用户名: 密码: 验证码:
激光光束质量评价及测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在目前各种高功率激光装置的设计和研制过程中,除了需要解决提高激光输出功率(或能量)及改善光束质量的技术方案外,如何合理评价和可靠测量光束质量的问题关系到激光系统整体性能的评估结果,国内外学者均对该问题的研究十分重视。本论文紧密围绕激光光束质量这一核心要素,通过理论分析、数值仿真和实验验证相结合的方法,主要开展了如何客观评判现有各种激光系统的光束质量优劣、基于CCD所测得的远场光斑计算光束质量时如何来评估其计算误差以及从测量的角度如何提高激光远场和光束质量的测量精度三方面研究工作。
     论文首先以三种常见类型的激光束,即非稳腔产生的环形激光束、稳定腔产生的高斯光束以及多路高斯光束的相干合成光束作为研究和讨论的对象,针对能量型应用场合,分析了现有各种评价指标的优缺点和适用性,并对评价指标定义中理想参考光束和规范量的选取进行了分析计算。结果表明,激光束的亮度或靶目标上焦斑能量(功率)密度是较好的评价参数,该参数不仅与激光系统的应用目的关系密切,而且也适合于不同激光系统间性能优劣的横向比较,作为应用,进一步分析了单路激光发射口径、激光波长、中心遮拦比、发射窗口形状,及多路激光合成光束路数、填充因子、发射窗口截断等固有因素对激光系统性能的影响。
     将残留相位结构函数方法引入到计算部分相位补偿光束通过大气湍流的传播问题中,提出了一种新的计算部分相位补偿高斯光束和圆环形光束的远场光强分布的方法,并考察了前若干低阶泽尼克像差校正对接收面光斑质量的改善效果,并与国外文献的方法得到的相应计算曲线进行对比,二者吻合的很好,与国外文献的方法相比,新方法避免了计算十分复杂的数值积分,极大的减少了计算复杂度。此外,通过数值仿真方法研究了使高斯光束远场性能指标取得最大值时发射窗口最优截断系数的选取问题,给出了高斯光束发射窗口最优截断系数与湍流强度之间的拟合公式,该拟合公式在相当大的湍流像差范围内与实际真实情况吻合的较好,拟合相对误差小于7%。
     在光束质量测量误差分析方面,针对远场光斑为高斯型分布情况,同时考虑环境背景光噪声、CCD背景暗电平、CCD读出噪声、探测信号的光子起伏噪声以及CCD离散像素的采样误差的影响,从理论上推导出在采取不同的计算阈值时,峰值斯特列尔比、环围能量斯特列尔比以及光束质量β因子的误差公式,并通过数值仿真方法对所推导的误差公式进行了验证,仿真结果与理论计算结果吻合。研究结果表明,计算阈值对测量结果的影响很大,合理的阈值将使得光束质量评价参数的测量和计算误差较小,当阈值取为CCD背景电平均值加一倍噪声起伏是较好的一种阈值取法。
     提出了一种基于衍射光栅分光原理的二维成像器件光电响应特性的标定新方法,给出标定方法的理论依据、标定步骤,该方法是对双缝标定方法的扩展,有效解决了弱光不能标定的不足,并且通过有效的数据融合方法实现了不同组测量数据的融合、提高了标定采样点数。作为应用,利用该标定方法对某特性未知的红外CCD相机光电响应特性进行了实验标定,给出了实验标定结果。
     为分析CCD光电非线性响应对光束质量参数测量结果的影响,通过建立激光远场光强及描述CCD光电响应非线性特征的理论模型对其进行了深入分析。结果表明,CCD死区的存在使得远场光斑幅度较小的空间分布特征丢失,非线性饱和效应会造成远场光斑幅度较大的中心主核形态被压缩,二者对光束质量参数测量精度的影响不容忽视,为了减小它们的影响,对CCD光电响应特性的事先标定并做事后数据的修正以及采用焦斑重构方法以拓展CCD测量动态范围这两种方案是十分有效的手段。
     在如何提高激光远场和光束质量的测量精度方面,论文首先对目前各种拓展CCD相机动态测量范围方法的优缺点和适用性进行分析,在此基础上结合实验室的实际情况,选择衍射光栅作为分光元件,给出了一种基于衍射光栅的远场焦斑重构和测量的方法,对方法的基本原理、适用性进行了深入分析。为了验证该方法在拓展CCD测量动态范围,探测激光远场高频旁瓣能量分布信息方面的有效性,分别采用数值仿真和试验两种方法对方法的有效性进行验证,在此基础上进一步提出基于正交光楔的激光远场焦斑重构和测量的新方法,设计并搭建了实验方案和平台,对该远场测量新方法进行了实验验证。通过对远场PIB曲线、光束质量β因子等参数的分析对比,仿真和实验结果均表明论文所提远场测量新方法在拓展CCD动态范围方面是可行的。
In the process of designing and manufacturing high power laser system, besidesinvestigating the technical scheme to increase the laser’s output power and improve itsbeam quality, it is enormously important for the estimation of overall performance oflaser system to evaluate reasonably and measure reliably, thus, people pay more andmore attention to the issues on laser beam quality. This paper places the beam quality ascore issue and is devoted to study three kinds of researches, i.e., the evaluation ofperformance of different laser system, error analysis of calculating laser beam qualitybased on far-field spot measured with CCD sensor, and enhancement of dynamic rangeof CCD sensor to improve the measurement precision of far-field spot and beam quality,in which the methods of academic analysis, numerical simulation and experimentalverification are used.
