用户名: 密码: 验证码:
守时型铯原子喷泉钟关键技术的研究和实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间频率是一个国家科技、经济、军事和社会生活中至关重要的参量,其应用范围从基础研究(相对论验证、基本物理常数测量等),渗透到了工程技术应用领域(导航定位、深空探测等)。标准时间首先由一组连续运行的守时型原子钟(如商品型铯束原子钟、氢原子钟)产生稳定的信号,经过基准型原子钟(如铯原子喷泉钟、实验室型铯束原子钟)校准后获得稳定、准确的时间信号。铯原子喷泉钟作为基准钟标较着其他原子钟,具有最高的准确度性能和优异的长期稳定度性能。相比于现有的守时原子钟,铯原子喷泉钟不存在氢钟所固有的频率漂移,比商品型铯束原子钟具有更高的频率稳定度(1个量级以上),参与守时能够显著提高时间频率信号的长期稳定度性能。
     然而,铯原子喷泉钟作为守时钟运行仍然需要解决以下两个关键问题:一是铯原子喷泉钟的可靠性问题。目前作为基准钟运行的铯原子喷泉运行是间歇性的,而作为守时钟运行则要求输出信号是连续的,以保证时间信号的持续性。铯原子喷泉钟是大型的实验室装置,各种环境因素(机械振动等)的干扰容易导致喷泉钟偏离正常的工作状态,研究能够自动恢复工作状态的技术能够是其中需要研究的关键技术之一;二是需要解决铯原子喷泉准确度和稳定度性能相互矛盾的问题。铯原子喷泉钟作为守时钟运行在保证高准确度的同时也必须具有高的稳定度性能。当喷泉钟原子样品数目越小时,原子样品之间的碰撞程度减弱,导致的碰撞频移误差减小,如此一来稳定度性能指标就响应地降低。研究能够同时提高准确度性能和稳定度性能的技术是另一项需要研究的关键技术。
     本文围绕上述问题开展研究,首先研制了具有抗振特性的外腔半导体激光器,在此基础上,研究了具有参数自恢复激光稳频技术,解决了限制铯原子喷泉钟连续运行能力的主要问题;研究了能够获得低密度原子样品同时又能保证原子团数目不变的慢速原子束技术,可同时提高铯喷泉钟准确度和稳定度性能指标。在实现的关键技术基础上,研制了铯原子喷泉钟的其中两个子系统物理系统、光学系统,通过整机联调,获得了铯原子喷泉钟的标志性Ramsey信号,实现了初步闭环,研究内容和成果可归纳为以下几个部分:
     (1)研制了应用干涉滤光片选模,具有“猫眼”结构和参数自恢复锁频功能的新型852nm抗振外腔半导体激光器系统,并成功应用于铯原子喷泉钟装置。分析研究了基于干涉滤光片选模、“猫眼”结构外腔压窄线宽的外腔激光器的工作原理,与基于光栅选模、FP腔压窄线宽的外腔激光器对比,分析了研制的外腔半导体激光器的抗振特性。测试了抗振外腔半导体激光器的频谱特性,与同类的外腔半导体激光器相比,研制的激光器具有更窄的线宽和更高的频谱纯度。
     (2)首次实现了基于液晶相位可变延迟器频率调谐、“猫眼”结构外腔的半导体激光器,提出了基于半导体光放大芯片新型外腔半导体激光器方案。针对PZT频率调谐的外腔半导体激光器固有的回程误差、机械运动和驱动电压高等缺点,采用了以液晶相位延时器进行调谐的方案。在此基础上,实现了液晶调谐的外腔半导体激光器。测试表明,研制的激光器具有调谐电压低,不存在回程误差和机械运动等优点。
     (3)研究了2D MOT慢速原子束技术。通过构建了2D MOT中铯原子的受力模型,对2D MOT产生慢速原子束的过程进行了数值模拟。利用模拟结果,设计并实现了完整的慢速原子束装置,利用飞行时间法测试了慢速原子束的流量、平均速度等特性,获得了性能指标较好的慢速原子束。采用慢速原子束直接通过光学粘团制备原子样品,可以缩短装载时间,降低原子团密度,同时提高频率稳定度性能和准确度性能。
     (4)研制了铯原子喷泉钟的物理系统和光学系统,通过整机联调,成功地获得了铯原子喷泉钟的标志性信号---Ramsey条纹,并初步实现了喷泉钟的闭环运行。在研制的抗振外腔半导体激光器的基础上,通过饱和吸收光谱,实现了激光器的自动稳频,并利用声光调制器实现了激光频率、功率控制,通过光放大、注入锁定方法实现光功率放大。通过保偏光纤把激光传输到一体化镜筒,扩束形成准直度高、功率和偏振可调的圆偏振光。构建了斜入射激光探测光路,减小了热原子荧光的干扰。全面分析了铯原子喷泉钟对物理的要求,对物理系统进行了方案设计。依据设计方案,实现了铯原子喷泉钟的MOT阱区、探测区、喷泉管,达到了喷泉钟运行所需的指标。在铯原子喷泉钟光学系统、物理系统完成的基础上,通过整机联调,实现了铯原子的多普勒冷却、上抛、偏振梯度冷却,实现了原子喷泉。利用选态腔和推斥光,实现了mF=0态原子的选择。通过在微波腔馈入微波,获得了铯原子喷泉钟的标志性的Ramsey谐振信号。通过对微波信号实施方波调制,获得了本地振荡器的伺服控制信号,实现了喷泉钟的初步闭环。
Cesium atomic fountain clock, the current time and frequency primary standard, with thehighest accuracy performance. It is applied widely in time-keeping system, the field of metrology,fundamental physics research areas. With the development of new methods and newtechnologies, the continuously improving operation ability of the cesium atomic fountain clock,the cesium atomic fountain clock has the potential to be as time-keeping clock. Compared withother time-keeping atomic clock, the frequency drift and long-term stability (days) of highcesium atomic fountain clock features. As time-keeping the clock is one of the cesium atomicfountain clock application development direction. This paper focuses on this theme, the first keytechnologies of the cesium atomic fountain clock, developed with anti-vibration characteristicsof external cavity semiconductor laser, and on this basis, the development of a system withautomatic frequency stabilization function, to solve the limit of cesium atoms fountain clockcontinuous operation of the main problems of capacity; Cesium atomic fountain clock, cold atomcollision frequency shift error and stability performance are conflicting issues. It is solvedthrough the2D MOT technology for the direct preparation of cold atomic beam into an opticalmolasses, in access to low-density atoms while ensuring the same number of atoms, collisionfrequency shift smaller, while the clock stability performance is unchanged. Combined theachieving key technologies with the optical system and vacuum system, the cesium atomicfountain is realized and get a better flight time signal, and laid the foundation for the operation ofthe cesium atomic fountain. According to the order in which the work is carried out the contentand results can be summarized as the following sections:
     (1) Development of anti-vibration external cavity semiconductor laser, and applied to thecesium atomic fountain clock. The theoretical analysis based on the interference filter,"cat's eye"structure of the external cavity show anti-vibration characteristics of the external cavitysemiconductor laser. Tested the spectral characteristics of the vibration of external cavitysemiconductor lasers show that the narrower linewidth and higher spectral purity.
     (2) The frequency tunable external cavity semiconductor lasers based on liquid crystal variable retarder. Analysis of the PZT frequency tuning inherent in the external cavitysemiconductor laser with a return error, aging and the control voltage disadvantages of theproposed program to the tune of the liquid crystal phase delay. On this basis, the DFB laser isdeveloped with a liquid crystal tunable external cavity semiconductor laser. The test showed thatthe developed lasers with a lower tuning voltage, there is no return error and mechanicalmovement. The program is proposed based on semiconductor optical amplifier chip, the LCDdelay frequency tuning,"cat eye" structure of the external cavity high-power semiconductorlaser.
     (3) Development of a2D MOT slow atomic beam apparatus. With a force model ofCesium atoms in the2D MOT, a numerical simulation characteristic analysis software system ofthe2D MOT process of slow atomic beam, is developed.According to the software system, acomplete slow atomic beam device is designed and implemented to obtain a better performanceslow atomic beam. The flight time method to test the flux, average speed of atom beam under theguidance of the numerical simulation results, to improve the performance of the2D MOT slowatomic beam. the phenomenon of cyclical changes of the atomic beam flow is discovered withpolarization states of push beam.
     (4) Development of the optical system of the cesium atomic fountain clock. Automaticfrequency stabilization of anti-vibration external cavity semiconductor laser is developed basedon the saturated absorption spectroscopy. The laser is transported through the polarizationmaintaining fiber to the integration of the expander to a collimated, circularly polarized lightoutput.
     (5) Development of the vacuum system of the cesium atomic fountain clock. Acomprehensive analysis of the degree of vacuum requirements of influence on the cesium atomicfountain clock performance is done according to the theory of the vacuum system design. Basisfor the design to vacuum system of cesium atomic fountain clock reach design aims.
     (6) Realization of cesium atomic fountain clock. Combined cesium atomic fountain clockoptical system, vacuum system, with control system, cesium atoms is cooled by the Dopplercooling mechanism, moving molassess, the polarization gradient cooling. A comprehensiveanalysis of various parameters (MOT magnetic field gradient, laser frequency, optical molassescooling time, etc.) on the temperature of cold atoms, the atom number of impact to determine the operating parameters of the cesium atomic fountain. The selected state cavity and repulsion oflight to achieve mF=0atom. The Ramsey fringe produced by interaction of9.2GHz microwaveand Caesium atoms has been realized with cold atomic fountain.
引文
[1]漆贯荣,时间科学基础,高等教育出版社,2006
    [2] J. Jespersen, and J. Fitz-Randolph, From Sundials to Atomic Clocks: Understanding Timeand Frequency,2nd ed., Dover, Mineola, New York,1999.
