用户名: 密码: 验证码:
超快激光场中双原子分子的定向和超阈值电离动力学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文采用含时量子波包方法,从理论上研究了超短激光脉冲场中双原子分子的定向和超阈值电离动力学过程。主要工作包括以下几个方面:
     首先,我们以LiH原子为研究对象,提出了三种利用激光场自身特性或激光场的组合来控制分子场后定向的理论方案。它们是:
     (1)提出了利用三个完全相同的半周期太赫兹激光脉冲链来控制分子场后定向的理论方案。同单个半周期太赫兹脉冲的结果相比,利用三个相同的半周期太赫兹脉冲能激发更多的振转布居跃迁,明显增强分子定向。通过合理调整场强幅值、脉冲之间的延迟时间等激光场参数,可以获得最大定向度为0.798的分子场后定向。
     (2)提出了在一束调制的双色激光脉冲之后,再加上一束半周期太赫兹脉冲来增强分子定向的理论方案。在本方案中,半周期太赫兹脉冲用来定向分子,调制的双色激光脉冲则用于控制分子的振转激发和提高分子的定向度。我们详细讨论了调制双色激光场的包络相位Φ和包络周期Tp对目标态布居以及定向效果的影响。结果表明:通过改变双色调制激光场的参数,可以有效控制目标态的布居,并且能够明显增强分子的定向。此外,我们还讨论了温度对定向的影响。结果显示本方案在温度小于50K的条件下依然有效。
     (3)提出了一个获得高效、长寿命的分子场后定向的理论控制方案。我们将两束有合适延迟时间的双色调制周期量级太赫兹脉冲叠加成一个激光场来控制分子场后定向。分别研究了调制周期量级太赫兹脉冲的总包络周期、中心频率以及包络相位对分子定向度以及定向持续时间的影响。同时也讨论了温度的影响。结果表明:通过合理调节这些激光场参数,可以兼顾分子的定向度与持续时间,得到定向度比较高,持续时间比较长的长寿命分子场后定向。计算中所用到的激光场参数都是目前实验室能够获得的,所以本方案为实验上获得长寿命的分子场后定向提供了一个新思路。
     此外,我们还以NaK分子为研究对象,研究了周期量级激光场中极性分子的超阈值电离过程。通过计算分子的左、右超阈值电离谱,我们发现:左右超阈值电离谱是不对称的,并且这种不对称性强烈依赖于分子的定向以及激光场的载波包络相位。通过改变分子的初始转动态,我们还分别计算了J=3、5和7时的左、右超阈值电离谱和激发态布居分布,揭示转动温度对超阈值电离谱的左右不对称性的影响。
The works in this thesis are based upon the time-dependent quantum wave packet method. to study the orientation and above threshold ionization dynamics of diatomic molecules in ultrashort laser field. The main works are as follows.
     With the LiH molecule as an example, we propose three new schemes to control the field-free molecular orientation by utilizing the characters of the external laser fields and dif-ferent combination of several fields.
     (1) A theoretical scenario used for achieving efficient field-free molecular orientation with a few half-cycle pulses (HCPs) is proposed, with the LiH molecule as an example. Compared with a single HCP. three HCPs can excite more rovibrational transitions and obviously en-hance the degree of molecular orientation. By optimizing the field amplitude and the delay time of laser field, a maximum value of0.798for the degree of molecular orientation is ob-tained.
     (2) Using the two-dimension time-dependent quantum wave packet method, we investi-gate theoretically the field-free molecular orientation driven by a modulated two-color laser pulse together with a delayed half-cycle THz pulse. In our control scheme. the half-cycle THz pulse is used to orient molecules, and the modulated two-color laser pulse is utilized to control the rovibrational excitation and enhance the molecular orientation degree. The effects of the phase of envelope (?) and the period Tp of the modulated two-color laser field on the molecular orientation and the population of the target state are discussed in detail. It is shown that more molecules are populated to the target state and more efficient molecular orientation is achieved by adjusting these parameters of the modulated two-color laser pulse. The molecular orientation is comparatively robust towards thermal averaging in the region of T<50K.
