. Journal of Laser Applications,2006,18(3):236-241.
    [75] SEGALL A E, CAI G, AKARAPU R, ROMASCO, LI B Q. Fracture control of unsupportedceramics during laser machining using a simultaneous prescore [J]. Journal of LaserApplications,2005,17(1):57-62.
    [76] SEGALL A E, CAI G, AKARAPU R. Studies on the use of offset and angled prescores forfracture control during laser machining of alumina ceramics [J]. Journal of LaserApplications,2006,18(4):325-329.
    [77] PARRY J, AHMED R, DEAR F, SHEPHARD J, SCHMIDT M, LI L, HAND D P. Afiber-laser process for cutting thick yttria-stabilized zirconia: application and modeling [J].International Journal of Applied Ceramic Technology,2010,8(6):1277-1288.
    [78] TSAI C H, OU C H. Machining a smooth surface of ceramic material by laser fracturemachining technique [J]. Journal of Materials Processing Technology,2004,155-156:1797-1804.
    [79] TSAI C H, CHEN H W. Laser milling of cavity in ceramic substrate by fracture-machiningelement technique [J]. Journal of Materials Processing Technology,2003,136:158-165.
    [80] RAJAGOPAL S. Laser-assisted machining of tough materials [J]. Laser Focus withFiberoptic Technology,1982,18(3):49-54.
    [81] TIAN Y, SHIN Y C. Thermal modeling for laser-assisted machining of silicon nitrideceramics with complex features [J]. Journal of Manufacturing Science and Engineering,2006,128(2):425-434.
    [82] ChANG C W, KUO C P. An investigation of laser-assisted machining of Al2O3ceramicsplanning [J]. International Journal of Machine Tools and Manufacture,2007,47:452-461.
    [83] LEI S, SHIN Y C, INCROPEAR F P. Experimental investigation of thermo-mechanicalcharacteristics in laser-assisted machining of silicon nitride ceramics [J]. Journal ofManufacturing Science and Engineering,2001,123:639-646.
    [84] TIAN Y, WU B, ANDERSON M, SHIN Y C. Laser-assisted milling of silicon nitrideceramics and Inconel718[J]. Journal of Manufacturing Science and Engineering,2008,130(3):031013.
    [85] SHEN X, LEI S. Experimental study on operating temperature in laser-assisted milling ofsilicon nitride ceramics [J]. International Journal of Advanced ManufacturingTechnology,2010,52:143-154.
    [86] SHEN X, LEI S. Thermal modeling and experimental investigation for laser assisted millingof silicon nitride ceramics [J]. Journal of Manufacturing Science and Engineering,2009,131(5):051007.
    [87] YANG B, LEI S. Laser-assisted milling of silicon nitride ceramic: a machinability study [J].International Journal of Mechatronics and Manufacturing Systems,2008,1(1):116-130.
    [88] REBRO P, SHIN Y C, INCROPERA F P. Design of operating conditions for crackfree laserassisted machining of mullite [J]. International Journal of Machine Tools andManufacture,2004,44:677-694.
    [89] PEFFERKON F E, SHIN Y C, TIAN Y, INCROPEAR F P. Laser-assisted machining ofmagnesia-partially stabilized zirconia [J]. Journal of Manufacturing Science andEngineering,2004,126(1):42-51.
    [90] SUN S, BRANDT M, DARGUSCH M S. Thermally enhanced machining of hard-to-machinematerials–a review [J]. International Journal of Machine Tools and Manufacture,2010,50(8):663-680.
    [91] KRUUSING A. Underwater and water-assisted laser processing: Part1–general features,steam cleaning and shock processing [J]. Optics and Lasers in Engineering,2004,41(2):307-327.
    [92] KRUUSING A. Underwater and water-assisted laser processing: Part2–Etching, cutting andrarely used methods [J]. Optics and Lasers in Engineering,2004,41(2):329-335.
    [93] MORITA N, ISHIDA S, FUJIMORI Y, ISHIKAWA, K. Pulsed laser processing of ceramicsin water [J]. Applied Physics Letters,1988,52(23):1965-1966.
    [94] TSAI C H, LI C C. Investigation of underwater laser drilling for brittle substrates [J]. Journalof Materials Processing Technology,2009,209(6):2838-2846.
    [95] CHUNG C K, LIN S L. CO2laser micromachined crackless through holes of Pyrex7740glass [J]. International Journal of Machine Tools and Manufacture,2010,50(11):961-968.
    [96] CHUNG C K, SUNG Y C, HUANG G R, HSIAO E J, LIN W H, LIN S L. Crackless linearthrough-wafer etching of Pyrex glass using liquid-assisted CO2laser processing [J]. AppliedPhysics A–Material Science and Processing,2009,94(4):927-932.