    [3] J. Levine, Introduction to time and frequency metrology, Rev. Sci. Instrum.,70,(1999):2567.
    [4]F. Riehle, Frequency Standards: Basics and Applications,Wiley-VCH Verlag, Weinheim,(2004):363.
    [5]王义遒,时间频率量的特征及其对时频系统建设的影响,时间频率学报,Vol26,No.2,(2003):81
    [6]The International System of Units (SI),8th edition, Organisation Intergouvernementalede la Convention du Mètre
    [7]A. Bauch, Caesium atomic clocks: function, performance and applications, Meas. Sci.Technol.,14,(2003):1159.
    [8]王正明,高精度守时对原子钟性能的要求,天文学进展,Vol.26,No.3,(2008):288
    [9]P. K. Seidelmann and J. H. Seago, Time scales: their users, and leap seconds, Metrologia,48,(2011):S186.
    [10]B. Guinot, Scales of Time, Metrologia,31,(1994):431.
    [11]B. Guinot and E. Felicitas Arias, Atomic time-keeping from1955to the Present, Metrologia,42,(2005):S20.
    [12]BIPM Annual Report on Time Activities,vol.5,2010, Bureau International Des Poids EtMesures.
    [13]T. E. Parker, Invited Review Article:The uncertainty in the realization and dissemination ofthe SI second from a systems point of view, Rev.Sci.Instru.,83,(2012):021102.
    [14]L. S. Cutler,Fifty years of commercial caesium clocks,Metrologia,42,(2005):S90.
    [15]董绍武,守时型原子钟及其应用,电子测量与仪器学报,(2004年增刊):490.[16]http://www.symmtricom.com
    [17] R. Wynands and S. Weyers, Atomic fountain clocks, Metrologia,42,(2005):S64.
    [18] E. Burt. T. Swanson and C. Ekstrom,Cesium Fountain Development at USNO, JointMeeting EFTF-IEEE IFCS,(1999):20.
    [19]T. B. Swanson, Eric A. Burt, and Christopher R. Ekstrom, Preliminary Results From TheUsno Atomic Fountain Development Project,92nd Annual Precise Time and Time Interval (PTTI)Meeting,(2000):325.
    [20]M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th. Udem, M. Weitz, T. W. Hansch, P.Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon. Measurement of thehydrogen1S-2S transition frequency by phase coherent comparison with a microwave cesiumfountain clock. Phys. Rev. Lett.,84,(2000):5496.
    [21]P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA Recommended Values of theFundamental Physical Constants:2010, http://arxiv.org/abs/1203.5425v1
    [22]P. A. M. Dirac. The cosmological constants Nature.139,(1937):323.
    [23]R. Srianand, H. Chand, P. Petitjean, and B. Aracil. Limits on the time variation of theelectromagnetic fine-structure constant in the low energy limit from absorption lines in thespectra of distant quasars Phys. Rev. Lett.92,(2004):121302.
    [24]S. Bize, P. Wolf, M. Abgrall, L. Cacciapuoti, A. Clairon, J. Grunert, Ph. Laurent, P.Lemonde1, A.N. Luiten, I. Maksimovic, C. Mandache, H. Marion, F. Pereira Dos Santos, P.Rosenbusch, C. Salomon, G. Santarelli, Y. Sortais, M.E. Tobar, C. Vian, and S. Zhang, ColdAtom Clocks, Precision Oscillators and Fundamental Tests, Lect. Notes Phys.648,(2004):189.
    [25]H. Marion, F. Pereira Dos Santos, M. Abgrall, S. Zhang, Y. Sortais, S. Bize, I. Maksimovic,D. Calonico, J. Grunert, C. Mandache, P. Lemonde, G. Santarelli, Ph. Laurent, A. Clairon, and C.Salomon. A search for the variation of fundamental constants using atomic fountainsPhys. Rev. Lett.90,(2003):150801–4.
    [26]N. Ashby, T. P. Heavner, S.R. Jefferts, T. E. Parker, A. G. Radnaev and Y. O. Dudin, TestingLocal Position Invariance with Four Cesium-Fountain Primary Frequency Standards and FourNIST Hydrogen Masers, Phys. Rev. Lett.98,(2007):070802.
    [27]P. Wolf, F. Chapelet, S. Bize, and A. Clairon,Cold Atom Clock Test of Lorentz Invariance inthe Matter Sector,Phys. Rev. Lett.96,(2006):060801.
    [28] S. Zhang, Déplacement de fréquence d au rayonnement du corps noir dans une fontaineatomique à césium et amélioration des performances de l’horloge, PhD Thesis Université deParis VI (2004).
    [29]F. Pereira, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon. Controlling the coldcollision shift in high precision atomic interferometry. Phys. Rev. Lett.,89,(2002):233004.