     (3) Considering the effect of the polarizability. we present a theoretical scheme used for achieving an efficient long-lived field-free molecular orientation by utilizing two modulated few-cycle THz pulses with an appropriate delay time. The exact numerical calculations are performed by solving the time-dependent Schrodinger equation including the vibrational and rotational degrees of freedom. The results indicate that the orientation degree and the orien- tation duration are strongly related to the period of envelope. the central frequency and the phase of envelope of the modulated few-cycle THz pulses. Taking a compromise. a long-lived and efficient field-free molecular orientation can be realized by adjusting these laser param-eters which is available in the current experiment. The effect of temperature on molecular orientation is also discussed.
     We also investigate theoretically the above-threshold ionization (ATI) of the polar NaK molecule exposed in few-cycle laser field. The left and right ATI spectra are calculated by integrating the ionization continuum wave function over the left and the right half spheres along the laser polarization. We find that the left and right ATI spectra are asymmetric, and this asymmetry depends strongly on the molecular orientation and the carrier-envelope phase (CEP) of the laser pulse. Moreover, we also perform the calculation for different ini-tially rotational states to study the effect of rotational temperature on the ATI danamics.
引文
[1]Maiman T H. Stimulated Optical Radiation in Ruby[J]. Nature.187(4736):493-494. 1960.
    [2]Shapiro M and Brumer P. Principles of the Quantum Control of Molecular Processes[M]. Wiley. Hoboken.2003.
    [3]Kuhn O and Woste L. Analysis and Control of Ultrafast Photoinduced Reactions[M]. Springer. Berlin.2007.
    [4]Hentscher M. Kienberger R. Spielmann Ch. Reider G A, Milosevic N. Brabec T. Corkum P B. Heinzmann U and Krausz F. Attosecond metrology[J]. Nature,414(5510):509-513.2001.
    [5]Dantus M and Lozovoy V V. Experimental coherent laser control of physicochemical processes[J]. Chem. Rev.104(4):1813-1860.2004.
    [6]Lozovoy V V and Dantus M. Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses[J]. Chem. Phys. Chem..6(1-12):1970-2000.2005.
    [7]Paulus G G. Grasbon F. Walther H. Villoresi P. Nisoli M. Stagira S. Priori E. and Silvestri S. Absolute-phase phenomena in photoionization with few-cycle laser pulses[J]. Nature.414:182-184. 2001.
    [8]de Bohan A. Antoine P. Milosevic D B. and Piraux B. Phase-dependent harmonic emission with ultrashort laser pulses[J]. Phys. Rev. Lett..81(9):1837-1840.1998.
    [9]Sh S.Wood A. and Rabitz H. Optimal control of selective vibrational excitation in harmonic chain molecules[J]. J. Chem. Phys..88(11):6870-6883; 1988.
    [10]Judson R S and Rabitz H. Teaching lasers to control molecules [J]. Phys. Rev. Lett..68(10):1500-1503.1992.
    [11]Ren Q. Balint-Kurti G G. Manby F R. Artamonov M. Ho T S. and Rabitz H. Quantum control of molecular vibrational and rotational excitation in a homonuclear diatomic molecule:a full three-dimensional treatment with polarization forces [J]. J. Chem. Phys..124(1):014111-1-8.2006.
    [12]Stapelfeldt H and Seideman T. Colloquium:Aligning molecules with strong laser pulses [J]. Rev. Mod. Phys.75 (2):543-557,2003.
    [13]Kosloff R. Time-dependent quantum-mechanical methods for molecular dynamics[J]. J. Phys. Chem..92(8):2087-2100.1988.
    [14]Light J C. Hamilton I P and Lill J V. Generalized discrete variable approximation in quantum mechanics[J]. J. Chem. Phys..82(3):1400-1409.1985.
    [15]Zhang D H and Zhang J Z H. Full-dimensional time-dependent treatment for diatom-diatom reac-tions:The H2+OH reaction[J]. J. Chem. Phys..101(2):1146-1156.1994.
    [16]Light J C and Carrington. Jr. T. Discrete-variable representations and their utilization[J]. Adv. Chem. Phys..114:263-310.2000.
    [17]Garraway B M and Suominen K A. Wave-packet dynamics:New physics and chemistry in femto-time[J]. Rep. Phys. Prog..58:365-419.1995.
    [18]Marston C C and Balint-Kurti G G. The Fourier grid Hamiltonian method for bound state eigen-values and eigenfunctions[J]. J. Chem. Phys..91(6):3571-3576,1989.