     First, according to application purposes concerning focusability of laser energy,three kinds of lasers, i.e., the annular lasers generated from unstable resonators,Gaussian lasers generated from stable resonators and combined lasers of severalGaussian lasers are taken as analyzing objects, the advantages and drawbacks of beamquality parameters available are discussed, and some key issues on definition of beamquality are calculated and analyzed. The results show that, the parameter of laserbrightness or laser energy density on the target is a very important standard forevaluating the performances of laser systems, which is suitable for measuringperformance of the same system, as well as different systems objectively. Furthermore,the laser energy density is used to investigate the influence of inherent factors, such aslaser wavelength, size of emission window, central obscuration ratio, shape of emissionwindow for single laser beam, and the number of sub-beam, duty ratio, truncation ratiofor coherently combined laser beam, on the far-field focusablity of different lasersystems.
     Residual phase structure function method is used, and a new method of calculatingthe modulation transfer function and far-field irradiance profile of a truncated Gaussianlaser and annular plane laser through atmospheric turbulence is proposed, the effects ofseveral lower-order aberration modes corrections on the spot quality in the receivedplane are investigated, the results derived in this paper agree well with the results ofcorrection reference, moreover, the complexity of this new method used here is superiorto the method used by correlation reference. Besides, the optimal truncation of theemission window to maximize the system performance is investigated by numericalsimulation, and the relationships between the coefficient of the optimal emissionwindow truncation and the turbulence strength are presented, which agree well with thereal situation over a considerable turbulence regime and the accuracy is better than7%.
     In the aspect of error analysis of measuring laser beam quality, taking the far-fieldGaussian spot as an example, the calculation error formulas of peak Strehl ratio,encircled energy Strehl ratio and beam quality factor β are derived in the present ofvarious error sources, such as background photon noise, CCD pixel’s non-idealsampling, CCD dark voltage, read-out noise of CCD, signal photon noise andmeasurement window size. The calculation errors of laser beam quality changing withvarious error sources are presented in theory and the corresponding numericallysimulated results are given. Theoretical and simulated results show that when thecalculation threshold is the sum of average value of the error sources and mean-squarevalue of the fluctuation in error sources, the lowest calculating error of laser beamquality could be achieved.
     A new method of calibrating2-D imaging device based on1-D linear diffractiongrating is proposed, and the theoretical foundation and calibration step are givenaccordingly. On the one hand, this new calibration method is extension of double-slitmethod and has higher light available ratio, on the other hand, the syncretization ofmultiple sets of measurement data expands the calibrating range of CCD camera andincreases the sampling data. As an application example, a series of1-D lineardiffraction gratings are designed and an infrared CCD camera with an unknowncharacter is calibrated.