    [30]H. Marion, S. Bize, L. Cacciapuoti, D. Chambon, F. Pereira dos Santos, G. Santarelli, P.Wolf, and A. Clairon, A. Luiten and M. Tobar, S. Kokkelmanst and C. Salomon, FirstObservation of Feshbach Resonances at Very Low Magnetic Field in a133CS Fountain.18thEuropean Frequency and Time Forum,(2004):234.
    [31]I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch. A new method of measuring nuclearmagnetic moment, Phys. Rev.53,(1938):318.
    [32]N. F. Ramsey, A Molecular Beam Resonance Method with Separated Oscillating Fields,Phys. Rev.78,(1950):695.
    [33]L. Essen and J. V. L. Parry, A atomic standard of frequency and time interval, Nature,176,(1955):280.
    [34] P. F. Atomichron, The atomic clock from concept to commercial product. Proc. IEEE,73,(1985):1181.
    [35] M. A. Kasevich, E. Riis, S. Chu, and R. G. DeVoe. Rf spectroscopy in an atomic fountainPhys. Rev. Lett.63,(1989):612.
    [36] A. Clairon, Ph. Laurent, G. Santarelli, S. Ghezali, S. N. Lea, and M. Bahoura. A caesiumfountain frequency standard: preliminary results IEEE Trans. Instrum. Meas.44,(1995):128.
    [37]王义遒,王庆吉,傅济时,董太乾,量子频标原理,科学出版社,1986.
    [38]翟造成,张为群,蔡勇,杨佩红,原子钟基本原理与时频测量技术,上海科学技术文献出版社,2009.
    [39]黄秉英,新一代原子钟,武汉大学出版社,2008.
    [40] Circular TT,BIPM,ftp://ftp2.bipm.org/pub/tai/data/pfs_reports/
    [41] J. Guéna, P. Rosenbusch, P. Laurent, M. Abgrall, D. Rovera, G. Santarelli, M. E. Tobar, S.Bize, A. Clairon, Demonstration of a dual alkali Rb/Cs fountain clock, IEEE Trans UltrasonFerroelectr Freq Control. Mar,57,(2010):647.
    [42] S. R. Jefferts, R. E.Drullinger, A. De Marchi, NIST Cesium Fountain Microwave CavitiesProc. IEEE International Frequency Control Symp.,(1998):6.
    [43]V.Gerginov, N. Nemitz, S. Weyers, R. Schroder, D. Griebsch, R. Wynands, Uncertaintyevaluation of the caesium fountain PTB-CSF2, Metrologia, Vol.47,(2009):65.
    [44]K. Szymaniec, S. E. Park, G. Marra and W. Cha upczak, First accuracy evaluation of theNPL-CsF2primary frequency standard, Metrologia, Vol.47,(2010):363.
    [45]D. Calonico, F. Levi, L. Lorini and G. Mana, Bayesian estimate of the zero-densityfrequency of a Cs fountain, Metrologia,46,(2009):629.
    [46]C. R. Ekstrom, E. A. Burt, and T. B. Swanson, Characterization of the USNO CesiumFountain, Proceedings of the IEEE Frequency Control Symposium,(2001):53.
    [47]S. Peil, S. Crane, T. Swanson and C.R. Ekstrom, The USNO Rubidium Fountain,International Frequency control symposium and Exposition,(2006):304.
    [48]Y. Ovchinnikov and G. Marra, Accurate rubidium atomic fountain frequency standard,Metrologia,48,(2011):87.
    [49]A. Takamizawa, Y. Shirakawa, S. Yanagimachi, Proposal of a truncated atomic beamfountain for reduction of collisional frequency shift, Phy. Rev. A.,82,(2010):013632.
    [50]A. Takamizawa, S. Yanagimachi, Y. Shirakawa, K. Watabe, K. Hagimoto, and T. Ikegami,Cesium Atomic Fountain Clocks At NMIJ,42nd Annual Precise Time and Time Interval (PTTI)Meeting,(2010):234.
    [51]S. Weyers, B. Lipphardt, and H. Schnatz, Reaching the quantum limit in a fountain clockusing a microwave oscillator phase locked to an ultrastable laser, Phy. Rev. A.,79,(2009):031803R.
    [52] J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E.Tobar, S. Bize, Y. Le Coq, and G. Santarelli, Ultralow noise microwave generation withfiber-based optical frequency comb and application to atomic fountain clock, Appl. Phys. Lett.94,(2009):141105.
    [53]F. Levi, C. Calosso, D. Calonico, L. Lorini, E. Bertacco, A. Godone, G. Costanzo, B.Mongino, S. Jefferts, T.Heavner, E. Donley, Cryogenic fountain development at NIST andINRIM: preliminary characterization, IEEE Trans Ultrason Ferroelectr Freq Control. Mar,57,3,2010:600.
    [54]P. Berthoud, E. Fretel, A. Joyet, G. Dudle, and P. Thomann, Toward a primary frequencystandard based on a continuous fountain of laser-cooled Cesium atoms. IEEE Trans. Instrum.Meas.,48,(1999):516.
