用户名: 密码: 验证码:
含Cu化合物异质结构的制备及光催化产氢活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化分解水制氢将取之不尽的低密度太阳能通过光化学反应转换为化学能,是一种清洁的、可持续发展的获得氢能的方式。而开发高效、稳定的光催化材料用于光催化分解水的催化剂是发展太阳光催化制氢技术的核心。迄今为止,该领域的科研工作者开发了多种可用于光催化制氢的材料,但是由于光生电子和空穴的复合导致的较低的产氢效率严重的限制了此类材料的实际应用。因此,寻找合适的途径强化光生电子与空穴的分离、增加光生载流子的利用效率,就成为提高光催化剂产氢活性的关键所在。而异质结复合材料在载流子输运方面的独特优势,另外具有特殊形貌的异质结复合光催化剂对光生电荷的分离效果更佳。本论文以光催化领域最具代表性的光催化材料Ti02和ZnS为主要研究对象,以构建高效的Cu化合物异质结构复合光催化剂为研究目标,致力于开发高效异质结的构建方法,从提高异质结复合光催化材料界面电荷迁移的驱动力入手,构建高效的、具有特殊形貌的Cu化合物异质结构复合光催化材料用于光催化制氢。主要研究内容如下:
     1、基于能带结构对异质结电荷分离的影响,采用低温乙醇诱导结合退火处理的方法,制备了具有优异电荷分离效果的q-Cu2O/TiO2异质结构复合光催化材料,我们通过改变Cu20前驱物的用量来实现了Cu20纳米的尺寸调控,从而使得Cu20的导带位置上移,增加了Cu20与P25导带间的电位梯度,增大了异质结界面电荷迁移的驱动。另一方面,量子尺寸效应对Cu20能带结构的调控,使其控制下的电子迁移与p-n结内建内场控制下的电子迁移相一致,从而实现了该异质结复合光催化材料光生载流子的有效分离,提高了其产氢活性。该部分研究结果提供了一种简单、绿色的制备方法沉积Cu20量子点在Ti02表面,而且也提供了一种有效构建p-n异质结的研究思路。
     2、基于非半导体的难溶化合物的电极电势的位置与异质结电荷分离的关系,发现了一种简易构建高效异质结复合光催化材料的方法。通过调节非半导体难溶化合物的溶解性(Ksp)即简单改变CuX (X:(OH)2CO32-、S2-、OH-、 C2O42-)中阴离子的种类,可实现对CuX/Cu电极电势的调控,从而影响了异质结CuX/P25中光生电子与空穴的分离。采用这一方法,我们发现Cu2(OH)2CO3/Cu还原电势介于P25的导带底与H+/H2还原电位之间,且与P25的导带底具有相对较大的电位梯度。因此,Cu2(OH)2CO3可作为一种优异的助催化剂与P25构建异质结复合光催化材料,并表现出较好的电荷分离效果与光催化制氢性能。该异质结复合材料在模拟太阳光下产氢活性可达0.51mmolh-1,量子效率为31.2%,是纯P25的485倍。该工作不仅开发了一种优异的可用于光催化制氢的助催化剂-Cu2(OH)2CO3,而且提供了一种简易的高效异质结复合光催化剂的构建方法。
     3、考虑到形貌调控在光催化制氢中的优势,我们以ZnS为代表,基于界面电荷迁移理论,采用微波水热结合阳离子交换方法构建了CuS/ZnS花状异质结复合光催化剂。该异质结的构建拓宽了ZnS的光响应范围,在可见光下,光激发ZnS产生的电子向CuS/Cu2S电位的迁移,实现了光生电子与空穴的空间有效分离,使ZnS/CuS花状异质结复合光催化剂在无助催化剂负载时可见光产氢活性达到0.33mmol h-1,420nm波长光照的量子效率达到22.8%,与CuS/ZnS片状异质结复合光催化剂相比产氢活性和量子效率均有所提高,证明了当都具备光诱导界面电荷传输效应(IFCT)时,特殊形貌异质结构因具有高比表面积和光吸收率,在光生电荷分离上有突出的优势。另外我们通过时间序,详细地研究了ZnS/CuS花状异质结的形成机理,并揭示了其微观结构与性能的关系。
Photocatalytic hydrogen production from water splitting is a clean and renewable hydrogen production method, because it can convert the inexhaustible and low density solar energy to the chemical energy. Preparing highly efficient photocatalytsts is the key for developing the photocatalytic hydrogen production technology. So far, the applications of many photocatalytic materials in the photocatalytic hydrogen production field have been greatly limited due to the low efficiencies resulted from the easy recombination of photogenerated charge carriers. Therefore, seeking a suitable approach to effectively separate the photogenerated electrons and holes and increase the utilization of photogenerated charge carriers is significant for enhancing the photocatalytic activity for hydrogen production. Heterostructured materials have unique advantages for the transportation of carriers and exhibit potential values in the photocatalytic hydrogen production field. In this dissertation, the representative TiO2and ZnS were chose as the research objects and the fabrication of highly efficient Cu-cotaining composites heterostructured was as the research aim. We addict to develop highly efficient Cu-cotaining composites heterostructured photocatalysts with special morphology via increasing the driven force of the photogenerated charge carriers transfer. Main research topics are as follows:
