用户名: 密码: 验证码:
内蒙古鸭鸡山钼(铜)矿矿床成因及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸭鸡山钼(铜)矿矿床是赤峰市东部一处初具开采规模的钼(铜)矿,所处大地构造位置为蒙古-鄂霍次克造山带。与成矿有关的侵入岩为高钾的钙碱性花岗岩,为J_(1-2)时期陆内造山的产物。钼(铜)矿床受近EW向的超壳深断裂的次级EW向断裂控制,矿体产于EW向断裂及其次级的NE向断裂中。矿石自然类型为石英脉型和蚀变岩型,近矿围岩蚀变为硅化和钾化。钼的主成矿阶段在第1、2阶段,早期为高温、高盐度和高密度的岩浆流体,均一温度为320~380℃,盐度39.38%~44.00%NaCleqv,为岩浆结晶晚期从岩浆中分离出硫化物相含子晶、饱和的流体和气相;晚期为中温、低盐度和低密度的混合流体,均一温度为167~245℃,盐度2.06%~6.72%NaCleqv。矿床成矿深度在5.21~8.59km,矿床成因类型为中成中高温热液脉型矿床。激发极化测量显示钼(铜)矿体具有“低阻中高极化”特征;通过钻孔验证,见到了矿化体。推测主矿体倾斜方向仍具有较大的找矿潜力。
Yajishan molybdenum-copper deposit lies in the eastem Chifeng city with its exploitation in a certain scale.It is necessary to determine a reasonable scale in production and construction on prospecting resources clearly,and get the best profit from it.
     The studied area is located in the central of Inner Mongolia Fold Belt,Mongolia-Okhotsk orogenic belt,inner ondor Temple-Wengniuteqi Caledonian fold zone;on the north side of Chengde-Chifeng deep fault,southeast side of Zhaluteqi-Balihan deep fault,near the crossroads of two parts.
     The strata in the region are exposed from Paleozoie to the Cenozoic,mainly lower Permian, upper Jurassic and Quaternary.Lithological classifications are as the followings:mottled slate, sandstone and feldspar-quartz sandstone;mafic volcanic rocks interlayer volcanic sedimentary rocks;dust-color or sub-brown sandy soil,sub-clay,intercalated with silt and gravel layers.The main magma intrusion in the region is the Yanshanian granite,ore bodies mainly occur in the altered fracture zone of adamellite.
     EW faults(F_1) is the most important ore-conducting and hosting structure,which controls the migration of ore-bearing hydrothermal and provides favorable space for the ore forming.The sub-ordered NE tensional fracture zone is the main ore-controlling structure developed in the adamellite body within hanging wall of F_1.
     Ore bodies in 1,2 veins occur in the inner contact of adamellite and middle-fine -grained granite and the inner altered fracture zone of adamellite.Structure plays an important role in the ore-controlling and the fracture alteration zone has a tendency to undulating in both striking and dipping direction,leading to an alternative between rich and barren ore blocks.The intersection of EW and NE structure is considered as the main spot hosting ore bodies.
     Ore minerals in this deposit are pyrite,chalcopyrite,molybdenite,sphalerite,as well as a small amount of galena,chalcocite,bornite,tetrahedrite,and so on.Gangue minerals are quartz, feldspar,sericite,calcite,muscovite,biotite,and so on.Ore textures are mostly in the form of idiomorphic crystal,hypautomorphic crystal,relic and allotriomorphic granular texture.Ore structures are mainly disseminated structure,vein structure,network structure and mass structure. Wall-rock alteration in the area is often mylonite,potassium,sericite,silicification,followed by chlorite there,carbonate,and so on.