    [55]G. D. Domenico, L. Devenoges, C. Dumas, and P. Thomann, Combined quantum-statepreparation and laser cooling of a continuous beam of cold atoms, Phys. Rev. A.,82,(2010):053417.
    [56]Ph. Laurent, M. Abgrall, A. Clairon, P. Lemonde, G. Santarelli, P. Uhrich, N. Dimarcq, L. G.Bernier, G. Busca, A. Jornod, P. Thomann, E. Simain, P. Wolf, F. Gonzalez, Ph. Guillemot, S.Leon, F. Nouel, Ch. Sirmain, S. Feltham, and C. Salomon. Cold atom clocks in space: PHARAOand ACES. In P. Gill, editor, Proceedings of the6th Symposium on Frequency Standards andMetrology, St Andrews, Scotland,. World Scientific,(2001):241.
    [57]李天初,李明寿,林平卫,王平,陈伟亮,刘年丰,林弋戈, NIM第二代铯喷泉钟NIM5的研制和评定不确定度进入3x10-15,全国时间频率年会,(2007):344.
    [58]周子超,魏荣,史春艳,吕德胜,李唐,王育竹,Progress of the87Rb fountain clock. ChinesePhysics Letter,2009,26(12):123201.
    [59]董绍武,屈俐俐,李焕信,刘春侠,NTSC的守时工作进展,时间频率学报,Vol.33,No.1,(2010):1.
    [60] C.W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, FrequencyComparison of Two High-Accuracy Al+Optical Clocks, Phy. Rev. Lett.,104,(2010):070802.
    [61]Report of the18th meeting Consultative Committeefor Time and Frequency (CCTF), BIPM,(2009):23.
    [62]H. J. Metcalf and P. van der Straten, Laser cooling and trapping, Springer,(1999):345
    [63]A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips. Ramsey resonance in a zachariasfountain. Europhys. Lett.16,(1991):165.
    [64]C. Cohen-Tannoudji and W. D. Phillips. New mechanisms for laser cooling, Physics Today.43,(1990):33.
    [65]C. Salomon, J. Dalibard, W. D. Phillips, A. Clairon, and S. Guellati, Laser cooling ofcaesium atoms below3μK, Europhys. Lett.12,(1990):683.
    [66]D. W. Allan. Statistics of atomic frequency standard Proc. IEEE.54,(1966):221.
    [67]M. Abgrall. Evaluation des performances de la fontaine atomique PHARAO, Participation àl′étude de l′horloge spatiale PHARAO, PhD thesis of the Université Paris VI,(2003):122.
    [68] G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, andCh. Salomon. Quantum projection noise in an atomic fountain: A high stability Cesiumfrequency standard. Phys. Rev. Lett.,82,(1999):4619.
    [69]G. J. Dick. Local oscillator induced instabilities in trapped ion frequency standards. In Proc.19th Precise Time and Time Interval (PTTI) Applications and Planning Metting, Redondo Beach,USA,(1987):133.
    [70]C. A. Greenhall, A derivation of the long-term degradation of a pulsed atomic frequencystandard from a control-loop model, IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,45,(1998):895.
    [71]L. L. Presti, D. Rovera, and A. De Marchi, A simple analysis of the Dick effect in terms ofphase noise spectral densities, IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,45,(1998):899.
    [72]C. Audoin, G. Santarelli, A. Makdissi, and A. Clairon. Properties of an oscillator slaved to aperiodically interrogated atomic resonator, IEEE Trans. on Ultr. Ferr. and Freq. Contr.45,(1998):877.
    [73]G. Santarelli, C. Audoin, A. Makdissi, Ph. Laurent, G. J. Dick, and A. Clairon. Frequencystability degradation of an oscillator slaved to a periodically interrogated atomic resonator, IEEETrans. on Ultr. Ferr. Freq. Contr.45,(1998):887.
    [74]K. Nikolaos and Marc A. Weiss. The relativistic redshift with3×1017uncertainty at NIST,Boulder, Colorado, USA. Metrologia,40,(2003):66.
    [75]Ramsey N F. Molecular Beams (Oxford: Oxford University Press)1956.
    [76]P. Rosenbusch, S. Zhang, and A. Clairon. Blackbody radiation shift in primary frequencystandards. Proceedings of the joint meeting of17th European Frequency and Time Forum andthe IEEE International Frequency Control Symposium, Geneva, Switzerland,(2007):255.
    [77]A. Bauch and R. Schroder. Experimental verification of the shift of the cesium hyperfinetransition frequency due to blackbody radiation.Phys. Rev. Lett.,78,(1997):622.
    [78]E. Simon, P. Laurent, and A. Clairon. Measurement of the stark shift of the Cs hyperfinesplitting in an atomic fountain. Phys. Rev. A,57,(1998):436.
    [79]V. G. Pal’chikov, Yu S. Domnin, and A.V. Novoselov. Black-body radiation effects and lightshifts in atomic frequency standards. J. Opt. B,5,(2003):S131.