     1. Based on the effect of the bandgap structure on the separation of photogenerated charges, we prepared q-Cu2O/TiO2heterojunction composites with excellent charges separation efficiency via ethanol induced method at low temperature followed by calcination. The Cu2O nanosize was controlled by adjusting the amount of Cu2O precursor. The qautum size effect maked the conduction band bottom of Cu2O shift up. This can efficiently increase the potential gradient between the conduction band bottom of Cu2O and that of TiO2, and thus enhance the driven force of the interfacial charges transfer. On the other hand, the energy band structure of Cu2O was tuned by the quantum size effect, which makes the electrons transfer from Cu2O to TiO2. The transfer was consistent with that in p-n junctions controlled by the built-in electrical field resulting in the enhanced photocatalytic activity for hydrogen production. This study not only provides a facial and green method to prepared Cu2O quantum dots on TiO2surfaces, but also supports an efficient approach to fabricate p-n heterojunctions with an increased interfacial charge transfer.
     2. Based on the relation between the charge separation of heterojuntions and the potentials of the insoluble non-semiconductor compounds, we find an facile method to develop efficient heterostructured composites. The separation of the photogenerated electrons and holes in the CuX/P25heteroj unctions was easily controlled by tuning the CuX/Cu electrode potentials, which was closely related to the solubility (Ksp) of insoluble non-semiconductor compounds. This can be achieved by simply changing the anion species in CuX (X:(OH)2CO32-、S2-、OH-、 C2O42-). According to this method, we have found that the Cu2(OH)2CO3/Cu reduction potential is between the conduction band bottom of P25and the redox potential of H+/H2with a relatively large potential gradient. Thus, Cu2(OH)2CO3can be used as an excellent co-catalyst to build heteroj unction composites with P25, which exhibited an excellent charge separation efficiency and photocatalytic hydrogen production activity. The photocatalytic activity for hydrogen production of the heteroj unction composites was up to0.51mmol h-1under the simulant solar light irradiation, and the quantum efficiency was up to31.2%which was485times higher than that of pure P25. This work develops an excellent cocatalyst-Cu2(OH)2CO3for photocatalytic hydrogen production as well as provides an facile and efficient method for fabricating heteroj unction composite photocatalysts.
