用户名: 密码: 验证码:
近场定距脉冲激光在降雨中的大气传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光因具有抗干扰能力强、角度和距离分辨率高、单色性好等优点,在现代战争中正发挥着越来越重要的作用。激光定距系统作为一种非常好的探测装置,在应用于常规弹药的过程中必须克服气候因素和大气本身对系统的影响。激光光束在降雨中传输时会与雨滴发生相互作用,产生雨滴的吸收和散射效应,使接收端的激光功率减小、光斑廓形发生变化,导致系统性能下降,严重时甚至造成失效。因此,对脉冲激光在降雨中传输特性的研究是分析激光传输效应和确定激光定距系统参数的重要基础。本文以常规弹药中的前置式激光定距系统为背景,对脉冲激光在近地面雨场环境下的传输特性,以及降雨衰减对激光定距性能产生的影响进行了系统研究。
     首先根据激光定距系统工作原理,结合系统的探测目标能力分析了激光测距距离方程及其影响因素:分析了与激光传输特性有关的降雨物理特性,如:雨滴尺寸、形状、雨滴尺寸分布谱和水的折射率系数等,选择相应的雨滴形状模型及适合我国区域内降雨分布的雨滴谱模型。
     根据不同尺寸雨滴的形状模型,在夫琅禾费(Fraunhofer)衍射和几何光学散射理论基础上,建立了球形和近似椭球形雨滴对蓝绿波段与近红外波段激光光束的光散射模型;得出了不同波长下各尺寸雨滴的散射衰减截面;对雨滴产生的光散射能量分布进行了数值计算并分析影响雨滴散射特性的因素。
     从实际工程应用出发,对雨滴的散射衰减截面进行了前向散射修正;分析了雨滴对蓝绿波段和近红外波段激光的吸收特性,并结合雨滴散射特性建立降雨衰减的计算模型;给出了蓝绿波段和近红外波段典型波长激光在不同降雨率下的衰减系数;分析了光束发散角在不同传输距离情况下对激光能量衰减的影响;根据降雨衰减模型,推导出激光后向散射系数的计算公式,并结合某型号激光定距系统分析了不同降雨条件及不同作用距离下的雨滴后向散射对激光定距系统信噪比(SNR)的影响。
     以蒙特卡罗方法为基础建立了脉冲激光在随机分布雨滴中的传输模型。首先给出了光子运动轨迹的计算机模拟和模型统计流程;分析了降雨大小、传输距离、发射脉宽等因素对激光脉冲延时的影响以及脉冲延时引起的定距误差;通过模拟结果分析了降雨环境下各种参数对激光光斑扩展的影响。
     根据激光光束在降雨中的衰减特性研究,给出了激光在降雨中传输特性的仿真与实验方法。结合Bouguer-Lambert(?)旨数衰减定律分析了实验原理并确定实验方案;采用ZEMAX光学软件对532nm波长光束透过球形水滴后的光散射特性进行仿真,并给出与理论分析的对比结果;由实验装置产生模拟雨滴,测试了单个和多个雨滴对532nm和1064nm波长激光的光束能量衰减;建立室外雨场用来模拟真实降雨,测试不同降雨强度下两波长激光光束的传输特性。
     为使激光定距系统在降雨环境下也能实现对目标的可靠探测,对系统定距性能进行了优化。分析了系统参数和外部环境对脉冲激光传输的影响,以现有脉冲激光发射与接收组件为基础,给出提高定距性能的方案:提出了椭圆与双曲柱透镜、非球面与变形棱镜组的两种光束准直方法;研制了基于雪崩二级管(APD)探测的高灵敏度激光定距接收系统及其放大电路;提出了采用直流高压驱动激光器使其发射大功率脉冲的方法并研制了脉冲功率可调的激光器电源。
     本文的研究成果可直接应用于激光定距系统的设计和研制,为激光定距系统在近地面雨场环境下精确定距提供理论基础和技术支撑,是提高激光探测系统传输效率和激光定距系统适应降雨环境的关键。
For the laser fixed-distance system possesses so many excellences such as strong anti-interference ability, high angular and ranging resolution, great monochromaticity and so on, that it has always been particularly recognized and widely used in the military warfare. Laser detection as a superduper fixed-distance measure must conquer the climate factors and atmospheric influences when they are used in the conventional ammunitions. As laser transmits through the rain, the interaction of light with raindrops such as absorption and scattering will take place, then the receiving laser energy is attenuated and the facular shape is changed. When these instances are serious that lead to the decline or invalidation of the system performance. As a consequence, the impact of rainfall on laser transmission characteristics is an important foundation for studying the laser propagation rules and determining the parameters of laser fixed-distance system. Under the background of laser fixed-distance system in the front of conventional ammunition, the impact of laser transmission characteristics on laser fixed-distance performance in the near-surface rainfall field at different wavelengths is deeply investigated.