    [80]F. Levi, D. Calonico, L. Lorini, S. Micalizio, and A. Godone. Measurement of the blackbodyradiation shift of the133Cs hyperfine transition in an atomic fountain. Phys. Rev. A,70,(2004):033412.
    [81]E.J. Angstmann, V.A. Dzuba, and V.V. Flambaum. Frequency shift of hyperfine transitionsdue to blackbody radiation. Phys. Rev. A,74,(2006):023405.
    [82]K. Beloy, U.I. Safronova, and A. Derevianko. High-accuracy calculation of the blackbodyradiation shift in the133Cs primary frequency standard. Phys. Rev. Lett.,97,(2006):040801.
    [83]K. Gibble and S. Chu. A laser cooled Cs frequency standard and a measurement of thefrequency shift due to ultra-cold collisions. Phys. Rev. Lett.,70,(1993):177.
    [84]P. J. Leo, P. S. Julienne, F.H. Mies, and C.J. Williams. Collisional frequency shifts in133Csfountains clock. Phys. Rev. Lett.,81,(1998):951.
    [85]F. Pereira, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon. Controlling the coldcollision shift in high precision atomic interferometry. Phys. Rev. Lett.,89,(2002):233004,.
    [86]F. Levi, J. H. Shirley, T. P. Heavner, D. Yu, and S. R. Jefferts, Power dependence of thefrequency bias caused by spurious components in the microwave spectrum in atomic fountains,IEEE Trans. on Ultr. Ferr. Freq. Contr., vol.53, no.9,(2006):685.
    [87]N. F. Ramsey, Resonance transitions induced by perturbations at two or more differentfrequencies, Phys. Rev., vol.100, no.4,(1955):1191.
    [88]J. H. Shirley, Some causes of resonant frequency shifts in atomic beam machines, I. Shiftsdue to other frequencies of excitation,J. Appl. Phys., vol.34, no.4,(1963):783.
    [89]C. Audoin, M. Jardino, L. S. Cutler, and R. F. Lacey, Frequency offset due to spectralimpurities in cesium-beam frequency standards, IEEE Trans. Instrum. Meas., vol. IM27, no.4,(1978):325.
    [90]J. H. Shirley, F. Levi, Thomas P. Heavner, D. Calonico, D. Yu, Microwave Leakage-InducedFrequency Shifts In The Primary Frequency Standards NIST-F1And IEN-CsF1, IEEE Trans. onUltr. Ferr. Freq. Contr. vol.53, no.12,(2006):358.
    [91] B. Boussert, G. Théobald, P. Cérez, and E. deClercq, Frequency shifts in cesium beamclocks induced by microwave leakages, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.45,(1998):728.
    [92] W. D. Lee, J. P. Lowe, J. H. Shirley, and R. E. Drullinger, Microwave leakage as a source ofsystematic error and longterm instability in cesium atomic beam frequency standards, in Proc.Eur. Time Freq. Forum,(1994):513.
    [93]S. Weyers, R. Schr der, and R. Wynands, Effects of microwave leakage in caesium clocks:Theoretical and experimental results, in Proc. Eur. Time Freq. Forum,(2006):355.
    [94]S. R. Jefferts, J. H. Shirley, N. Ashby, T. P. Heavner, E. A. Donley, and F. Levi, On the powerdependence of extraneous microwave fields in atomic frequency standards, in Proc. IEEE-UFFCFreq. Contr. Symp.,(2005):105.
    [95] A. Khursheed, G. Vecchi and A. DeMarchi, Spatial variations of field. Polarization andphase in microwave cavities: application to the cesium fountain cavity, IEEE Trans. Ultrason.Ferroelectr. Freq. Control.,43,(1996):201.
    [96] S. Yanagimachi, Y. Fukuyama, T. Ikegami and T.Kurosu, Numerical simulation ofdistributed cavity phase shift in atomic fountain frequency standard Japan. J. Appl. Phys.,44(2005):1468.
    [97]R. Li and K. Gibble, Phase variations in microwave cavities for atomic clocks Metrologia,41,(2004):376.
    [98]S. R. Jefferts, J. H. Shirley, N. Ashby, E. A. Burt and G. J. Dick. Power dependence ofdistributed cavity phase induced frequency biases in atomic fountain frequency standards IEEETrans. Ultrason. Ferroelectr. Freq. Control,52(2005):2314.
    [99]F. Chapelet, D. Chambon, P. Wolf, P. Rosenbusch, Ph. Laurent, S. Bize, G. Santarelli, M. E.Tobar, C. Salomon, and A. Clairon. Investigation of the distributed cavity phase shift in anatomic fountain Proc.20th European Frequency and Time Forum, Braunschweig, Germany,(2006):233.