     The far-field propagation model of annular plane beam through Kolmogorovatmospheric turbulence is presented and the nonlinear response characterization, such asso called dead zone and nonlinear saturation effect of CCD sensor are considered aswell, the influences of CCD’s nonlinear response characterization on the measurementresults of laser beam quality are investigated. The results show that, CCD’s dead zonecauses compression of center core of far-field spot and nonlinear saturation effectcauses loss of far-field intensity information with minor amplitude, and in order toreduce their influence, it is neecessary to calibrate the response characterization of CCDbeforehand and expand CCD’s measurement dynamic range.
     In the aspect of how to improve the measurement precision of far-field spot and itsbeam quality, firstly, the drawbacks and applicability of different method for expandingdynamic range of CCD sensor are analyzed, then, according to the far-field focal opticalsystem available in the laboratory, we choose diffraction grating as light splitting deviceand give a new method for measurement of far-field focal spot. Theoretical analysis,numerical simulation and experiment method are used to verify the validity of this newmethod. Furthermore, a new method for focal spot reconstruction and far-field focalmeasurement based on the orthogonal wedges is proposed, the beam quality factor aretaken as a useful evaluating measure, the theoretical model of intensity profiles of thedefocus spot is built and the laboratory scheme accordingly is implemented, theexperiment results show that the method given here is practicable.
引文
[1] T.H.MAIMAN. Simulated Optical Radiation in Ruby[J].Nature,1960,(187):493~494.
    [2]左铁钏.制造用激光光束质量、传输质量与聚焦质量[M].北京:科学出版社,2008:1~6.
    [3]赵荒.前程似锦的激光化学[J].化工之友,1996,(4):18~19.
    [4]王兰岚,陈仲康,黄力全等.激光微束显微切割植物染色体的研究[J].中国激光,1991,18(4):313-316.
    [5]王晓海.国外空间激光通信系统技术最新进展[J].现代电信科技,2006,(3):41~45.
    [6]赵远,蔡喜平,陈锺贤,等.成像激光雷达技术概述[J].激光与红外,2000,30(6):328~330.
    [7]李洋,杨军,曹成哲.用于精密测量的激光测距技术研究[J].仪器仪表用户,2009,16(5):4~6.
    [8]彭翰生,张小民,范滇元等.高功率固体激光装置的发展与工程科学问题[J].中国工程科学,2001,3(3):1~8.
    [9]彭翰生.超强固体激光及其在前沿学科中的应用[J].中国激光,2006,33(6):721~729.
    [10]姚建铨,徐德刚.全固态激光及非线性光学频率变换技术[M].北京:科学出版社,2007:1~20
    [11] Textron Defense System Achieves More Than100Kilowatts with J-HPSSLHigh-Powered laser (2010), www.textrondefense.com
    [12] P.V.Avizonis, D.J.Bossert, M.S.Curtin. Physics of high performance Yb:YAGthin disk laser[C]. in Lasers and Electro-Optics/International Quantum ElectronicsConference,OSA Technical Digest(CD),Optical Society of America,2009:CThA2.
    [13] B.M.Yamamoto, B.S.Bhachu, K.P.Cutter,et.al. The Use of large transparentceramics in a high powered, diode pumped solid-state laser[C]. in Advanced Solid-statePhotonics, OSA Technical Digest Series(CD),Optical Society of American,2008:WC5.
    [14] P.J.Richardson, J.Nisson, W.A.Clarkson. High power fiber laser: currentstatus and future perspectives [J]. J.Opt.Soc.Am.B,27(11):B63~B91.
    [15] G.D.Goodno, H.Komine, S.J.McNaught, et,al.. Coherent combination of high-power, zigzag slab lasers[J]. Opt.Lett,2006,31(9):1247~1249.
    [16] S.J.McNaught, C.P.Asman, H.Injeyan,et,al..100-kW Coherently combinedNd:YAG MOPA laser Array[C]. in Frontiers in Optics, OSA Technical Digest(CD),Optical Society of American,2009:paper FThD2.
    [17]刘泽金,王小林,周朴,等.9路光纤激光相干合成实现1.56kW高功率输出[J].中国激光,2011,38(7):705008-6.
    [18] George H.Miller,Edward I.Moses,Craig R.Wuest. The National IgnitionFacility[J]. Optical Engineering,2004,43(12):2841~2853.