     Based on the working principium of laser fixed-distance system and the capability of target detection, the laser ranging equation and its influencing factors are analyzed. Then the rainfall physical characteristics are analyzed, which are related to the laser transmission in the rain, such as raindrop size, shape, raindrop size distribution, water refractive index coefficient and so on. The corresponding raindrop shape model and the raindrop size distribution model are founded that adapt for rainfall distribution in the region of our country.
     According to the model of raindrop shape, based on Fraunhofer diffraction and geometrical optics scattering theory, the light scattering models for a spherical and a nearly ellipsoidal raindrops on the blue-green and near-infrared bands are investigated and established. The calculation formula of scattering attenuation cross section for different raindrop sizes and wavelengths is developed. The light scattering energy distribution of raindrops is obtained by numerical calculation and the factors that affect the scattering properties are analyzed.
     According to the practical engineering applications, the forward scattering of raindrop attenuation cross section is corrected. The absorption efficiency factors of raindrops on the blue-green and near infrared bands are analyzed, and with the raindrop scattering attenuation cross section, the rain attenuation calculation model is educed. Then the attenuation coefficients for typical wavelengths on the blue-green and near infrared bands under different rainfall rate are computed. By the calculation results, the influences of laser beam divergence angle and transmission distance to the energy attenuation are analyzed. At last, based on the raindrop attenuation model, the back scattering features are analyzed, and with a particular type system as an example, the SNR of laser backscattering at different rainfall rates and distances is calculated.
     Based on the Monte Carlo simulation method, the transmission model of pulse laser in the rain is founded. And the computer simulation of photon trajectory as well as the statistical process is presented. Then the impact of rainfall rate, transmission distance, emission pulse width and other factors on the laser pulse delay are analyzed, as well as the ranging error brought by the pulse delay. According to the simulation results, the impact of various parameters in the rainfall on the laser spot extending is analyzed.
     According to the theoretical study of laser attenuation characteristics of raindrops and rainfall, the simulation and experimental methods for laser transmission characteristics are presented. By combination with the Bouguer-Lambert attenuation law, the experimental principle and testing programs are instituted. Using ZEMAX optical software to simulate the light scattering characteristics of532nm laser through the spherical water droplets, and the simulation data are compared with the theoretical results. The experimental raindrops are obtained from water droplet generating device, and then the the energy attenuation of laser beam at532nm and1064nm wavelengths through a single or multiple raindrops are tested. On the other hand, an outdoor rainfall field to simulate real rainfall is set up to test the laser transmission characteristics at different rainfall conditions.
     In order to achieve the reliable detection of the target in the rain for laser fixed-distance system, the optimization methods to improve the performance of laser fixed-distance are developed. First of all, the paper analyzes the laser pulse transmission characteristics and influencing factors of the laser ranging equation, then based on the existing pulsed laser transmitter and receiver components, the programs to improve the accuracy of fixed-distance are given, that is, the method to collimate laser beam by using elliptic and hyperbolic cylindrical lens as well as non-spherical and deformed prism group, the technique to improve the sensitivity of receiving system by using avalanche diode (APD) and its amplifier circuit, the means to enhance the transmitting power by using high DC voltage driving laser diode to emit high-power pulse.
     The findings of this disquisition can be directly applied to design and develop the laser fixed-distance system, and provide theoretical foundation and technical support for laser fixed-distance system accurately ranging in the near-surface rainfall field environment. The researches are the key to improve the transmission efficiency of laser fixed-distance system and to accommodate the laser fixed-distance system to the rainfall environment.