    [19]Zhang J Z H. Theory and Application of Quantum Molecular Dynamics[M]. World Scientific Pub-lishing Co. Pte. Ltd.. Singapore.1999.
    [20]Leforestier C. Bisseling R H and Cerjan C. A comparison of different propagation schemes for the time dependent Schrodinger equation[J]. J. Comput. Phys.. 94(1):59-80. 1991.
    [21]Kosloff D and Kosloff R. A Fourier method solution for the time dependent Schrodinger equation as a tool in molecular dynamics[J]. J.Comput. Phys.. 52(1):35-53. 1983.
    [22]Askar A and Cakmak A S. Explicit integration method for the time-dependent Schrodinger equation for collision problems[J]. J. Chem. Phys.. G8(6):2794-2798. 1978.
    [23]Chin S and Chen R C. Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials[J]. J. Chem. Phys.. 117(4):1409-1415. 2002.
    [24]Truong T N. Tanner J J. Bala P. McCammon J A. Lesyng B and Hoffman D K. A comparative study of time dependent quantum mechanical wave packet evolution methods[J]. J.Chem. Phy 9G(3):2077-2084. 1992.
    [25]Nyman G and Yu H G. Quantum theory of bimolecular chemical react ions [J]. Rev. Phys. Prog.. 63:1001-1059. 2000.
    [2G]Goldstein G and Baye D. Sixth-order factorization of the evolution operator for time-dependent potentials[J]. Phys. Rev. E. 70(6):056703-1-7. 2004.
    [27]Baye D. Goldstein G and Capel P. Fourth-order factorization of the evolution operator for time-dependent potentials[J]. Phys. Lett. A. 317(5-6):337-342. 2003.
    [28]Bandrauk A D and Shen H. Exponential split operator methods for solving coupled time-dependent Schrodinger equations[J]. J. Chem. Phys.. 99(2):1185-193. 1993.
    [29]Feit M D. Fleck J A and Steiger A. Solution of the Schrodinger equation by a spectral method[J]. J. Comput. Phys.. 47(3J:412-433. 1982.
    [30]Feit M D and Fleck J A. Solution of the Schrodinger equation by a spectral method Ⅱ: Yibrational energy levels of triatomic molecules [J]. J. Chem. Phys.. 78(1):301-308. 1982.
    [31]Feit M D and Fleck J A. Wave packet dynamics and chaos in the Henon-Heiles system[J]. J. Chem. Phys.. 80(G):2578-2584. 1984.
    [32]Sell A. Leitenstorfer A and Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm[J]. Opt. lett..33(23):27G7-27G9. 2008.
    [33]汤清杉,张东玲,余本海,陈东.周期量级激光脉冲驱动下非次序双电离的三维经典熹宗模拟[J].物理学报.59(11):7775-7781.2010.
    [34]Zewail A H. Femtochemistry: atomic-scale dynamics of the chemical bond[J]. J. Phys. Chem. A. 104: 5660-5694. 2000.
    [35]Weiner A M. Ultrafast optical pulse shaping: A tutorial review [J]. Opt.Commun., 33(23): 3669-3692. 2011.
    [36]Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Rev.Sci. Instrum.. 71(5): 1929-1960. 2000.
    [37]Verluise F. Laude V. Cheng Z. Spielmann Ch and Tournois P. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter:pulse compression and shaping[J]. Opt. Lett.25(8):575-577.2000.
    [38]Kong K F. Yankelevich D. Chu K C. Heritage J P and Dienes A.400-Hz mechanical scanning optical delay line[J]. Opt. Lett.18(7):558-560,1993.
    [39]Zeek E. Maginnis K. Backus S. Russek U. Murnane M, Mourou G. Kapteyn H and Vdovin G. Pulse compression by use of deformable mirrors [J].Opt. Lett.24(7):493-495.1999.
    [40]Pullmann D P. Friedrich B and Herschbach D. Facile alignment of molecular rotation in supersonic beams [J]. J. Chem. Phys.,93(5):3224-3236.1990.
    [41]Kramer K H and Bernstein R B. Focusing and Orientation of Symmetric Top Molecules with the Electric Six Pole Field [J]. J. Chem. Phys.,42(2):767-770.1965.
    42] Friedrich B and Herschbach D. Spatial orientation of molecules in strong electric fields and evidence for pendular states[J]. Nature 353:412-414.1990.