     Fluid inclusion characteristics showed that three-phase(containing sub-crystal) and two-phase(gas and liquid) fluid inclusions are predominant with less vapor-rich fluid inclusions.The three-phase type is in high temperature,high salinity saturation,mainly occurred in the first quartz stage,with homogenization temperature of 320~380℃,salinity of 39.38%~44.00%NaCleqv,mostly originated from the magmatic fluids.The two-phase type is in low temperature,low salinity,often occurred in quartz and calcite with the homogenization temperature 167~245℃and salinity 2.06%~6.72%NaCleqv,which mainly originated from meteoric.
     Three stage of fluid evolution are involved in the process ore forming:late in magma crystallization,saturated fluid bearing sub-crystal in sulfide phase was isolated from magma, molybdenum and other sulphophile elements combined into sulfide phase,ore-bearing magmatic fluid in high temperature migrated upward along the fluid channel,partly filled in the cracks along the wall rock,stage 1 ends.In stage 2,with the ore-bearing fluid rapidly moved upward along the crack or joint,fluid pressure and temperature rapidly reduced,meteoric water and hot ore-bearing fluid mixed,forming a cycled hydrothermal system.Such mixed fluid again reduced in salinity and density,and filling,precipition,metasomatic replacement with the wall rock and deposition;the high-temperature,high salinity and saturated fluid mixing with the low-temperature,low salinity meteoric water or interlaminar water,contributes to the enrichment and deposition of the molybdenite.Gradually moving into Phase 3,the fluid temperature and salinity get much lower.
     The intrusive rock closely related to mineralization is the high-K calc-alkaline granite,the intro-continental orogenic products.Mineralization of Molybdenum and other metal has an intimate relationship to Yanshanian(J_(1-2)) intro-continental orogeny on the northern margin of North China craton.Molybdenum mineralization is controlled by the sub-order EW fracture of EW cross-crust deep fault on the northern margin of the North China craton,ore bodies distributed in sub-EW fault and sub-order NE fault.
     The first and second stages count in molybdenum mineralization,it is concluded as a mesothermal vein type deposits,early with high temperature,high salinity and high density of the magma fluid and late with mesothermal,low salinity and low density of mixed fluid,the depth of the deposit is 5.21~8.59km.Based on the study of mineralization conditions,geological characteristics and metallogensis,combining with effective prospecting methods,it is prospected potential areas at the depth(surroundings) of the existing deposit.Copper and molybdenum ore bodies and ore-bearing altered fracture zone are both of "low-resistance low polarization"; while adamellite containing pyrite is "low-resistance and high polarization";adamellite and granite far away from the ore body which not bearing pyrite or just with very little amount of pyrite are obviously "high-resistance low-polarization".Mineralized block is recognized by the verification of drilling,indicating a good prospecting potential in the depth beneath the main ore body in the dipping direction,and a certain perspective at its surroundings.
引文
[1]Groves D I,Goldfarb R J,Gebre-Mariam M,et al.Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposits types.Ore Geology Reviews,1998,13:7-27.
    [2]Kerrich R,Goldfarb RJ,Groves DI,Garwin S and Jia YF.The characteristics,origins and geodynamic settings of supergiant gold metallogenic provinces.Science in China Series D,2000,43(Supp.):1-68.
    [3]Goldfarb R J,Groves D I and Gardoll S.Orogenic gold and geologic time:a global synthesis.Ore Geology Reviews,2001,18:1-75.
    [4]Sibson RH.Crustal stress,faulting and fluid flow.In:Parnell J(ed).Geolo-gical Society Special Publications,1994,78:69-84.
    [5]Sibson RH,Robert F and Poulsen KH.High-angle reverse faults,fluid-pressure cycling and mesothermal gold-quartz deposits.Geol.,1998,16:551-55.
    [6]Podnor RJ.Revised equation and table for determining the freezing point depression of H_2O-NaCl solution.Geochim.Cosmochim.Acta,1993,57:683-684.
    [7]Bodnar RJ.A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids.Econ.Geol.,1983,78:535-542.
    [8]Bozzo AT,Chen JR and Barduhn AJ.The properties of hydrates of chlorine and carbon dioxide.In:Delyarmis A and Delyannis E(ed).Fourth International Symposium on Fresh Water the Sea,1973,3:437-451.