    [19]江少恩,丁永坤,缪文勇,等.我国激光惯性约束聚变实验研究进展[J].中国科学G辑,2009,39(11):1571~1583.
    [20] O.Motojima.Review of Japanese fusion program and role of inertial fusion[J].Eur. Phys. J. D.,2007,(44):219~225.
    [21] C Cherfils-Clerouin,C Boniface, M Bonnefille,et,al..Progress on LMJ targetsfor ignition[J].Plasma Phys.Control.Fusion,2009,(51):124018-1~8.
    [22] A.E.Siegman.New developments in laser resonators [J], Proc.SPIE,1990,(1224):1~14.
    [23] A.E.Siegman. High-power laser beams: defining, measuring and optimizingtransverse beam quality [J]. Proc.SPIE,1992,(1810):758~765.
    [24] Weber H. Special issue on laser beam quality[J].Opt&Quant Electron,1992,24(9):861~1135.
    [25] ISO11146-1-2005,Laser and laser-related equipment Test methods for laserbeam widths, divergence angles and beam propagation ratios part1:Stigmatic andsimple astigmatic beams.
    [26] A.E.Siegman. How to (Maybe) Measure Laser Beam Quality [J]. OSA Trendsin Optics and Photonics series,1998,17(2):184~199.
    [27]吕百达,康小平.对激光光束质量一些问题的认识[J].红外与激光工程,2007,36(1):47~51.
    [28]冯国英,周寿桓.激光光束质量综合评价的探讨[J].中国激光,2009,36(7):1643~1653.
    [29]钱列加,范滇元,张筑虹等.有关光束质量的若干基本问题及其新进展[J].中国激光,1994,21(12):981~987.
    [30]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2003:42~50.
    [31]程晓锋.圆环光束的光束质量评价标准分析[J].激光技术,1995,16(5):209~212.
    [32] Virendra N.Mahajan. Strehl ratio for primary aberrations: some analyticalresults for circular and annular pupils[J]. J.Opt.Soc.Am.,1982,72(9):1258~1266.
    [33]鲜浩,姜文汉.波像差与光束质量指标的关系[J].中国激光,1999,26(5):415~419.
    [34]杜祥琬.实际强激光远场靶面上光束质量的评价因素[J].中国激光,1997,24(4):327~332.
    [35]刘泽金,周朴,许晓军.高能激光光束质量通用评价标准的探讨[J].中国激光,2009,36(4):773~778.
    [36] Pu Zhou, Zejin Liu, Xiaojun Xu et al.. Numerical analysis of the effects ofaberrations on coherently fiber laser beams [J].Applied Optics,2008,47(18):3350~3359.
    [37]刘泽金,陆启生,赵伊君.高能非稳腔激光器光束质量评价的探讨[J].中国激光,1998,25(3):193~196.
    [38] T.Sean Ross. Appropriate Measures and Consistent Standard for High-EnergyLaser Beam Quality[J]. Journal of Directed Energy,1998,(2):22~58.
    [39]雷匍.大功率激光光束光斑质量检测技术的研究[D].北京工业大学,2003:11~14.
    [40]高卫,王云萍等.强激光光束质量评价和测量方法研究[J].红外与激光工程,2003,32(1):61~64.
    [41] J.V.Gilse, S.Koczera, D.Greby. Direct laser beam diagnostics [J].SPIE,1991,1414:41~54.
    [42]吕百达.激光光学光束描述、传输变换与光腔技术物理[M].北京:高等教育出版社,2003:81~83.
    [43]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2003:238~266.
    [44] Michael D.Duncan, Rita Mahon. Beam quality measurement using digitizedLaser Beam images[J].Applied Optics,1989,28(21):4569~4575.
    [45] T.D.Milster, J.P.Treptau. Measurement of laser spot quality [J]. SPIE,1991,(1414):91~96.
    [46]姜文汉,鲜浩,杨泽平等.哈特曼波前传感器的应用[J].量子电子学报,1998,15(2):228~235.
    [47] Francois Roddier. Curvature sensing and compensation:a new concept inadaptive optics[J]. Applied Optics,1988,27(7):1223~1225.