    [43]Friedrich B and Herschbach D. Alignment and Trapping of Molecules in Intense Laser Fields[J]. Phys. Rev. Lett.74(23):4G23-4626.1995.
    [44]Friedrich B and Herschbach D. Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces [J]. J. Chem. Phys., 111(14):6157-6160.1999.
    [45]Tehini R and Sugny D. Field-free molecular orientation by nonresonant and quasiresonant two-color laser pulses[J]. Phys. Rev. A 77(2):023407-1-8.2008.
    [46]Machholm M and Henriksen N E. Field-Free Orientation of Molecules[J]. Phys. Rev. Lett. 87(19):193001-1-4.2001.
    [47]Kitano K. Ishii N. and J Itatani. High degree of molecular orientation by a combination of THz and femtosecond laser pulses[J]. Phys. Rev. A 84(5):053408-1-7.2011.
    [48]Shu C C. Yuan K J. Hu W H and Cong S L. Field-free molecular orientation with terahertz few-cycle pulses [J]. J. Chem.Phys.132(24):244311-1-7.2010.
    [49]Daems D. Guerin S. Sugny D and Jauslin H R. Efficient and Long-Lived Field-Free Orientation of Molecules by a Single Hybrid Short Pulse[J]. Phys. Rev. Lett.94(15):153003-1-4.2005.
    [50]Dion C M. Keller A and Atabek O. Orienting molecules using half-cycle pulses[J]. Eur. Phys. J. D. 14(2):249-255.2001.
    51] Averbukh I S and Arvieu R. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor [J]. Phys. Rev. Lett..87(16):163601-1-4.2001.
    [52]Henriksen N E. Molecular alignment and orientation in short pulse laser fields [J]. Chem. Phys. Lett.,312(2-4):196-202.1999.
    [53]Rakitzis T P. van den Brom A J. and Janssen M H M. Directional Dynamics in the Photodissociation of Oriented Molecules [J]. Science.303 (5665):1852-1854,2004.
    [54]Ohmura H. Saito N. and Tachiya M. Selective Ionization of Oriented Nonpolar Molecules with Asymmetric Structure by Phase-Controlled Two-Color Laser Fields[J]. Phys. Rev. Lett.,96 (17):173001-1-4.2006.
    [55]Kanai T. Minemoto S and Sakai H. Quantum interference during high-order harmonic generation from aligned molecules[J]. Nature.435:470-474.2005.
    [56]Seideman T. Molecular optics in an intense laser field:A route to nanoscale material design [J]. Phys. Rev. A.56(1):R17-R20.1997.
    [57]Dey B K. Shapiro M and Brumer P. Coherently Controlled Nanoscale Molecular Deposition[J]. Phys.Rev. Lett,85 (15):3125-3128.2000.
    [58]Shapiro E A. Spanner M and Ivanov M Y. Quantum Logic Approach to Wave Packet Control [J. Phys. Rev. Lett..91(23):237901-1-4.2003.
    [59]Charron E. Giusti-Suzor A and Mies F H. Fragment angular distribution in one-and two-color photodissociation by strong laser fields[J]. Phys. Rev. A.49 (2):R641-R644.1994.
    [60]Bandrauk A D and Aubanel E E. Electron control in photodissociation by two-color multiphoton processes[J]. Chem. Phys.198(1-2):159-167.1995.
    [61]Abou-Rachid H. Nguyen-Dang T T and Atabek O. Dynamical quenching of laser-induced disso-ciations of heteronuclear diatomic molecules in intense infrared fields[J]. J. Chem. Phys..110(10): 4737-4749.1999.
    [62]McClelland J J. Scholten R E. Palm E C and Celotta R J. Laser-Focused Atomic Deposition[J]. Science 262(5135):877-880.1993.
    [63]Lan P. Lu P. Cao W. Li Y and Wang X. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules[J]. Phys. Rev. A 76 (2):021S01(R)-1-4.2007.
    [64]Cong S L. Han K L and Lou N Q. Theory for determining alignment parameters of symmetric top molecule using (n+1) LIF[J]. J. Chem. Phys..113(21):9429-9442.2000.
    [65]Machholm M and Henriksen N E. Two-pulse laser control for selective photo fragment orienta.tion[J]. J.Chem.Phys..111(7):3051-3057.1999.