引文
[1]崔占忠,宋世和.近感引信原理.北京:北京理工大学出版社,1998.
    [2]杨亦春.近程探测技术原理与应用.南京:南京理工大学出版社,1998.
    [3]马宝华.网络技术时代的引信,中国兵工学会第十四届引信学术年会论文集,2005.
    [4]N.M.柯甘.雷达引信原理,北京:国防工业出版社,1998.
    [5]陈炳林.破甲弹一次激光定距技术研究.南京理工大学博士学位论文,2005.6.
    [6]戴永江.激光雷达原理.北京:国防工业出版社,2002.
    [7]任小红.激光在近地大气中水平传输特性研究.西安电子科技大学硕士学位论文,2007,7.
    [8]Ryde J W. Echo intensity and attenuation due to clouds, rain, hail, sand and duststorms at centimeter wavelengths. General Electric Co. Research labs, England 1941,10.
    [9]Ryde J W, Ryde D. Attenuation of centimeter waves by rain, hail, fogs and clouds. General Electric Co. Research labs, England,1944,8.
    [10]Preston F W. Visibility of Landscape during Rain. Nature,1920,106:343-344.
    [11]Chu T S, Hogg D C. Effects of precipitation on propagation at 0.63,3.5, and 10.6 microns. Bell Syst. Tech.,1968,47(5):723-759.
    [12]Chimelis V. Extinction of CO2 laser radiation by fog and rain. Applied Optics, 1982,21(18):3367-3372.
    [13]Vasseur H, Gibbins C J. Prediction of Apparent Extinction for Optical Transmissi-on through Rain. Appl Opt.,1996,35(36):7144-7150.
    [14]Rensch D B, Long R K. Comparative Studies of Extinction and Backscattering by Aerosols, Fog, and Rain at 10.6u and 0.63u. Applied Optics,1970,9(7):1563-1573.
    [15]Vasseur H, Gibbins C J. Prediction of apparent extinction for optical transmission through rain. Applied Optics,1996,35(36):7144-7150.
    [16]Lakshmi S, Lee Y H, Ong J T. The Role of Particular Rain Drop Size on Rain Attenuation at 11 GHz. Information, Communications & Signal Processing,2007 6th International Conference on Singapore.
    [17]Choi D Y. Measurement of Rain Attenuation of Microwaves at 12.25 GHz in Korea. Lecture Notes in Computer Science,2005,3462:223-233.
    [18]许祖兵.激光大气传输特性分析研究.南京理工大学博士学位论文,2006.
    [19]胡中华,陈家璧,刘雅.光在雨中传输的研究.大学物理,2007,26(07):34-39.
    [20]栗伟珉,敖发良.雨滴前向散射对光传输影响的研究.光子技术,2006,(04):237-240.
    [21]王缅,刘文清,陆亦怀等.基于前向近红外散射光谱测量雾和雨天大气消光的应用研 究.光谱学与光谱分析,2008,28(8):1776-1780.
    [22]刘磊,李浩.雨滴的近似椭球模型及其近红外散射特性研究.气象科学,2008,28(3):271-275.
    [23]王丽黎,柯熙政.激光在雨中传输的分析与计算.光散射学报,2005,17(02):148-153.
    [24]魏合理,宋正方.红外辐射在雨中的衰减.红外与毫米波学报,1997,16(6):418-424.
    [25]Plass G N, Kattawar G W. Monte Carlo calculations of light scattering from clouds. Appl. Opt.,1968,7(3):415-419.
    [26]Edward A Bucher. Computer simulation of light pulse propagation for communication through thick clouds. Applied optics,1973,12(10):2391-2400.
    [27]McCartney E J, Hall F F,et al. Optics of the Atmosphere:Scattering by Molecules and Particles. Optica Acta:International Journal of Optics,1977,24(7):779-788.
    [28]Arnush D. Underwater light-beam propagation in the small-angle scattering. J. Opt. Soc. Am.,1972,62(9):1109-1117.