    [97] YAN Y, LI L, SEZER K, WANG W, WHITEHEAD D, JI L, BAO Y, JIANG Y. CO2laserunderwater machining of deep cavities in alumina [J]. Journal of the European CeramicSociety,2011,31:2793-2807.
    [98] BARNES C, SHROTRIYA P, MOLIAN P. Water-assisted laser thermal shock machining ofalumina [J]. International Journal of Machine Tools and Manufacture,2007,47:1864-1874.
    [99] KALYANASUNDARAM D, SHROTRIYA P, MOLIAN P. Obtaining a relationship betweenprocess parameters and fracture characteristics for hybrid CO2laser/waterjet machining ofceramics [J]. Journal of Engineering Materials and Technology,2009,131:011005.
    [100] TSAI C H, SHIU J S. Laser cutting ceramics using an unstable fracture technique [J].Journal of Laser Applications,2009,21(1):57-62.
    [101] MURRY A. The reduction of microstructural damage during the drilling of ceramics by highpower laser [D]. Loughborough University: Loughborough,2011.
    [102] PASCUAL-COSP J. RAMIREZ DEL VALLE A J, GARCIA-FORTEA J, SANCHEZ-SOTOP J. Laser cutting of high-vitrified ceramic materials: development of a method using a Nd:YAG laser to avoid catastrophic breakdown [J]. Materials Letters,2002,55:274-280
    [103] FIRESTONE R F. VESELY E J. High power laser beam machining of structural ceramics[J]. Proceedings of the ASME Symposium on Machining of Advanced CeramicMaterials and Components,1988:215-227.
    [104] VIKULIN V, KELINA I, SHATALIN A, RUSANOVA L. Advanced ceramic structuralmaterials [J]. Refractories and Industrial Ceramics,2004,45:383-386.
    [105] RIEDEL R. Handbook of ceramic hard materials [M]. Weinheim: Wiley-Vch Berlag GmbH.2000.
    [106] MORRELL R. Handbook of properties of technical&engineering ceramics–part2. Datareview, section I. High-alumina ceramics [M]. London: Her Majesty’s Stationery Office.1987.
    [107] AUERKARI P. Mechanical and physical properties of engineering alumina ceramics [R].Finland: VTT Manufacturing Technology,1999.
    [108] RAM K G, WALLACE W B, ROBERT R B, YUKAP H. A model for laser hole drilling inmetals [J]. Journal of Computational Physics,1996,125:161-176.
    [109]周益春.材料固体力学[M].北京:科学出版社,2006.
    [110] GOVINDJEE S. Anisotropic modelling and numerical simulation of brittle damage inconcrete [J]. International Journal for Numerical Methods in Engineering,1995,38:3611-3633
    [111]张珊,康少英.激光加工结构陶瓷的实验研究[J].中国激光,1995,22(10):797~800
    [112] MOORHOUSE C J, VILLARREAL F, WENDLAND J J, BAKER H J, HALL D R, HANDD P. CO2laser processing of alumina (Al2O3) printed circuit board substrates [J]. IEEETransactions on Electronics Packing Manufacturing,2005,28(3):249-258.
    [113]鄢锉,李力钧,李大生. Al2O3陶瓷对CO2激光吸收率试验测定[J].湖南大学学报(自然科学版),2008,35:41-44.
    [114]关振中.激光加工手册[M].北京:中国计量出版社,1998.
    [115] NEGARESTANI R, SUNDAR M, SHEIKH M A, MATIVENGA P, LI L, LI Z L, CHU P L,KHIN C C, ZHENG H Y, LIM G C. Numerical simulation of laser machining ofcarbon-fibre-reinforced composites [J]. Proceedings of IMechE, Part B: Journal ofEngineering Manufacture,2010,224:1017-1027.
    [116] SALONITIS K, STOURNARAS A, TSOUKANTAS G, STAVROPOULOS P,CHRYSSOLOURIS G. A theoretical and experimental investigation on limitations of pulsedlaser drilling [J]. Journal of Materials Processing Technology,2007,183:96-103.
    [117] PETKOVSEK R, PANJAN I, BABNIK A, MOZINA J. Optodynamic study of multiplepulses micro drilling [J]. Ultrasonics,2006,44:1191-1194.
    [118] KAR A, MAZUMDER J. Two-dimensional model for material damage due to melting andvaporization during laser irradiation [J]. Journal of Applied Physics,1990,68:3884-3891.
    [119] YAN Y, LI L, SEZER K, WHITEHEAD D, JI L, BAO Y, JIANG Y. Experimental andtheoretical investigation of fibre laser crack-free cutting of thick-section alumina [J].International Journal of Machine Tools and Manufacture,2011,51:859-870.