    [66]Ohmura H and Xakanaga T. Quantum control of molecular orientation by two-color laser fields[J]. J.Chem.Phys..120(11):5176-5180.1999.
    [67]Zhdanov D V and Zadkov V N. Laser-assisted control of molecular orientation at high tempera-tures[J]. Phys.Rev.A.77(1):011401(R)-1-4.2008.
    [68]Guerin S, Yatsenko L P, Jauslin H R. Faucher O and Lavorel B. Orientation of polar molecules by laser induced adiabatic passage[J]. Phys.Rev.left.88(23):233C01-1-4.2002.
    [69]Goban A, Minemoto S and Sakai H. Laser-field-free molecular orientation[J]. Phys. Rev. Lett.. 101(1):013001-1-4.2008.
    70] Ghafur O. Rouzee A. Gijsbertsen A. Sin W K. Stolte S and Vrakking M J J. Impulsive orientation and alignment of quantum-state-seleeted NO molecules [J]. Nat. Phys..5:289-293.2009.
    [71]De S, Znakovskaya I, Ray D. Anis F. Johnson N G. Bocharova I A. Magrakvelidze M, Esry B D. Cocke C L, Litvinyuk I V and Kling M F. Field-free orientation of CO molecules by femtosecond two-color laser fields[J]. Phys. Rev. Lett..103(15):153002-1-4,2009.
    [72]Cai L. Marango J and Friedrich B. Time-dependent alignment and orientation of molecules in combined electrostatic and pulsed nonresonant laser fields[J]. Phys. Rev. Lett.,86(5):775-778,2001.
    73] Sugawara Y, Goban A, Minemoto S and Sakai H. Laser-field-free molecular orientation with com-bined electrostatic and rapidly-turned-off laser fields. Phys[J].Rev. A,77(3):031403(R)-1-4,2008.
    [74]Muramatsu M. Hita M. Minemoto S and Sakai H. Field-free molecular orientation by an in-tense nonresonant two-color laser field with a slow turn on and rapid turn off [J]. Phys. Rev. A, 79(1):011403(R)-1-4. 2009.
    [75]Wu J and Zeng H P. Field-free molecular orientation control by two ultrashort dual-color laser pulses[J]. Phys. Rev. A. 81(5):053401-1-5,2010.
    [76]Zhang S A, Shi J EL Zhang H, Jia T Q. Wang Z G and Sun Z R. Field-free molecular orientation by a multicolor laser field[J]. Phys. Rev. A. 83(2): 023416-1-5. 2011.
    [77]Gershnabel E. Averbukh I Sh and Gordon R J. Orientation of molecules via laser-induced antialign-ment[J]. Phys. Rev. A . 73(6): 061401(R)-1-4. 2006.
    [78]Shu C C. Yu J. Yuan K J, Hu W H. Yang J and Cong S L. Stimulated Raman adiabatic passage in molecular electronic states[J]. Phys. Rev. A. 79(2):023418-1-10. 2009.
    [79]Han Y C, Hu W H. Yu J, Cong S L. Interference of dissociating wave packets in I2 molecule driven by femtosecond laser pulses[J]. Chi. Phys. B. 18(11):4834-4839. 2009.
    [80]Yu J. Wang S M, Yuan K J and Cong S L. Photoionization of NaK molecule with a double-well potential in femtosecond pump-probe pulse laser fields[J]. Chin. Phys.. 15(9): 1996-2001. 2006.
    [81]Wang S M. Cong S L. Yuan K J and Yu J. Probing wave packet dynamics of B1Π and C2Π states of NO molecule with time- and energy-resolved photoelectron spectra[J]. Chem. Phys. Lett. 401 (1-3):509-514. 2005.
    [82]Yuan K J. Sun Z G. Cong S L. Wang S M. Yu J and Lou N Q. Steering wave packet dynamics and population transfer between electronic states of the Na2 molecule by femtosecond laser pulses[J]. Chem. Phys. 316 (1-3):245-252. 2005.
    [83]Partridge H and Langhoff S R. Theoretical treatment of the X1σ+. A1σ+ and B1π of LiH[J]. J. Chem. Phys., 74(4):2361-2371, 1981.
    [84]Sakai H. Minemoto S, Nanjo H. Tanji H and Suzuki T. Controlling the Orientation of Po-lar Molecules with Combined Electrostatic and Pulsed. Nonresonant Laser Fields [J]. Phys. Rev. Lett.90(8):083001-1-4. 2003.