    [9]Collins PLF.Gas hydrates in CO_2-bearing fluid inclusic,ns and use freezing data for estimation of salinity.Econ.Geol.,1979,74:1435-1444.
    [10]Potter RW Ⅱ,Clynne MA and Brown DL.Freezing point depression of aqueous sodium chloride solutions.Econ.Geol.,1978,73:284-285.
    [11]Shepherd TJ,Rankin AH and Alderton DHM.A Pratical guide to fluid inclusion studies.Blackie & Son Limited,1985,1-154.
    [12]蔡宏渊,郑跃鹏,李福春,马学玉,朱渊,裴存建.中—乌西天山斑岩铜矿成矿条件对比与成矿远景预测[J].有色金属矿产与勘查,1996,5(05).
    [13]陈仁义,刘玉琳,芮宗瑶.新疆索尔库都克类夕卡岩铜(钼)矿床地质特征及矿床成因[J].地质论评,1995,41(02):67-75.
    [14]陈哲夫.新疆铜矿类型与找矿靶区[J].新疆地质,2003,21(02).
    [15]池顺都.斑岩铜矿的勘查模式[J].地球科学-中国地质大学学报,1995,20(02).
    [16]高合明.斑岩铜矿床研究综述[J].地球科学进展,1995,10(01).
    [17]韩润生,金世昌,刘丛强,李元,马德云.陕西勉略阳区铜厂矿田矿床(化)类型及其特征[J].地质与勘探,2000,36(04).
    [18]黄明渊.新疆哈密山岔口铜钼矿地球化学特征及找矿意义[J].新疆地质,1988,(04):31-35.
    [19]刘德权,陈毓川,王登红,唐延龄,周汝洪,王金良,李华芹,陈富文.土屋-延东铜钼矿田与成矿有关问题的讨论[J].矿床地质,2003,22(04).
    [20]刘德权,唐延龄,周汝洪.新疆斑岩铜矿的成矿条件和远景[J].新疆地质,2001,19(01).
    [21]刘铁庚,梅厚钧,于学元,邱玉忠,王源新,杨延德.据索尔库都克铜-钼矿床地化特征探讨其成因类型[J].新疆地质,1992,(02):86-93.
    [22]毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [23]孟庆森,年嘉兴.激发极化法在索尔库都克地区应用的初步效果[J].新疆地质,1989,(01):29-35.
    [24]南征兵,唐菊兴,李葆华.青海纳日贡玛斑岩铜(钼)矿地质地球化学特征及成因探讨[J].新疆地质,2007,25(02).
    [25]温得银,宋顺昌,薛万文,于兆云.青海纳日贡玛矿田元素分带序列与剥蚀程度研究[J].青海国土经略,2005,(04).
    [26]南征兵,唐菊兴,李葆华,宋顺昌.青海纳日贡玛斑岩铜矿流体包裹体地球化学特征[J].新疆地质,2005,23(04).
    [27]白云,唐菊兴,郭文铂,李葆华,董树义.纳日贡玛铜(钼)矿床地质特征及成矿作用初探[J].矿业快报,2007,23(04).
    [28]张绮玲,曲晓明,徐文艺,侯增谦,陈伟十.西藏南木斑岩铜钼矿床的流体包裹体研究[J].岩石学报,2003,19(02).
    [29]鲁海峰,薛万文,王贵仁.纳日贡玛铜钼矿床地质特征及成因类型探讨[J].青海国土经略,2006.(03).
    [30]芮宗瑶,王福同,李恒海,董连慧,王磊,姜立丰,刘玉琳,王龙生,陈伟十.新疆东天山斑岩铜矿带的新进展[J].中国地质,2001,28(02).
    [31]思涵,王坚.GPS、GIS在高地谷铜钼矿的应用[J].世界采矿快报,1997,(22):14-18.