    [29]Akira Ishimaru. Diffusion of a pulse in densely distributed scatterers. JOSA, 1978,68(8):1045-1050.
    [30]Stotts L B. Closed form expression for optical pulse broadening in multiple-scattering media. Applied Optics,1978,17(4):504-505.
    [31]Yasuhiro Sasano, Edward V Browell, Syed Ismail. Error caused by using a constant extinction/backscattering ratio in the lidar solution. Applied Optics,1985,24(2):3920-3932.
    [32]Mooradian G C, Geller M. Temporal and angular spreading of blue-green pulses in clouds. Applied optics,1982,21 (9):1572-1577.
    [33]周军,岳古明,等.大气气溶胶光学特性激光雷达探测.量子电子学报,1998,15(2):140-148.
    [34]Stefanos Tsitomeneas, Evangelos Voglis. Free atmospheric broadcasting of radio, TV and teletext with laser radiation.SPIE,1998,3423:276-280.
    [35]Tatarski V I. Wave propagation in a turbulent medium.1961,New York:McGraw-Hill.
    [36]Sprangle P, Penano J R, Hafizi B. Propagation of Intense Short Laser Pulses in the Atmosphere. PHYSICAL REVIEW E.2002(66),046418:1-21.
    [37]Yang Ruike, Han Xiange, Hao Yue. Propagation Characteristics of Infrared Pulse Waves through Windlown Sand and Dust Atmosphere. Int J Infrared Milli Waves,2007,28:181-189.
    [38]Zhang Shiquan. The Analysis of Scattering Effect for the Transmission of 1.06 u m Laser in Lower Altitude Atmosphere. Int J Infrared Milli Waves,2007,28:491-497.
    [39]陈纯毅,杨华民,姜会林,等.激光脉冲云层传输时间扩展与信道均衡.兵工学报,2008,29(11):1325-1329.
    [40]杨瑞科,马春林,李良超.沙尘暴多重散射对激光脉冲传输的影响.中国激光,2007,34(10):1393-1397.
    [41]许正文,吴健,霍文平,等.湍流介质中传播的脉冲时间展宽特性.中国科学(G辑),2003,33(2):139-147.
    [42]Liu C H, Yeh K C. Propagation of pulsed beam waves through turbulence, cloud, rain, or fog. J. Opt. Soc. Am.,1977,67(9):1261-1265.
    [43]Eremin J A, Orlov N V, Rozenberg V I. Multiple electromagnetic scattering by a linear array of electrified raindrops. Journal of Atmospheric and Terrestrial Physics,1995,57(3): 311-319.
    [44]Hong S T, Akira Ishimaru. Two-frequency mutual coherence function, coherence bandwidth, and coherence time of millimeter and optical waves in rain, fog, and turbulence. RADIO SCIENCE,1976,11 (6):551-559.
    [45]Liu C H, Wernik A W, Yeh K C. Propagation of pulse of trains through a random medium. IEEE Trans. Antennas Propag.,1974,20:624-627.
    [46]Ishimaru A, Hong S T. Multiple scattering effects on coherent bandwidth and pulse distortion of a wave propagating in a random distribution of particles. Radio Sci.l975,10(6):637-644.
    [47]Hong S T, Ishimaru A. Two-frequency mutual coherence function, coherence bandwidth, and coherence time of millimeter and optical wave in rain, fog, and turbulence. Radio Sci.1976,11(6):551-559.
    [48]Forrer M P. Analysis of millimicrosecond RF pulse wave transmission. Proc. IRE,1958, 40,1830-1853.
    [49]Terina G I. On the distortion of pulses in ionospheric plasma. Radio Eng. Electron Phy.,1967,12:109-113.
    [50]Gibbins C J. Propagation of very short pulses through the absorptive and dispersive atmosphere. IEE Proceedings H Microwaves, Antennas and Propagation,1990,137(5): 304-310.
    [51]Maitra A, Maria D, Sen A K, et al. Propagation of pulses at optical wavelengths through fog-filled medium. Radio Sci,1996,31(3):469-475.
    [52]董群锋.毫米波段脉冲波在雨雾媒质中传输效应研究.西安电子科技大学硕士学位论文,2006.