    [85]Tanji H. Minemoto S and Sakai H. Three-dimensional molecular orientation with combined elec-trostatic and elliptically polarized laser fields [J]. Phys. Rev. A . 72(6):063401-1-4, 2005.
    [86]Salomon J, Dion C M and Turinici G. Optimal molecular alignment and orientation through rota-tional ladder climbing[J,. J. Chem. Phys., 123(14):144310-1-7,2005.
    [87]Fleischer S, Zhou Y. Field R W and Nelson K A. Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses[J]. Phys. Rev. Lett. 107(16): 163603-1-5. 2011.
    [88]Marquetand P. Materny A. Henriksen N E and Engel V. Molecular orientation via a dynamically induced pulse-train: Wave packet dynamics of NaI in a static electric field [J], J. Chem. Phys. 120 (13):5871-5874. 2004.
    [89]Ben Haj-Yedder A. Auger A. Dion C M. Cances E. Keller A. Le Bris C and Atabek O. Numerical optimization of laser fields to control molecular orientation[J]. Phys. Rev. A 66(6):063401-1-9. 2002.
    [90]Sugny D. Keller A. Atabek O. Daems D. Dion C M. Guerin S and Jauslin H R. Reaching optimally oriented molecular states by laser kicks[J]. Phys. Rev. A.69 (3):033402-1-4.2004.
    [91]Dion C M. Keller A and Atabek O. Optimally controlled field-free orientation of the kicked molecule[J]. Phys. Rev. A. 72 (2) 023402-1-5. 2005.
    [92]Shu C C. Yuan K J. Hu W H and Cong S L. Determination of the phase of terahertz few-cycle laser pulses[J]. Opt. Lett.. 34 (20):3190-3192. 2009.
    [93]Gershnabel E. Averbukh I Sh and Gordon R J. Enhanced molecular orientation induced by molec-ular antialignment[J]. Phys. Rev. A 74(5): 053414-1-9. 2006.
    [94]Shu C C. Yuan K J. Hu W H. Yang J and Cong S L. Controlling the orientation of polar molecules in a rovibrationally selective manner with an infrared laser pulse and a delayed half-cycle pulse[J]. Phys. Rev. A. 78 (5):055401-1-4. 2008.
    [95]Hu W H. Shu C C. Han Y C, Yuan K J and Cong S L. Enhancement of molecular field-free orientation by utilizing rovibrational excitation[J]. Chem. Phys. Lett. 474 (1-3):222-226. 2009.
    [96]Zhang W. Zhao Z Y. Xie T. Wang G R, Huang Y and Cong S L. Photoassociation dynamics driven by a modulated two-color laser field [J]. Phys. Rev. A. 84 (5):053418-1-9, 2011.
    [97]Jie Yu. Chuan-Cun Shu. Wen-Hui Hu. Shu-Lin Cong. Above Threshold Ionization of Polar NaK Molecules Driven by Few-cycle Laser Pulse[J]. J. Theo. Comput. Chem.. 9(4):785-795. 2010.
    [98]Kai-Jun Yuan. Zheng-Tang Liu. Jie Yu. Mao-Du Chen. Shu-Lin Cong. Theoretical Study of Above Threshold Dissociation OF HD+ in Femtosecond Laser Fields[J]. J. Theo. Comput. Chem.. 8(6):1197-1214. 2009.
    [99]Dion C M. Ben Haj-Yedder A, Cances E, Le Bris C, Keller A and Atabek O. Optimal laser control of orientation: The kicked molecule[J]. Phys. Rev. A G5(G):063408-1-7. 2002.
    [100]Sugny D, Keller A, Atabek O, Daems D, Dion C M, Guerin S andJauslin H R. Control of mixed-state quantum systems by a train of short pulses[J]. Phys. Rev. A 72(3):032704-1-10. 2005.
    [101]Moiseyev N. and Seideman T. Alignment of molecules by lasers: derivation of the Hamiltonian within the (t, t') formalism[J]. J. Phys. B: At. Mol. Opt. Phys. 39(9): L211-L216,2006.
    [102]Merawa M. BegueD. and Dargelos A. Ab Initio Calculation of the Polarizability for the Ground State X1∑+ and the First Low-Lying Excited States α3∑+ and A1∑+ of LiH and NaH[J]. J. Phys Chem. A. 107(45): 9628-9633. 2003.