     3. Considering the advantages of morphology control in photocatalytic hydrogen production, the flower-like ZnS/CuS heterostructured composites were prepared by the combination of microwave hydrothermal and cation exchange methods according to the interfacial charge transfer theory. The fabrication of the heterojunctions broadened the range of light response of ZnS. The photoexcited electrons of ZnS migrated to the redox potential of CuS/Cu2S under visible light irradiation, which can facilitate the effective separation of photogenerated electrons and holes in space. The visible photocatalytic activity towards hydrogen production for ZnS/CuS flower-like heterostructed composites without co-catalyst achieved0.33mmol h-1, and the quantum efficiency was up to22.8%under the wavelength with420nm visible light irradiation. Compared with the sheet-like photocatalyst composite, hydrogen production activity and quantum efficiency were improved. It proved that when both have photoinduced interfacial charge transfer (IFCT) effect, heterostructures photocatalyst composites with special morphology which possess high surface area and light absorption rate, have outstanding advantages in photoinduced charge separation. In addition, the formation mechanisms of the flakes and flower-like ZnS/CuS heterojunctions were also studied in detail by tuning the reaction time and temperature. Finally the relationship of the microstructure and the performance was revealed.
引文
[1]Guo L J. Photosplitting water under visible light with a series of composite photocatalysts[C]. Proceedings of the 2004 International Hydrogen Energy Forum, Beijing Tsinghua University Press,2004:25-28.
    [2]Hao X H, Guo L J, Mao X, et al. Hydrogen production from glucose used as a model compound ofbiomass gasified in supercritical water[J]. Int J Hydrogen Energy,2003,28: 55-64.
    [3]Lewis N S. Toward cost-effective solar energy use[J]. Science,2007,315:798-801.
    [4]Guo L J, Zhao L, Jing D W, et al. Solar hydrogen production and its development in China [J]. Energy,2009,34:1073-1090.
    [5]Service R F. Profile:Daniel nocera-hydrogen economy? Let sunlight do the work[J]. Science, 2007,315:789-793.
    [6]Penner S S. Step toward the hydrogen economy[J]. Energy,2004,15:1-11.
    [7]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38.
    [8]Mills A, Davies R H, Worsley D. Water purification by semiconductor photocatalysis[J]. Chem. Soc. Rev.,1993,22:417-425.
    [9]Turner J A. Sustainable hydrogen production[J]. Science,2004,305:972-974.
    [10]Bowker M. Sustainable hydrogen production by the application of ambient temperature photocatalysis[J]. Green Chem.,2011,13:2235-2246.
    [11]Mills A, Lehunte S. An overview of semiconductor photocatalysis[J]. J. Photoch. Photobiol. A, 1997,108:1-35.
    [12]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev.,2009,38:253-278.
    [13]Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chem. Rev.,1993,93:341-357.
    [14]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293:269-271.
    [15]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [16]李越湘,吕功煊,李树本.半导体光催化分解水研究进展[J].分子催化,2001,15:72-79.
    [17]Bak T, Nowotony J, Rekas M, et al. Photoelectrochemical hydrogen generation from water using solar energy[J]. Int. J. Hydrogen Energy,2002,27:991-1022.
    [18]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414:338-344.
    [19]Ford T, kane S I. On the study of hydrogen production from water using solar thermal energy[J]. Int. J. Hydrogen Energy,1980,5:527-534.
    [20]Kogan M, Kogan A. Production of hydrogen and carbon by solar thermal methane splitting[J]. Int. J. Hydrogen Energy,2003,28:1187-1198.
    [21]Fletcher E A. Hydrogen-and oxygen from water[J]. Int. J. Hydrogen Energy,1979,4: 225-226.
    [22]Lede J, Villermaux J, Ouzane R, et al. The production of Zn from ZnO in a high-temperature solar decomposition quench process[J]. Int. J. Hydrogen Energy,1987,12:3-11.
    [23]Zhang M, Shi J L. The photosynthesis bacterium photosynthesisproduces the hydrogen mechanism research to progress[J]. J. Environ. Biol.,1999,5:25-29.
    [24]Allen J B, Marye A F. Artificial photosynthesis solar splitting of water to hydrogen and oxygen[J]. Acc. Chem. Res.,1995,28:141-145.