    [53]张河.探测与识别技术.北京:北京理工大学出版社,2005.
    [54]邓方林,张翼飞,杨辉.弹道导弹激光引信测距性能研究.系统仿真学报,2005,17(6):1476-1479.
    [55]吕晓玲.半导体激光测距接收系统研究.长春理工大学硕士学位论文,2006.
    [56]ITU-R, Document 3/74-E,2002.
    [57](美)麦卡特尼(McCartney,E.J.)著,潘乃先等译.大气光学:分子和粒子散射.北京:科学出版社,1988.
    [58]Oguchi T, Hosoya Y. Scattering properties of oblate rain drops and cross polarization of radio waves due to rain (Part Ⅱ):Calculations at microwave and millimeter wave regions. J. Radio Res. Lab.1974,21(105):191-259.
    [59]Dassayanake A W, Watson P A. Forward scatter and cross polarization from Spheroidal ice particles. Electron. Lett.,1977,13(5):140-142.
    [60]Ajewole M O, Kolawole L B, Ajayi G O. Theoretical study of the effect of different types of tropical rainfall on microwave and millimeter-wave propagation. Radio Sci, 1999,34(5):1103-1124.
    [61]Schulz F M, Statnnes K, Staxtmes J J. Scattering of electromagnetic wave by Spheroidal Particles:a novel approach exploiting the T-matrix computed in spheroidal coordinates. Applied optics,1998,37(33):7875-7896.
    [62]Hackman R H. Development and application of the spheroidal coordinate based T-matrix solution to elastic wave scattering. Radio Sci,1994,29:1035-1049.
    [63]Tsuei T G, Barber P W. Information content of the scattering matrix for spheroidal particles. Applied optics,1985,24(15):2391-2396.
    [64]Mishchenko M I, Hovenier J W, Travis L D. Light scattering by non-spherical particles: Theory, Measurements and Applications. San Diego:Academic Press,2000.
    [65]徐峰.光散射粒度测量中若干问题研究.上海理工大学硕士学位论文,2004.
    [66]Lock J A. Ray scattering by an arbitrarily oriented spheroid. Ⅰ. Diffraction and specula reflection. Appl. Opt.1996,35:500-514.
    [67]Lock J A..Ray scattering by an arbitrarily oriented spheroid. Ⅱ. Transmission and cross-polarization effects. Appl. Opt.1996,35:515-531.
    [68]ITU-R Rec. P 838, Spceific attenuation model for rain for use in Prediction methods, ITU-R Recommendations,1994 PN SeriesVolume, Propagation in non-ionized media, Geneva.
    [69]赵振维.水凝物的电波传播特性与遥感研究.西安:西安电子科技大学博士学位论文,2001.
    [70]Waterman P C. New formulation of acoustic scattering. J. Acoust. Soc. Am.,1969, (45): 1417-1429.
    [71]Barber P, Yeh C. Scattering of elcetromagnetic waves by arbitrarily shaped dielcetric bodies. Applied Optics,1975,14:2862-2872.
    [72]Barber P, Hill S C. Light Scattering by particles:Computational Methods. Singapore: World Scientific Publishing.1990.
    [73]Mishchenko M I, Travis L D, Mackowski D W. T-Matrix Computations of Light Scattering by Nonspherical Particles.J. Quant. Spectrosc. Radiat. Transfer.1996,55:535-575.
    [74]Mishchenko M I, Travis L D. Travis.Capabilities and Limitations of A Current Fortran Implementation of The T-Matrix Method for Randomly Oriented Rotationally symmetrie Scatterers. J.Quant.spectrosc.Radiat.Transfer,1998,60(3):309-324.
    [75]苏宇,安毓英,林晓春,等.计算轴对称粒子光散射问题的简化T矩阵方法.激光杂志,2005,26(2):54-56.
    [76]许小永.球形雨滴和冰雹微波散射特征研究.南京气象学院硕士学位论文,2002.
    [77]Liou K N.大气辐射导论(第2版).北京:气象出版社,2004.
    [78]李祥震.粒子光散射的几何光学近似方法研究.西安电子科技大学博士学位论文,2009.