    [103]Cao W. Lu P X. Lan P F. Wang X L and Li Y H. Control of the launch of attosecond pulses[J]. Phys. Rev. A 75(6):063423-1-4. 2007.
    [104]Paulus G G, Lindner F, Walther H. Baltuska A. Goulielmakis E. Lezius M and Kraus F. Mea-surement of the Phase of Few-Cycle Laser Pulses[J]. Phys. Rev. Lett. 91(25):253004-1-4. 2003.
    [105]Liao Q. Lu P X. Lan P F. Cao W and Li Y H. Phase dependence of high-order above-threshold ionization in asymmetric molecules [J]. Phys. Rev. A 77(1):013408-1-6. 2008.
    [106]Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F. Schatzel M G. Paulus G G and Walther H. Nonsequential Double Ionization at the Single-Optical-Cycle Limit [J]. Phys. Rev. Lett. 93(26):263001-1-4. 2004.
    [107]Sell A. Scheu R. Leitenstorfer A and Hubera R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz[J]. Appl. Phys. Lett. 93(25):251107-1-4,2008.
    [108]Bartel T. Gaal P. Reimann K. Woerner M and Elsaesser T. Generation of single-cycle THz tran-sients with high electric-field amplitudes[J].Opt. Lett.30(20):2805-2807.2005.
    [109]Yeh K L, Hoffmann M C, Hebling J and Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification [J]. Phys. Rev. A 77(1):013408-1-6.2008.
    [110]Brabec T and Krausz F. Intense few-cycle laser fields:Frontiers of nonlinear optics J]. Rev. Mod. Phys.,72(2)545-591.2000.
    [111]Agostini P and DiMauro L F. The physics of attosecond light pulses [J]. Rep. Prog. Phys 67:813-855.2004.
    [112]Milosevic D B, Paulus G G, Bauer D and Becker W. Above-threshold ionization by few-cycle pulses[J]. J. Phys. B:At. Mol. Opt, Phys.39(14):R203-R262,2006.
    [113]Paulus G G. Grasbon F. Walther H. Villoresi P. Nisoli M. Stagira S. Priori E and Silvestri S. Absolute-phase phenomena in photoionization with few-cycle laser pulses [J]. Nature 414:182-184. 2001.
    [114]Barmaki S and Bandrauk A D. Control of electron transfer and high harmonic generation in the linear triatomic H32+ system at large internuclear distances with short intense laser fields[J]. J. Mod. Opt..54(7):1047-1061.2007.
    [115]Milosevic D B. Paulus G G and Becker W. Phase-Dependent Effects of a Few-Cycle Laser Pulse[J]. Phys. Rev. Lett..89(15):153001-1-4.2002.
    [116]Milosevic D B, Paulus G G and Becker W. Metering the absolute phase of a few-cycle pulse via its high-order above-threshold ionization spectrum[J]. Laser Phys. Lett..1(2):93-99.2004.
    [117]Chelkowski S and Bandrauk A D. Asymmetries in strong-field photoionization by few-cycle laser pulses:Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons[J]. Phys. Rev. A.71(5):053815-1-9.2005.
    [118]Ricz S. Ricsoka T, Kover A. Varga D. Huttula M, Urpelainen S. Aksela H and Aksela S. Ex-perimental observation of left-right asymmetry in outer s-shell photoionization[J]. New J Phys 9(8):010274-1-8.2007.
    [119]Micheau S. Chen Z J. Le A T. Rauschenberger J. Kling M F and Lin C D. Accurate Retrieval of Target Structures and Laser Parameters of Few-Cycle Pulses from Photoelectron Momentum Spectra [J]. Phys. Rev. Lett.,102(7):073001-1-4.2009.
    [120]Kling M F, Rauschenberger J, Verhoef A J. Hasovic E. Uphues T, Milosevic D B,Muller H G and Vrakking M J J. Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields [J]. New J Phys.10(2):025024-1-17:2008.
    [121]Palacios A, Bachau H and Martin F. Enhancement and Control of H2 Dissociative Ionization by Femtosecond VUV Laser Pulses[J]. Phys. Rev. Lett..96(14):143001-1-4.2006.