    [25]O'Regan B, Moser J, Marc A, et al. Vectorial electron injection into transparentsemiconductor membranes and electric field effects on the dynamics of light-induced charge separation[J]. Phys. Chem.,1990,94:8720-8726.
    [26]Jean-Marie L. Supramolecular chemistry-scopeand perspectives molecules, supermolecule sand molecular devices[J]. Angew. Chem. Int. Edit.,1988,27:89-112.
    [27]Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997,388:431-432.
    [28]Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. Phys. Chem. B,2003,107:13871-13879.
    [29]Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro/mesoporous titania[J], Adv. Funct. Mater.,2007,17:1984-1990.
    [30]Takata T, Tanaka A, Hara M, et al. Recent progress of photocatalysts for overall water splitting[J]. Catal. Today,1998,44:17-26.
    [31]Iulnen K, Yoshimura J, Sekine T, et al. A novel seriesphotocatalyst with an ion-exchangeable layered structure of niobate[J]. Catal. Lett.,1990,4:339-344.
    [32]Takata T, Furumi Y, Shinohara K, et al. Photocatalytic decomposition of water on simultaneously hydrated layered perovskites[J]. Chem. Mater.,1997,9:1063-1064.
    [33]Machida M, Yabunaka J, Kijima T, et al. Electronic structure of layered tantalates photocatalysts, RblnTa2O7(M=La, Pr, Nd, Sm)[J]. Int. J. Inorg. Mater.,2001,3:545-550.
    [34]Kato H, Kudo A. Energy structure and photocatalytic activity for water splitting of Sr2(Ta1-xNbx)2O7 solid solution[J]. J. Photoch. Photobiol. A-Chem.,2001,145:129-133.
    [35]Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu^ doped layered hydrogen titanate[J]. Int. J. Inorg. Mater.,2000,2:339-346.
    [36]Machida M, Ma X, Yabunaka J, et al. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3-xMxO7 and K2Ti4-xMxOy (M=Mn, Fe, Co, Ni, Cu)[J]. J. Mole. Catal. A-Chem.,2000,155:131-142.
    [37]Ogura S, Kohno M, Sato K, et al. Photocatalytic activityfor water decomposition of IU1O2 combined M2Ti6O13(M=Na, K, Rb, Cs)[J]. Appl. Surf. Sci.,1997,276:521-524.
    [38]Inoue Y, Asai Y, Sato K. Photocatalysts with tunnel structures for decomposition of water. Partl-BaTi4O9, a pentagonal prism tunnel structure and its combinationwith various promoters[J]. J. Chem. Soc., Faraday Trans.2,1994,90:797-802.
    [39]Shangguan W, Yoshida A. Influence of catalyst structureand modification on the photocatalytic production of hydrogen from water on mixed metal oxide[J]. Int. J. Hydrogen Energy,1999,24:425-431.
    [40]Mori T, Suzuki J, Fujimoto K, et al. Reductive decomposition of nitrate ion to nitrogen in water on a unique hollandite photocatalyst[J]. Appl. Catal. B-Environ.,1999,23:283-289.
    [41]Khan S, Shahry M, Ingler W, et al. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297:2243-2245.
    [42]Bahnemann D. Photocatalytic water treatment:solar energy applications[J]. Solar Energy, 2004,77:445-459.
    [43]Fischer C H, Henglein A. Preparation and photolysis of cadmium sulfide sols in organic solvents[J]. J. Phys. Chem.,1989,93:5578-5581.
    [44]Bao N, Shen L, Takata T, et al. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light[J]. J.Phys. Chem. C,2007,111:17527-17534.
    [45]Yu X X, Yu J G, Cheng B, et al. One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres via ostwald ripening and theirphotocatalytic properties[J]. Chem. Eur. 1,2009,15:6731-6739.
    [46]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [47]Tryk D A, Fujishima A, Honda K. Recent topics in photoelectrochemistry:achievements and future prospects[J]. Electrochim. Acta.,2000,45:2363-2376.