    [48] Gerchberg R W, Saxton W O.Phase determination from image and diffractionplane pictures in the electron microscope[J].Optik,1971,34(3):275~284.
    [49] Gerchberg R W, Saxton W O. A practical algorithm for the determination ofphase from image and diffraction plane pictures [J].Optik,1972,35(2):237~246.
    [50] Jan Herrmann. Cross coupling and aliasing in modal wave-front estimatin [J].J.Opt.Soc.Am,1981,71(8):989~992.
    [51]李新阳,姜文汉.哈特曼传感器对湍流畸变波前的泽尼克模式复原误差[J].强激光与粒子束,2002,14(2):243~249.
    [52]姜文汉,鲜浩,沈锋.夏克-哈特曼波前传感器的探测误差[J].量子电子学报,1998,15(2):218~227.
    [53]季家镕,冯莹.高等光学教程[M].北京:科学出版社,2008:144~177.
    [54] Stuart A.Collins, JR. Lens-system diffraction integral written in terms ofmatrix optics[J].J.Opt.Soc.Am.,1970,60(9):1168~1177.
    [55] Robert J.Noll.Zernike polynomials and atmospheric turbulence[J]. J.Opt. Soc.Am,1976,66(3):207~211.
    [56] Guang-ming Dai, Virendra N.Mahajan. Zernike annular polynomials andatmospheric turbulence[J]. J.Opt. Soc.Am.A,2007,24(1):139~155.
    [57] Virendra N.Mahajan. Zernike annular polynomials for imaging systems withannular pupils[J]. J.Opt. Soc.Am,1981,71(1):75~85.
    [58] Benjamin L.McGlamery. Computer simulation studies of compensation ofturbulence degraded images[J].SPIE,1976,(74):225~233.
    [59] R.G.Lane, A. Glindemann and J.C.Dainty. Simulation of a Kologoroff phasescreen[J]. in Waves in Random media,1992,2(3):209-224.
    [60] Nicolas Roddier. Atmospheric wavefront simulation using Zernike polynom-ials[J].Optical Engineering,1990,29(10):1174~1180.
    [61]吕百达.激光光学光束描述、传输变换与光腔技术物理[M].北京:高等教育出版社,2003:98~109.
    [62] Martinez-Herrero R., Mejias P.M.. Second-order spatial characterization ofhard-edge diffracted beams[J]. Optical Letter.,1993,18(19):1669~1671.
    [63] Martinez-Herrero R., Mejias P.M.,Arias M. Parametric characterization ofcoherent, lowest-order Gaussian beams propagation through hard-edged apertures[J].Optical Letter,1995,20(2):124~126.
    [64] Pare C., Belanger P.A. Propagation law and quasi-invariance properties of thetruncated second-order moment of a diffracted laser beam[J]. Opt.Commun,1996,123:679~693.
    [65] S.Amarande,A.Giesen,H.Hugel. Propagation analysis of self-convergent beamwidth and characterization of hard-edge diffracted beams[J].Applied Optics,2000,39(22):3914~3924.
    [66]吕百达.新一代ICF固体激光驱动器和光束质量研究的进展[J].激光杂志,1999,20(1):1~8.
    [67] A.E.Siegman. Binary phase plates cannot improve laser beam quality[J], Opti-cal Letter,18(9):675~677.
    [68] GB/T XXXX-2010,一般像散激光光束质量的评价和测试方法(草案)[S].
    [69] GB/T XXXX-2010,高能激光光束质量因子BPF测量方法(草案)[S].
    [70] GB/T XXXX-2010,高能固体激光光束质量因子BQ测量方法(草案)[S].
    [71] GB/T XXXX-2010,高能固体激光光束质量因子β测量方法(草案)[S].
    [72]杜祥琬.影响高能激光系统核心特征量的要素[J].强激光与粒子束,2010,22(5):945~947.
    [73]贺元兴,李新阳.激光束远场能量集中度的评价指标探讨[J].激光与光电子学进展,2012,(49):051403-1~051403-10.
    [74] Zhou Pu,Wang Xiao-Lin, Ma Yan-Xing,et,al..Optimal truncation of elementbeam in a coherent fiber laser array [J].Chin.Phys.Lett,2009,26(4):044206-1~044206-3.