    [100]J. Gúena, P. Rosenbusch, Ph.Laurent, M.Abgrall, D.Rovera, G. Santarelli, M. E. Tobar, R.Li, K. Gibble, S. Bize, A. Clairon. Characterization of the distributed cavity phase shift in FO2for improving the accuracy of SYRTE fountain clocks Proc.24th European Frequency and TimeForum, Noordwijk, The Netherlands,(2010):122.
    [101]F. Bloch and I. I. Rabi, Atoms in variable magnetic fields, Rev. Mod. Phys., vol.17, no.2/3,(1945):237.
    [102]A. Bauch and R. Schr der, Frequency shifts in a cesium atomic clock due to Majoranatransitions, Ann. Phys., vol.2, no.5,(1993):421.
    [103]S. Weyers, R. Schr der, and R. Wynands, Majorana transitions in an atomic fountain clock,IEEE Trans. Instrum. Meas., vol.56, No.4,(2007):660.
    [104]S. Bize, Y. Sortais, C. Mandache, A. Clairon, and C. Salomon. Cavity frequency pulling incold atom fountains IEEE Trans. Instrum. Meas.50,(2001):503.
    [105]S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G.Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, and F. L. Walls. Accuracyevaluation of NIST-F1. Metrologia,39,(2002):321–336.
    [106]T. P. Heavner, S. R. Jefferts, E. A.Donley, J. H. Shirley and T. E. Parker, NIST-F1: recentimprovements and accuracy evaluations, Metrologia,42,(2005):411–22.
    [107]G. Santarelli and P. Laurent and P. Lemonde and A. Clairon and A.G. Mann and S. Changand A. N. Luiten and C. Salomon. Quantum projection noise in an atomic fountain: a highstability cesium frequency standard. Phys. Rev. Lett.,82(23),(1999):4619.
    [108]D. Chambon, S. Bize, M. Lours, F. Narbonneau, H. Marion, A. Clairon, G. Santarelli, A.Luiten, and M. Tobar, Design and realization of a flywheel oscillator for advanced time andfrequency metrology, Rev. Sci. instr., vol.76,(2005):094704.
    [109] M. Lours Chambon,, F. Chapelet, S. Bize, M. E. Tobar, A. Clairon, and G. Santarelli,Design and metrological features of microwave synthesizers for atomic fountain frequencystandard, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.54,(2007):729.
    [110]V. Gerginov, N. Nemitz, D. Griebsch, M. Kazda, R. Li, K. Gibble, R. Wynands and S.Weyers, Recent improvements and current uncertainty budget of PTB fountain clockCsF2.,EFTF,(2010):222.
    [111]C. Vian, P. Rosenbusch, H. Marion, S. Bize, L. Cacciapuoti, S. Zhang, M. Abgrall, D.Chambon, I. Maksimovic, P. Laurent, G. Santarelli, A. Clairon, A. Luiten, M. Tobar, and C.Salomon,BNM-SYRTE Fountains: Recent Results,” IEEE Trans. Instrum. Meas., vol.54,(2005):833.
    [112]F. Chapelet, J. Gúena, D. Rovera, P. Laurent, P. Rosenbusch, G. Santarelli, S. Bize, A.Clairon, M.E. Tobar, and M. Abgrall. Comparisons between3fountain clocks at LNE-SYRTE.In Proc. of21th European Freq. and Time Forum, Geneva, Switzerland,(2007):111.
    [113]PTB提供给国际权度局的报告,比对时间为MJD55569-MJD55589(2011.01.08-2011.01.28)
    [114]PTB提供给国际权度局的报告,比对时间为MJD55244-MJD55259(2011.02.17-2011.03.04)
    [115]F Levi, D Calonico, L Lorini and A Godone IEN-CsF1primary frequency standard atINRIM: accuracy evaluation and TAI calibrations,Metrologia,43,(2006):545.
    [116]K. Szymaniec,W. Chalupczak, P. B. Whibberley, S. N. Lea and D. Henderson, Evaluationof the primary frequency standard NPL-CsF1,Metrologia,42,(2005):49.
    [117]K. Szymaniec, S. E. Park, G. Marra and W. Cha upczak, First accuracy evaluation of theNPL-CsF2primary frequency standard, Metrologia,47,(2010):363.
    [118]M. Kumagai, H. Ito, M. Kajita and M. Hosokawa, Evaluation of caesium atomic fountainNICT-CsF1, Metrologia,45,(2008):139.
    [119]T. Kurosu, Y. Fukuyama, Y. Koga, and K. Abe, Preliminary Evaluation of the Cs AtomicFountain Frequency Standard at NMIJ/AIST, IEEE Trans. Instrum. Meas.,53,2,(2004):466.
    [120]A. Bauch, S. Weyers, D. Piester, E. Staliuniene and W. Yang, Generation of UTC(PTB) as afountain–clock based time scale. Metrologia,49,(2012):180.
    [121]S. Crane, S. Peil, and C. R. Ekstrom, Miniaturized Atomic Fountain Optical Table,Proc.36th PTTI,(2005):5008.
    [122]C. Ye, Tunable External Cavity Diode Lasers, World Scientific, Singapore,(2004):244.