    [48]Alfano O M, Bahnemann D, Cassano A E, et al. Photocatalysis in water environments using artificial and solar light[J]. Catal. Today,2000,58:199-230.
    [49]He Y, Zhu Y F, Wu N Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance[J]. J. Solid State Chem.,2004,177:3868-3872.
    [50]Miseki Y, Kato H, Kudo A.Water splitting into H2 and O2 over Cs2Nb4O11 photocatalyst[J]. Chem. Lett.,2005,34:54-55.
    [51]Gao L, Zhang Q H. Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation[J]. Langmuir,2004,20:9821-9827.
    [52]Zou Z G, Li J L, Wu Y. The study of self-propagating high-temperature synthesis of TiC-Al2O3/Fe composites from natural ilmenite[J]. Key Eng. Mater.,2005,280-283: 1103-1106.
    [53]Zou Z G, Ye J H, Sayama K, et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts[J]. J. Photoch. Photobio. A,2002,148:65-69.
    [54]Liotta L F, Carlo G D, Pantaleo G, et al. Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion:correlation between morphology reduction properties and catalytic activity[J]. Catal. Commun.,2005,6:329-336.
    [55]Salvador P, Garcia Gonzalez M L, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (IV) oxide rutile[J]. J. Phys. Chem., 1992,96:10349-10353.
    [56]Nada A A, Barakat M H, Hamed H A. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts[J]. Int. J. Hydrogen Energy,2005,30: 687-691.
    [57]Salvador P, Garciaconzalez M L, Munoz F. Catalytic role of lattices in the photoassisted oxidation of water at (001) n-TiO2 rutile[J]. Phys. Chem,1992,96:10349-10353.
    [58]Sauer T, Neto G C, Jose H J, et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor[J]. J. Photoch. Photobiol. A,2002,149:147-154.
    [59]Marinkovic S, Hoffmann N. Diastereoselective radical tandem addition-cyclization reactions of aromatic tertiary amines by semiconductor sensitized Photochemical Electron Transfer [J]. Eur. J. Org. Chem.,2004,2004:3102-3107.
    [60]Sun L, Bolton J R. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions [J]. Phys. Chem.,1996,100:4127-4137.
    [61]Wang C Y, Rabani J, Bahnemann D W, et al. Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts[J]. J. Photoch. Photobiol. A,2002,148:169-176.
    [62]Kevin E O, Pernas E, Saiers J. The influence of mineralization products on the coagulation of TiO2 photocatalyst[J]. Langmuir,1999,15:2071-2076.
    [63]Innocenti M, Cattarin S, Loglio F, et al. Ternary cadmium and zinc sulfides:composition, morphology and photoelectrochemistry[J]. Electrochim. Acta.,2004,49:1327-1337.
    [64]Micic O I, Zhang Y, Keith R, et al. Trapped holes on TiO2 colloids studied by electron paramagnetic resonance[J]. J. Phys. Chem.,1993,97:7277-7283.
    [65]Gerischer H, Heuer A. The role of oxygen in photoxidation of organic molecules on semiconductor particles[J]. J. Phys. Chem.,1991,95:5261-5267.
    [66]Tryk D A, Fujishima A, Honda K. Recent topics in photoelectrochemistry achievements and future prospects[J]. Electrochim. Acta.,2000,45:2363-2376.
    [67]Linsebigler A L, Lu G, Yates J. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results[J]. Chem. Rev.,1995,95:735-758.
    [68]Ikeda S, Fubuki M, Takahara T K, et al. Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting[J]. Appl. Catal. A,2006,300:186-190.
    [69]Fang X, Wu L, Hu L. ZnS nanostructure arrays:a developing material star[J]. Adv. Mater., 2011,23:585-598.
    [70]Hong Y, Zhang J, Wang X, et al. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials[J]. Nanoscale,2012,4: 2859-2862.