    [120] YILBAS B S, SHUJA S Z. Heat transfer analysis of laser heated surfaces–conductionlimited case [J]. Applied Surface Science,1997,108:167-175.
    [121] YANG L J, WANG Y, TIAN Z G, CAI N. YAG laser cutting soda-lime glass with controlledfracture and volumetric heat absorption [J]. International Journal of Machine Tools andManufacture,2010,50:849-859.
    [122] ANSYS Inc. ANSYS help documentation [M], Version12.1. USA: Canonsburg,2012.
    [123] NISAR S, SHEIKH M A, LI L, SAFDAR S. Effect of thermal stresses on chip-free diodelaser cutting of glass [J]. Optics and Laser Technology,2009,41:318-327.
    [124] NISAR S, SHEIKH M A, LI L, PINKERTON A J, SAFDAR S. The effect of laser beamgeometry on cut path deviation in diode laser chip-free cutting of glass [J]. Journal ofManufacturing Science and Engineering,2010,132:011002.
    [125] FUNAMORI N, JEANLOZ R. High-pressure transformation of Al2O3[J]. Science,1997,278:1109-1111
    [126] LIN J, DEGTYAREVA O, PREWITT C T, DERA P, SATA N, GREGORYANZ E, MAO HK, HEMLEY R J. Crystal structure of a high-pressure/high-temperature phase of alumina byin situ X-ray diffraction [J]. Nature Materials,2004,3:389-393
    [127] NEICE A. Methods and limitations of subwavelength imagining [J]. Advances in Imagingand Electron Physics,2010,163:117-140.
    [128] RITTWEGER E, HAN K Y, IRVINE S E, EGGELIN C, HELL S W. STED microscopyreveals craystal colour centres with nanometric resolution [J]. Natrue,2009,3:144-147.
    [129] BETZIG E, LEWIS A, HAROOTUNIAN A, ISAACSON M, KRATSCHMER E. Near-fieldscanning optical microscopy (NSOM)[J]. Biophys,1986,49:269-279.
    [130] DUTIG U, POHL D W, ROHRER H. Near-field optical-scanning microscopy [J]. Journalof Applied Physics,1986,59:3318-3327.
    [131] Hsu J W P. Near-field scanning optical microscopy studies of electronic and photonicmaterials and devices [J]. Materials Science and Engineering: R: Reports.2001,33(1):1-50
    [132] PENDRY J B. Negative refraction makes a perfect lens [J]. Physics Review Letters,2000,85:3966-3969.
    [133] LIU Z, DURANT S, LEE H, PIKUS Y, FANG N, XIONG Y, SUN C, ZHANG X. Far-fieldoptical superlens [J]. Nano Letters,2007,40:403-408.
    [134] JACOB Z, ALEKEYEV L V, NARIMANOV E. Optical hyperlens: far-field imaging beyondthe diffraction limit [J]. Optics Express,2006,14:8274-8256.
    [135] SALANDRINO A, ENGHEATA N. Far-field subdiffraction optical microscopy usingmetamaterial crystals: theory and simulations [J]. Physics Review B,2006,74:075103.
    [136] SMOLYANINOV I I, HUNG Y J, DAVIS C C. Magnifying superlens in the visiblefrequency range [J]. Science,2007,315:1699-1701.
    [137] ROGER E, LINDBERG J, ROY T, SAVO S, CHAD J, DENNIS M, ZHELUDEV N. Asuper-oscillatory lens optical microscope for subwavelength imaging [J]. Nature Materials,2012,11:432-435.
    [138] MANSFIELD S M, KINO G S. Solid immersion microscope [J]. Applied Physics Letters,1990,57:2615-2616.
    [139] KARRAI K, LORENZ X, NOVOTNY L. Enhanced reflectivity contrast in confocal solidimmersion lens microscopy [J]. Applied Physics Letters,2000,77:3459-3461.
    [140] WANG Z, GUO W, LI L, LUK’YANCHUK B, KHAN A, LIU Z, CHEN Z, HONG M.Optical virtual imaging at50nm lateral resolution with a white-light nanoscope [J]. NatureCommunications,2011,2:218.
    [141] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems. II Structure of theimage field in an aplanatic system [J]. Proceeding of Royal Society A–Mathematics andPhysics,1959,253:358-379.
    [143] CHENG Z G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement ofbackscattering of light by nanoparticles: a potential novel visible-light ultramicroscopytechnique [J]. Optical Express,2004,12:1214-1220.
    [144] WANG Z, JOSEPH N, LI L, LUK’YANCHUK B. A review of optical near-fields inparticle/tip-assisted laser nanofabrication [J]. Journal of Mechanical Engineering Science,2010,224:1113-1127.
    [145] WEBB R H. Confocal optical microscopy [J]. Reports on Progress in Physics,1996,59:427-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700