    [75] John W. Hardy. Adaptive Optics for Astronomical Telescopes[M].New York:Oxford University Press,1998:104~134.
    [76] D. L. Fried. Optical Resolution Through a Randomly Inhomogeneous Medi-um for very Long and very Short Exposures [J]. J. Opt. Soc. Am. A,1966,56(10):1372~1379.
    [77] J.Y.Wang.Optical resolution through a turbulent medium with adaptive phasecompensations [J]. J. Opt. Soc. Am. A,1977,67(3):383~390.
    [78] J.Y.Wang,J.K.Markey.Modal compensation of atmospheric turbulence phasedistortion [J]. J. Opt. Soc. Am. A,1978,68(1):78~87.
    [79] Guang-ming Dai.Modal compensation of atmospheric turbulence with the useof Zernike polynomials and Karhunen-Loève functions [J].J.Opt.Soc. Am. A,1995,12(10):2182~2193.
    [80] J. Y. Wang.Phase-compensated optical beam propagation through atmosphe-ric turbulence [J]. Applied Optics,1978,17(16):2580~2590.
    [81] R.F.Lutomirski,H.T.Yura. Propagation of a Finite Optical Beam in an Inhomo-geneous Medium [J].Applied Optics,1971,10(7):1652~1658.
    [82]贺元兴,李新阳.聚焦高斯光束在湍流大气中的远场传输及相位补偿效果[J].中国激光,2011,38(3):0312001-1~0312001-6.
    [83]李新阳,鲜浩,王春鸿,等.波像差与光束质量β因子的关系[J].中国激光,2005,32(6):798~802.
    [84]石小燕,王英俭,黄印博.发射系统遮拦比对均强聚焦光束光斑扩展的影响[J].强激光与粒子束,2003,15(12):1181~1183.
    [85] Rom M. Refractive turbulence effects on truncated Gaussian beam heterodyneLidar[J]. Applied Optics,1984;23:2498~2502.
    [86] Robert H. Strehl ratio for untruncated aberrated Gaussian beams [J]. J. Opt.Soc. Am. A,1985,2:1027~1030.
    [87] Mahajan V N. Strehl ratio of a Gaussian beam[J]. J. Opt. Soc. Am. A,2005,22(9):1824~1832.
    [88] Yura HT. Optimal truncation of a Gaussian beam in the presence of randomJitter[J]. J. Opt. Soc. Am. A,1995,12(2):375~379.
    [89] Mahajan VN. Axial irradiance of a focused beam[J]. J. Opt. Soc. Am. A,2005,22(9):1814~1823.
    [90] Yura HT. Optimal truncation of a Gaussian beam for propagation throughatmospheric turbulence[J]. Applied Optics,1995,34:2774~2779.
    [91] Yuanxing H, Xinyang L. Study of the optimal truncation of a Gaussian laserfor far-field propagation through atmospheric turbulence[J],Optics and Laser Technol-ogy (2012). http://dx.doi.org/10.1016/j.optlastec.2012.05.021.
    [92]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2003:199~204.
    [93] Ma Xiaoyu, Rao Changhui, Zheng Hanqing. Error analysis of CCD-basedpoint source centroid computation under the background light[J].Optics Express,2009,(17):8525~8541.
    [94]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2010:10~80.
    [95] He Y, Li X. Error analysis of laser beam quality measured with CCD sensorand choice of the optimal threshold[J].Optics and Laser Technology (2012).http://dx.doi.org/10.1016/j.optlastec.2012.05.013.
    [96]张震.可见光CCD的激光辐照效应实验研究[D].长沙:国防科学技术大学,2005:16~30.
    [97] Swyt D A, Larock J G.Inverse-fourth apparatus for photometric calibrations[J].Rev Sci Instrum,1978,49(8):1083~1089.
    [98]李恩德,段海峰,杨泽平,等.电荷耦合器件光电响应特性标定研究[J].强激光与粒子束,2006,18(2):227~229.
    [99]王淑青,段海峰,杨泽平,等.双缝衍射用于CCD响应特性标定的模拟研究[J].光电工程,2001,28(4):19~21.