    [71]Yoshioka K, Petrykin V, Kakihana M, et al. The relationship between photocatalytic activity and crystal structure in strontium tantalates[J]. J. Catal.,2005,232:102-107.
    [72]Bastard G. Superlattice band structure in the envelope-function approximation[J]. Phys. Rev. B,1981,24:5693-5697.
    [73]You S, Kim J, Kim S, et al. Gap length effect on electron energy distribution in capacitive radio frequency discharges[J]. Appl. Phys. Lett.,2007,91:45-49.
    [74]Thompson T L, Yates J T. Surface science studies of the photoactivation of TiO2-newphotochemical processes[J]. Chem. Rev.,2006,106:4428-4453.
    [75]Ismail A A, Bahnemann D W, Robben L, et al. Pat-ladium doped porous titania photocatalysts:impact of mesoporous order and crystallinity[J]. Chem. Mater.,2010,22: 108-116.
    [76]Patsoura A, Kondarides D I, Verykios X E. Enhancement of photoinduced hydrogen productionfrom irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes[J]. Appl. Catal. B:Environ.,2006,64:171-179.
    [77]Colmenares J C, Magdziarz A, Aramendia M A, et al. Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and PdYTiO2 systems in the photocatalytic biohydrogen production from glucose solution[J]. Catal. Commun.,2011,16:1-6.
    [78]Arabatzis I M, Stergiopoulos T, Andreeva D, et al. Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation[J]. J. Catal.,2003,220:127-135.
    [79]Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolutionover Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts[J]. Catal. Commun.,2005,6:661-668.
    [80]Subramanian V, Wolf E, KamatP, et al. Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the fermi level equilibration[J]. J. Am. Chem. Soc.,2004,126: 4943-4950.
    [81]Georgekutty R, Seery M K, Pillai S C. A highly efficient Ag-ZnO photocatalyst:Synthesis, properties and mechanism[J]. J. Phys. Chem. C,2008,112:13563-13570.
    [82]Bamwenda G R, Tsubota S, Nakamura T, et al. Photoassisted hydrogen production from a water ethanol solution:a comparison of activities of Au-TiO2 and Pt-TiO2[J]. J. Photoch. Photobio. A,1995,89:177-189.
    [83]Wang C M, Gerische A, Palladium H, et al. Catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compound[J]. J. Am. Chem. Soc.,1992,114:5230-5234.
    [84]Hadjiivanov K, Vasileva E, Kantcheva M & Klissurski D, et al. Spectroscopy study of silver ions adsorbed on titania[J]. Mater. Chem. Phys.,1991,28:367-377.
    [85]Anpo M, Takeuchi M, et al. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal.,2003,216:505-516.
    [86]Maeda K, Wang X, Nishihara Y, et al. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J]. J. Phys. Chem. C,2009,113: 5940-4947.
    [87]Domen K, Kudo A, Onishi T. Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3 [J]. J. Catal.,1986,102:92-98.
    [88]Ko Y G, Lee W Y. Effects of nickel-loading method on the water-splitting activity of a layered NiOx/Sr4Ti3O10 photocatalyst [J]. Catal. Lett.,2002,83:157-160.
    [89]Thaminimulla C. Effect of chromium addition for photocatalytic overall water splitting on Ni-K2La2Ti3O10 [J]. J. Catal.,2000,196:362-365.
    [90]Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles[J]. J. Am. Chem. Soc.,1987,109:6632-6635.
    [91]Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface area phases and photocatalytic activity of TiO2[J]. Angew. Chem. Int. Ed.,2008,47:1766-1769.
    [92]Lv J, Kato T, Li Z, et al. Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles[J]. J. Phys. Chem. C,2010,114:6157-6162.
    [93]Wang D, Zou Z, Ye J. Photocatalytic water splitting with the Cr-Ba2In2O5/In2O3 composite oxide semiconductors[J]. Chem. Mater.,2005,17:3255-3261.