    [79]Prupacher H R, Beard K V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. R. Met. Soc.,1970,96(408):247-256.
    [80]Prupacher H R, Pitter R L, A semi-empirical determination of the shape of clouds and rain drops. J.Atmos.Sci.,1970,28:86-94.
    [81]Li L W, Kooi P S, Leong M S, et al. On the simplified expression of realistic raindrop shapes. Microwave Opt. Technol. Lett.,1994,7(4):201-205.
    [82]K V Beard, Chuang C. A new model for the equilibrium shape of raindrops. J. Atmos. Sci, 1987,44(11):1509-1524.
    [83]Chuang C, Beard K V. A numerical model for the equilibrium shape of electrified raindrops. J. Atmos. Sci.1990,47:1374-1389.
    [84]Ross O N, Bradley S G. Model for optical forward scattering by nonspherical raindrops. APPLIED OPTICS,2002,41(24):5130-5141.
    [85]刘磊,李浩,高太长.雨滴的近似椭球模型及其近红外散射特性研究.SCIENTIA METEOROLOGICA SINICA,2008,28(3):271-275.
    [86]Gunn R, Kinzer G D. The terminal velocity of fall for water droplets in stagnant air. J. Meteorol.,1949,6:243-248.
    [87]Best C. Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. Meteor. Soc.,1950,76:301-311.
    [88]Atlas D, Strivastava R C, Sekhon R S. Doppler radar charaeteristics of precipitation at vertical incident. Rev. Geophys. Space phys.1973,11:1-35.
    [89]Hale G M, Querry M R. Optical constants of water in the 200nm to 200 u m wavelength region. Appl. Opt.,1973,12:555-563.
    [90]Irvine W M, Pollack J B. Infrared optical properties of water and ice spheres. Icarus, 1968,8:324-360.
    [91]Querry M R. Refractive index of water in the infrared. J. Opt. Soc. Am. 1969,59:1299-1305.
    [92]Wiesner J. Beitraege zur Kenntnis des tropischen Regens, Sitz-Ber. Math Naturwiss. Klasse Aksd. Wiss.104:1397-1434.
    [93]LAWS J D, PARSONS D A. The relation of raindrop size to intensity. Trans. Amer. Geophys Umon,1943,24(11):452-460.
    [94]MARSHALL J S, PALMER W M. The distribution of raindrop size. J. Meteorology,1948,5:165-166.
    [95]AJAYI G O, OLSEN R L. Measurements and analysis of raindrop size distribution in South Western Nigeria. Proc URSI Comm. F Syrup. ESA,1983,194:173-184.
    [96]Levin L M. On the size distribution function for cloud droplets and rain drops. Dokl. Alad. Naul.SSSR,1954,94:1045-1053.
    [97]Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J. Climate ppl. Meteor.,1983,22:1764-1775.
    [98]Willis P T. Functional Fits to Some Observed Drop Size Distributions and Parameterization of Rain. J. Atmos. Sci.,1984,41:1648-1661.
    [99]Wolf D A. On the Lawes-Parsons distribution of raindrop sizes. Radio Science,2001, 36(4):639-642.
    [100]Atlas D, Ulbrich C W. The physical basis for attenuation-rainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods. Rech. Atmos.,1974,8(2):275-298.
    [101]Sliga T A, Bringi V N. Potential use of differential reflectivity measurements at orthogonal polarisation for measuring precipitation. Appl. Meteor.,1976.15(1):69-76.
    [102]Hauser D, Amayenc P. Exponential size distributions of raindrops and vertical air motions deduced from vertically-pointing-Doppler radar data using a new method.Climate Appl. Meteor.,1983,22(2):407-418.
    [103]Ulbrich C W. Assessment of the contribution of differential polarization to improved rainfall measurements. RADIO SCIENCE,1984,19(1):49-57.
    [104]Willis P T. Functional fits to some observated dropsize distributions and parameterisation of rain.Atmos. Sci.,1984,41(9):1648-1661.
    [105]Ajayi G O, Olsen R L. Modeling of a tropical raindrop size distribution for microwave and millimeter wave application. Radio Sci.,1985,20(2):193-202.