    [100]谢旭东,陈波,刘华,等.CCD系统线性动态范围的标定[J].强激光与粒子束,2000,12(s1):182~184.
    [101]房滔,王志敏,徐剑秋等.一种基于衍射光栅光束质量M2因子的实时检测技术[J].中国激光,2006,33(5):650~654.
    [102]Lambert R W, Cortes-Martinez R, Waddie A J, et.al.. Compact optical systemfor pulse-to-pulse laser beam quality measurement and applications in laser machining[J].Applied Optics,2004,43(26):5037~5046.
    [103]季家镕,冯莹.高等光学教程[M].北京:科学出版社,2008:179~181.
    [104]贺元兴,李新阳.基于衍射光栅的CCD相机标定方法[J].强激光与粒子束,2011,23(12):3183~3187.
    [105]贺元兴,李新阳.CCD光电响应非线性特性对激光远场焦斑测量及光束质量计算的影响[J].中国激光,2012,39(4):0408001-1~0408001-8.
    [106]G.C.Holst. CCD Arrays,Cameras,and Displays[M].Bellingham:SPIE Internati-onal Society for Optical Engine,1996:164~165.
    [107]Koji Takahashi,Terno Hieda, Chikara Satoh,et,al..Image sensing device withdiverse storage times used in pictrue composition[P].US Patent:5638118,1997-06-10.
    [108]Atsushi Morimura. Imaging method for a wide dynamic range and an imagingdevice for a wide dynamic range[P].US Patent:5455621,1995-10-03.
    [109]Masahiro Konishi, Makoto Tsugita, Masafumi Inuiya,et,al.. Video camera,imaging method using video camera,method of operating video camera,imageprocessing apparatus and method, and solid-state electronic imaging device[P].USPatent:5420635,1995-05-30.
    [110]Wegner P J, Barker C E, Caid J A, et al. Third-harmonic performance of thebeamlet prototype laser[C]. Proc of SPIE,1996,(3047):370~380.
    [111]Stephane Bouillet, Sandrine Chico, Laurent Le Deroff,et,al.. Measuring a laserfocal spot on a large intensity range-Effect of optical component laser damages onthe focal spot[J].Porc.of SPIE,2009,(7405):74050W-1~8.
    [112]程娟,秦兴武,陈波.纹影法测量远场焦斑实验研究[J].强激光与粒子束,2006,18(4):612~614.
    [113]Shree K.Nayar,Tomoo Mitsunaga.High Dynamic Range Imaging SpatiallyVarying Pixel Exposures[J].IEEE,2000,1063-6909.
    [114]Eiichiro Ikeda.Image data processing apparatus for processing combinedimage signals in order to extend dynamic range[P].US Patent:5801773,1998-09-01.
    [115]Doi Hideaki, Hara Yasuhiko, Kenbo Yukio,et,al.. Image sensor[P].JapanesePatent:08-223491,1996-08-30.
    [116]Kimura Tsutomu.Image pickup device[P]. Japanese Patent:10-069011,1998-10-03.
    [117]Brajovic,Kanada.A short Image Sensor: An Example of Massively ParallelIntensity-to-Time Processing for Low-Latency Computational Sensors[J].Proc.of IEEE,1996,1638~1643.
    [118]谢旭东,陈波,何凌等.强激光远场焦斑重构算法研究[J].强激光与粒子束,2003,15(3):237~240.
    [119]黄林海.基于光栅和CCD成像探测器的宽动态范围成像系统[P].中国专利:101701847,2011-08-24.
    [120]贺元兴,李新阳.基于衍射光栅的远场焦斑测量新方法[J].中国激光,2012,39(2):0208001-1-7.
    [121]贺元兴,李新阳.正交光楔激光远场焦斑测量方法[J].强激光与粒子束,2012,24(11):2543-2548.
    [122]J.R.Fienup. Phase retrieval algorithm: a comparison [J]. Applied Optics,1982,21(15):2758~2769.
    [123]李斐.相位差法波前传感系统自身误差的分析及消除方法[J].强激光与粒子束,2011,23(3):599~605.
    [124]季小玲.高功率畸变激光的传输特性和光束质量控制研究[D].成都:四川大学,2004:36-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700