    [94]Tojo T, Zhang Q, Saito F. Mechanochemical synthesis of indium complex oxides (InAO4; A= P, V, Nb, Ta, Sb) and their solid solutions[J]. J. Mater. Sci.,2008,43:2962-2966.
    [95]Huang H, Li D, Lin Q, Shao Yu, et al. Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible-light irradiation[J]. J. Phys. Chem. C,2009,113:14264-14269.
    [96]Niu M, Huang F, Cui L, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanaohetero-structures[J]. Acs. Nano.2010,4:681-688.
    [97]Wang X, Liu G, Chen Z, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carries in ZnO/CdS heterostructures[J]. Chem. Commun.,2009:3452-3454.
    [98]Shen S, Guo L, Chen X, et al. Effect of noble metal in CdS/M/TiO2 for photocatalytic degradation of methylene blue under visible light[J]. Int. J. Green Nanotechnol. Mater.Sci. & Eng.,2010,1:94-104.
    [99]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712.
    [100]Lakshminarasimhan N, Bae E, Choi W. Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method:Role of interparticle charge transfer[J]. J. Phys. Chem. C,2007,111:15244-15250.
    [101]Zhang Z, Zuo F, Feng P. Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution[J]. J. Mater. Chem.,2010,20:2206-2212.
    [102]Bai Y, Li W, Liu C, et al. Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2 (B)) nano-architecture[J]. J. Mater. Chem., 2009,19:7055-7061.
    [103]Jitputti J, Suzuki Y, Yoshikawa S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution[J]. Catal. Commun.,2008,9:1265-1271.
    [104]Sun T J, Qiu J S, Liang C H. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays[J]. J. Phys. Chem. C,2008,112:715-721.
    [105]Zhang J, Yu J G, Jaroniec M. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance[J]. Nano Lett., 2012,12:4584-4589.
    [106]Li Y, Chen G, Zhou C, et al. A simple template-free synthesis of nanoporous ZnS-In2S3-Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light [J]. Chem. Commun.,2009,15:2020-2022.
    [107]Maeda K, Saito N, Lu D, et al. Photocatalytic properties of RuO2-Loaded β-Ge3N4 for overall water splitting [J]. J. Phys. Chem. C,2007,111:4749-4755.
    [108]Guan G, Kida T, Kusakabe K, et al. Photocatalytic activity of CdS nanoparticles incorporated intitanium silicate molecular sieves of ETS-4 and ETS-10 [J]. Appl. Catal. A: Gen,2005,295:71-78.
    [109]Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 Photocatalysts with high crystallinity and surface nanostructure [J]. J. Am. Chem. Soc,2003,125:3082-3089.
    [110]Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containingsulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst [J]. Angew. Chem. Int. Ed.,2005,44:3565-3568.
    [111]Jing D W, Guo L J. Efficient hydrogen production by a composite CdS/Mesoporous zirconiumtitanium phosphate photocatalyst under visible light[J]. J. Phys. Chem. C.,2007, 111:13437-13441.
    [112]Yin J, Zou Z, Ye J. Possible role of lattice dynamics in the photocatalytic activity of BaM1/3N2/3O3(M= Ni, Zn; N= Nb, Ta) [J]. J. Phys. Chem. B,2004,108:8888-8893.
    [113]Ogura S, Kohno M, Sato K, et al. Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M= Na, K, Rb, Cs) [J]. Appl. Surf. Sci.,1997,121:521-527.
    [114]Inoue Y, Asai Y, Sato K. Photocatalysts with tunnel structures for decomposition of water: Part 1-BaTi4O9, a pentagonal prism tunnel structure and its combination with various promoters [J]. J. Chem. Soc. Faraday Trans,1994,90:797-802.
    [115]Sato J, Kobayashi H, Saito N. Photocatalytic activities for water decomposition of Ru02-loaded AInO2 (A=Li, Na) with d10 configuration[J]. J. Photochem. Photobiol. A: Chem.,2003,158:139-144.