    [106]Jiang H, Sano M, Sekine M. Weibull raindrop-size distribution and its application to rain attenuation. Microwaves, Antennas and Propagation. IEEE Proceedings,1997, 144:197-200.
    [107]Sekine M, Lind G. Raindrop shape limitations on clutter cancellation ratio using circular polarization. IEEE Trans. Aerosp. Electron. Syst.,1983,19,:631-633.
    [108]Joss J, THAMS J C, WALD VOGEL A. The variation of raindrop size distribution at Locarno. Proc. Int. Conf. of Cloud Physics, Toronto,1968.
    [109]阮忠家,何珍珍,徐华英,等.我国云雾降水微物理特征的研究.北京:科学出版社,1965.
    [110]张云峰,黄建平,朱彬.哈尔滨地区雨滴直径分布函数.南京气象学院学报,2001,24(4):506-512.
    [111]周毓荃,刘晓天,周非非,等.河南干旱年地面雨滴谱特征.应用气象学报,2001,12(增刊):39-47.
    [112]石爱丽,郑国光,黄庚,等.2002年秋季河南省层状云降水的雨滴谱特征.气象,30(8):12-17.
    [113]李艳伟,杜秉玉,周晓兰.新疆天山山区雨滴谱特性及分布模式.南京气象学院学报,2003,26(4):465-472.
    [114]刘红燕.雨滴谱仪器的设计与雨滴谱资料分析.中国科学院研究生院博士学位论文,2006.
    [115]郑娇恒,陈宝君.雨滴谱分布函数的选择:M-P和Gamma分布的对比研究.气象科学,2007,27(1):17-24.
    [116]李清焕,陈恒杰,程新路等.球形粒子相对折射率对散射光场强度最大峰值分布的影响.原子与分子物理学报,2007,24(1):145-148.
    [117]HODKINSON J R, GREENLEAVES I. Computations of Light-Scattering and Extinction by Spheres According to Diffraction and Geometrical Optics, and Some Comparisons with the Mie Theory. JOSA, Vol.53, Issue 5, pp.577-588 (1963).
    [118]Hecht, E. Optics.2nd edition. Addison Wesley,1987.
    [119]徐啟阳,杨坤涛,王新兵等.蓝绿激光雷达海洋探测.北京:国防工业出版社,2002.
    [120]KOVACH V N G, Yu V. Light scattering by spherically symmetric heterogeneous aerosol particles. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana(S0002-3515),1990,26(5): 517-523.
    [121]张福根,荣跃龙,程路.用激光散射法测量大颗粒时使用衍射理论的误差.粉体技 术,1996,2(1):7-14.
    [122]Van de Hulst H C. Light scattering by small particles. New York:Wiley,1957.
    [123]Andreas Macke, Mishchenko Michael I., Karri Muinonen, et al. Scattering of light by large nonspherical particles:ray-tracing approximation versus T-matrix method. OPTICS LETTERS,1995,20(19):1934-1936.
    [124]Andreas Macke, Martin Gro β laus. LIGHT SCATTERING BY NONSPHERICAL RAINDROPS:IMPLICATIONS FOR LIDAR REMOTE SENSING OF RAINRATES. J. Quant. Spectrosc. Radiat. Ansfer,1998,60(3) 355-363.
    [125]戴兵,罗向东,王亚伟.椭圆截面非球形颗粒群的多重光散射.物理学报.2009.6,58(6):3864-3869.
    [126]Draine B T, Flatau P J. Journal of the Optical Society of America,1994,11(4): 1491-1498.
    [127]Adarsh Deepak, Vaughan O H. Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs [J]. Appl. Opt.,1978,17 (3):374-378.
    [128]Mullen L J, Vieira A J C, Herezfeld P R. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection. IEEE Transactions on Microwave Theory and Techniques.1995,43(9):2370-2376.
    [129]Pellen F, Intes X, Olivard P, et al. Determination of sea-water cut-off frequency by backscattering transfer function measurement. J. Phys. D:Appl. Phys.2000,33 (4):349-354.
    [130]Guo Z, Kumar S, San K C. Multidimensional Monte Carlo simulation of short-pulse laser transport in scattering media. J Thermophys Heat Transfer,2000,14(4):504-511.