    [123]C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Littrow configuration tunable externalcavity diode laser with fixed direction output beam. Rev. Sci. Instru. Vol.72, No.12,(2001):4477.
    [124]卿光弼,王学楷,郭勇,陈德章,张承铨,“猫眼效应”的物理模型及证明,激光技术,vol.19, No.4,(1995):244.
    [125] Ph. Laurent,M. Abgrall,Ch. Jentsch,P. Lemonde,G. Santarelli,A. Clairon,I.Maksimovic,S. Bize,Ch. Salomon,D. Blonde,J.F. Vega,O. Grosjean,F. Picard,M. Saccoccio,M. Chaubet,N. Ladiette,L. Guillet,I. Zenone,Ch. Delaroche,Ch. Sirmain. Design of the coldatom PHARAO space clock and initial test results, Appl. Phys. B84,(2006):683
    [126]刘杰,用于新型原子钟的半导体激光器驱动及稳频系统研究,中国科学院研究生院硕士学位论文,2009
    [127]刘杰,马杰,阮军,张首刚,低漂移外腔半导体激光器驱动电路的设计,时间频率学报,32(2),(2009):96
    [128]http://www.newport.com.
    [129]H. Talvitie, A. Pietil inen, H. Ludvigsen, et al. Passive frequency and intensity stabilizationof extended-cavity diode lasers, Rev. Sci. Instrum,68(1),(1997):1.
    [130]X. Baillard, A. Gauguet, S. Bize, P.Lemonde, Ph. Laurent, A. Clairon, P. Rosenbusch,Interference-filter-stabilized external-cavity diode lasers,Opt. Commun.266,(2006):2009.
    [131]M. Gilowski, Ch. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E.M.Rasel, W. Ertmer, Narrow bandwidth interference filter-stabilized diode laser systems for themanipulation of neutral atoms,Opt. Commun.280,(2007):443.
    [132]http://www.jdsu.com.
    [133]D. Damjanovic, Hysteresis in Piezoelectric and Ferroelectric materials, The Science ofHysteresis. Vol3,(2006):337.
    [134]王义遒,原子的激光冷却与陷俘,北京大学出版社,(2007):358
    [135]Elizabeth A. Donley, Thomas P. Heavner, and Steven. R. Jefferts, Optical Molasses LoadedFrom a Low-Velocity Intense Source of Atoms: An Atom Source for Improved Atomic Fountains,IEEE Trans. Instrum.Meas., Vol.54, No.5,(2005):1905
    [136]R.Wynands and S. Weyers, Atomic fountain clocks, Metrologia42(2005):S64–S79
    [137]Y. Li, X. Chen, Q. Wang, Y. Wang, Motion of Ceisium atoms in the one-dimensionalmagneto-optical trap, ACTA PHYSICA SINICA(Overseas Edition),4,10,(1995):727.
    [138]W. H. Press, S. A. Teukolsky, William T. Vetterling, Brian P. Flannery. Numerical recipes inC [M], Cambridge University Press:Cambridge,(1992):288.
    [139]K. Lindquist, M. Stephens, C. Wieman. Experimental and theoretical Study of thevapor-cell Zeeman Optical Trap [J],Phys. Rev. A,46,7,(1992):4082.
    [140]J. Catani, P. Maioli, L. De Sarlo, F. Minardi, and M. Inguscio. Intense slow beams ofbosonic potassium isotopes [J], Phys. Rev. A,73,3,(2006):033415.
    [141]F. Chapelet. Fontaine atomique double de césium et de rubidium avec une exactitude dequelques1016et applications, PhD Thesis, Université Paris Ⅺ,(2008):51
    [142] V. Gerginov, C. E. Tanner. Fluorescence of a highly collimated atomic cesium beam:theory and experiment, Optics Communications,222,(2003):17
    [143] P. A. Molenaar, P. van der Straten, H. G. M. Heideman,and H. Metcalf. Diagnostictechnique for Zeeman-compensated atomic beam slowing: Technique and results, Phys. Rev. A,55,1,(1997):605.
    [144]S. Chaudhuri, S. Roy, C. S. Unnikrishnan. Realization of an intense cold Rb atomic beambased on a two-dimensional magneto-optical trap,Experiments and comparison with simulations.Phys. Rev. A.,74,2,(2006):023406.
    [145]J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T.Pfau. Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap.Phys.Rev.A.,66,(2002):023410.
    [146]Daniel A. Steck, Cesium D Line Data, http://steck.us/alkalidata.
    [147]黄秉英,干云清,原子喷泉钟回落信号原子数损失的估计,现代计量测试,Vol.55,No.01,53(2001)
    [148]达道安,真空设计手册(第三版),国防工业出版社
    [149]S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G.Costanzo, A. De Marchi,R. Drullinger, L. Hollberg, W. D. Leeand F. L. Walls, Accuracyevaluation of NIST-F1, Metrologia,39,(2002):321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700