    [122]Zhao Z X. Tong X M. Lin C D. Alignment-dependent ionization probability of molecules in a double-pulse laser field [J]. Phys. Rev. A 67 (4):043404-1-5.2003.
    [123]Yang W F. Song X H. Gong S Q. Cheng Y, Xu Z Z. Carrier-Envelope Phase Dependence of Few-Cycle Ultrashort Laser Pulse Propagation in a Polar Molecule Medium[J]. Phys. Rev. Lett.. 99(13):133G02-1-4,2007.
    [124]Sell M and Domcke W. Femtosecond time-resolved ionization spectroscopy of ultrafast internal-conversion dynamics in polyatomic molecules: Theory and computational studies[J].J Chem. Phys. 95(11):7806-7822. 1991.
    [125]Wang S M. Cong S L. Yuan K J and Niu Y Y. Photoionization of NO molecule in two-color femtosecond pulse laser fields[J]. Chem. Phys. lett.. 517:164-169,2006.
    [126]Shu C C. Yuan K J. Hu W H and Cong S L. Resonance-enhanced above-threshold ionization of polar molecules induced by ultrashort laser pulses[J]. J Phys. B At Mol. Opt. Phys.. 41:065602. 2008.
    [127]de Vivie-Riedle R. Kobe K. Manz J. Meyer W. Reischl B, Rutz S. Schreiber E and Woste L. Femtosecond Study of Multiphoton Ionization Processes in K2: From Pump-Probe to Control[J].J Phys. Chem., 100(19):7789-7796. 1996.
    [128]Sun Z G. Lou N Q. Autler-Townes Splitting in the Multiphoton Resonance Ionization Spectrum of Molecules Produced by Ultrashort Laser Pulses[J]. Phys. Rev. Lett.. 91(2):023002-1-4. 2003.
    [129]Magnier S, Aubert-Frecon M and Millie P. Potential Energies, Permanent and Transition Dipole Moments for Numerous Electronic Excited States of NaK[J]. J Mol. Spectrosc. 200:90-103. 2000.
    [130]Muller M and Meyer W. Ground-state properties of alkali dimmers and their cations (including the elements Li. Na and K) from ub initio calculation with effective core polarization potentials [J]. J Chem. Phys.. 80(7):3311-3320 1984.
    [131]Bucksbaum P H. Bashkansky M. Freeman R R. McIlrath T J and DiMauro L F. Suppression of multiphoton ionization with circularly polarized coherent light[J]. Phys. Rev. Lett.. 56(24):2590-2593, 1986.
    [132]Meier C and Engel V. Interference structure in the photoelectron spectra obtained from multipho-ton ionization of Na2 with a strong femtosecond laser pulse [J]. Phys. Rev. lett.. 73(24):3207-3210. 1994.
    [133]Gregoire G, Mons M, Dimicoli I, Piuzzi F, Charron E, Decionder-Lardeux C. Martren-chard S. Solgadi D and Suzor-Weiner A. Photoionization of NaI: inward-outward asymmetry in the wave packet detection[J]. Eur. Phys. J D. 1(2):187-192. 1998.
    [134]Xie T X. Zhang Y. Zhao M Y and Han K L. Calculations of the F +HD reaction on three potential energy surfaces[J]. Phys. Chem. Chem. Phys.. 5:2034-2038. 2003.
    [135]Chu T S. Zhang Y and Han K L. The time-dependent quantum wave packet, approach to the electronically nonadiabatic processes in chemical reactions [J]. Int.. Rev. Phys. Chem.. 25:201-235. 2006.
    [136]Yuan K J, Sun Z, Cong S L and Lou X. Molecular photoelectron spectrum in ultrashort laser fields: Autler-Townes splitting under rotational and aligned effects[J]. Phys. Rev. R. 74(4):043421-1-9, 2006.
    [137]Han Y C. Yuan K J. Hu W H. Yan T M and Cong S L. Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference [J]. J Chem. Phys.. 128(13):134303-1-9. 2008.
    [138]Kopold R. Becker W. Kleber M and Paulus G G. Channel-closing effects in high-order above-threshold ionization and high-order harmonic generation[J]. J Phys. B At. Mol. Opt. Phys. 35(2):217-232.2002.
    [139]Paulus G G. A Meter of the "Absolute" Phase of Few-Cycle Laser Pulses[J]. Las. Phys..15(6):843-854.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700