    [131]杨虹.蓝绿激光对潜通信光信道特性研究.电子科技大学硕士学位论文,2008.
    [132]李源慧.激光水下目标探测的MonteCarlo模拟.西南交通大学硕士学位论文,2009.
    [133]Kopilevich Y I, Feygels V I, Surkov A. Mathematical modeling of input signals for oceanographic lidar systems. SPIE,2003,5155:30-39
    [134]Savchenko E P, Tuchin V V. Computer simulation of light propagation in a multi-layer biological tissue by Monte-Carlo method. SPIE,2000,4001:317-326
    [135]徐祺瑞,尹福昌.激光在水下多径传输的蒙特卡罗模拟.长春理工大学学报(自然科学版),2008,31(1):81-84.
    [136]詹恩奇.光在大气和海水信道的传输性能研究.华中科技大学博士学位论文,2007.
    [137]Bucher E A, Lerner R M. Experiments on Light Pulse Communication and Propagation Through Atmospheric Clouds. Applied Optics,1973,12(10):2401-2414.
    [138]胡静,杨宗凯,杨代琴.烟雾粒子的识别及其激光散射特性的蒙特卡罗模拟.中国激光,2002,29(10):950-954.
    [139]Popov A P, Priezzhev A V. Laser pulse propagation in turbid media:Monte Carlo simulation and comparison with experiment:Saratov Fall Meeting 2002. SPIE,2003,5068: 299-305.
    [140]Bucher E A. Computer Simulation of Light Pulse Propagation for Communication Through Thick Clouds. APPLIED OPTICS,1973,12(10):2391-2400.
    [141]Angelo Sassaroli, Costantino Blumetti, Fabrizio Martelli. Monte Carlo procedure for investigating light propagation and imaging of highly scattering media. APPLIED OPTICS, 1998,37(31):7392-7400.
    [142]Zhixiong Guo, Janice Aber, Bruce A. Garetz,et al. Monte Carlo simulation and experiments of pulsed radiative transfer. Journal of Quantitative Spectroscopy & Radiative Transfer.2002,73:159-168.
    [143]Graaff R, Koelink M H, Mul F. F. M, et al. Condensed Monte Carlo simulations for the description of light transport. APPLIED OPTICS,1993,32(4):426-434.
    [144]熊玲玲,何华伟,戴特力,等.二极管激光线阵光束的远场特性.强激光与粒子束,2008,20(12):1971-1974.
    [145]梁一平,戴特力.圆柱透镜对半导体激光光束准直性能的改进.中国激光,2004,31(11):1305-1311.
    [146]Shadrivov I V, Sukhorukov A A, et al. Beam shaping by a periodic structure with negative refraction. Applied Physics Letters,2003,82(22):3820-3822.
    [147]文晶娅.激光测距仪光学系统设计及目标漫反射特性研究.华中科技大学硕士学位论文,2007.
    [148]马华,曾晓东,安毓英.双半圆柱透镜准直半导体激光光束.中国激光,2006,33(7):937-940.
    [149]周炳琨,高以智.激光原理.北京:国防工业出版社,2009.
    [150]杨华军,胡渝,谢康.光通信中高精度激光束准直系统优化设计.光电子激光,2008,19(6):724-727.
    [151]谭显裕.脉冲激光测距仪雪崩光电探测器最佳工作状态和接收灵敏度研究.光电子技术,2001,21(2):129-137.
    [152]王莉,张河.激光装定引信低噪声信息接收电路分析与设计.探测与控制学报,2006,28(3):15-21.
    [153]陈炳林,张合,孙全意.微型大电流窄脉宽半导体激光器电源的研究.仪器仪表学报,2004,25(4).
    [154]Enrico Santi. Synergetic Control for DC-DC Boost Converter:Implementation Options. IEEE Transactions on industry applications,2003(39).
    [155]刘丽莹.高功率脉冲半导体激光光源的研制.长春理工大学硕士学位论文,2007.
    [156]宋浩谊.一种55V输出小功率DC/DC变换器的设计.微电子学,2007,37(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700