    [32]孙丰月,金魏,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30.
    [33]王登红,屈文俊,李志伟,应汉龙,陈毓川.金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年[J].中国科学D辑,2004,34(04).
    [34]金艳峰,张传乐,寇秀峰.延边中西部地区钼矿成矿地质特征[J].吉林地质,2004,23(03).
    [35]吕增尧,赵英福.内蒙古小东沟钼多金属矿床地质特征[J].矿产与地质,2004,18(03).
    [36]郑有业,薛迎喜,程力军,樊子珲,高顺宝.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义[J].地球科学-中国地质大学学报,2004,29(01).
    [37]邹贵田,李英.综合利用钼镍共生矿制备钼镍盐的研究[J].贵阳金筑大学学报,2004,(01).
    [38]徐文超,庞振山,周奇明,王喜恒,杨国强.河南省栾川县南泥湖钼(钨)矿田外围银铅锌多金属成矿地质条件分析及找矿前景[J].矿产与地质,2003,17(03).
    [39]刘崇民,胡树起.西藏驱龙斑岩铜钼矿地球化学异常特征[J].物探与化探,2003,27(06).
    [40]付艳丽,黄喜峰.野猪沟钼矿找矿前景及工作建议[J].中国科技信息,2005,(10).
    [41]张祖青,赖勇,陈衍景.山东玲珑金矿流体包裹体地球化学特征[J].岩石学报,2007,23(9):2207-2215.
    [42]王福同,冯京,胡建卫,王磊,姜立丰,张征.新疆土屋大型斑岩铜矿床特征及发现意义[J].中国地质,2001,28(01).
    [43]王核,彭省临,赖健清,邵拥军.新疆温泉县达巴特铜矿火山机构的厘定及其意义[J].地质找矿论丛,2000,15(04).
    [44]王奖臻,李朝阳,胡瑞忠.斑岩铜矿研究的若干进展[J].地球科学进展,2001,16(04).
    [45]王玉山,钟晓玲.新疆索尔库都克铜钼矿矿石特征[J].新疆地质,2004,22 (02):112-113.
    [46]许明亮,杨建国,鲁涛,姜杉.四平山岩金矿地质特征与找矿标志探讨[J].黄金科学技术,2005,13(05).
    [47]杨炳滨.新疆北部铜与铜镍矿[J].新疆地质,1994,(01):53-57.
    [48]陈仁义.新疆东准噶尔铜金矿床类型及其时空分布[J].矿床地质,1995,14(03).
    [49]杨增武,宋俊涛,董传统,赵清泉.黑龙江省金场沟区铜钼矿床地质特征及找矿标志[J].黄金科学技术,2005,13(04).
    [50]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006.
    [51]尹意求,陈大经,唐红松,李嘉兴,胡兴坪,郭正林.新疆萨吾尔山阔尔真阔腊金矿区的深部找铜研究[J].桂林工学院学报,2001,21(02).
    [52]于泽新,龙军.鸭鸡山铜钼矿床地质特征及找矿前景[J],有色矿冶,2007,23(3):1-5.
    [53]翟裕生.关于矿床学研究前景的探讨[J].矿床地质,1999,18(2):146-152.
    [54]翟裕生.金属成矿学研究的若干进展[J].地质与勘探,1997,33(1):5-8.
    [55]张文淮等.流体包裹体地质学[M].中国地质大学出版社,1993.
    [56]张治国,韩燕.Torgerson方法在某斑岩铜钼矿蚀变与矿化分析中的应用[J].世界地质,2002,(04):89-93.
    [57]中国矿床编委会.中国矿床[M].地质出版社,1989.
    [58]钟莉,卢全敏,康正文.新疆赛里木湖一带铜多金属矿找矿前景分析[J].新疆地质,2003,21(03).
    [59]周肃,蔡红,谢才富.新疆北部索尔库都克铜(钼)矿床年代学研究[J].华南地质与矿产,1996,(04):54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700