    [116]Sato J. Kobayashi H, Inoue Y. Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration[J]. J. Phys. Chem. B.,2004,108:4369-4375.
    [117]Khan S U M, Shahry M A, William B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297:2243-2245.
    [118]Gai Y, Li J, Li S S, et al. Design of narrow-gap TiO2:A passivated codoping approach for enhanced Photo electrochemical activity[J]. Phys. Rev. Lett.,2009,102:036402.
    [119]Maeda K, Takata T, Hara M, et al. GaN:ZnO soliddolution as a photocatalyst for visible-light-driven overall water splitting[J]. J. Am. Chem. Soc,2005,127:8286-8287.
    [120]Li Y, Chen G, Wang Q, et al. Hierarchical ZnS-In2S3-CuS nanosphereswith nanoporous structure:Facile synthesis, growth mechanism, and excellent photocatalytic activity[J]. Adv. Funct. Mater.,2010,20:3390-3398.
    [121]Liu H, Yuan J, Shangguan W, et al. Visible-light-responding BiYWO6 solidsolution for stoichiometric photocatalytic water splitting[J]. J. Phys. Chem. Lett.,2008,112:8521-8523.
    [122]Li Z, Wang Y, Liu J, et al. Photocatalytic hydgen production from aqueousmethanol solutions under visible light over Na(BixTa1-x)O3 solid-solution[J]. Int. J. Hydrogen Energy, 2009,34:147-152.
    [123]Li G, Wang D, Zou Z, et al. Enhancement of visible-light photocatalytic activity of Ag0.7Na0.3NbO3 modified by a platinum complex[J]. J. Phys. Chem. C,2008,112: 20329-20333.
    [124]Wang Y, Wang Y, Xu R. Synthesis of Zn-Cu-CdS sulfide nanospheres with controlled copperlocations and their effects on photocatalytic activities for H2 production[J]. Int. J. Hydrogen Energy,2010,35:5245-5253.
    [125]Lee Y, Teramura K, Hara M, et al. Modification of (Zn1+xGe) (N2Ox) solid solution as avisible light driven photocatalyst for overall water splitting[J]. Chem. Mater.,2007,19: 2120-2127.
    [126]全国能源基础与管理标准化技术委员会.太阳能光催化分解水制氢体系的能量转化效率与量子产率计算(报批稿)[S].国家质量监督检验检疫总局,2009.
    [127]Yu C L, Zhou W Q, Kai Y,etal. Hydrothermal synthesis of hemisphere-like F-doped anatase TiO2 with visible light photocatalytic ctivity[J]. Mater. Sci.,2010,15:580-586.
    [128]Yu C, Yu J C, Chan M. Sonochemical fabrication of fluorinated mesoporous Titanium Dioxide Microspheres [J]. J. Solid State Chem.,2009,182:1061-1069.
    [129]Yu C, Jimmy C Y. A Simple Way to Prepare C-N-codoped TiO2 photocatalyst with visible light activity[J]. Catalysis Letters,2009,129:462-470.
    [130]Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids.Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles[J]. J. Am. Chem. Soc.,1987,109:6632-6635.
    [131]Xu L L, Guan J G, Gao L, Sun Z G. Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposite with enhanced photocatalytic activity for hydrogen evolution[J]. Catal. Commun.,2011,12:548-552.
    [132]Lv J, Kato T, Li Z, et al. Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles[J]. J. Phys. Chem. C,2010,114:6157-6162.
    [133]Wang D, Zou Z, Ye J. Photocatalytic water splitting with the Cr-Ba2In2O5/In2O3 composite oxide semiconductors[J]. Chem. Mater.,2005,17:3255-3261.
    [134]Sun Q, Xu Y. Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water[J]. J. Phys. Chem. C,2010,114:18911-18918.
    [135]Zhang J, Xu Q, Feng Z, et al. Importance of the ralationship between surface area phases and photocatalytic activity of TiO2[J]. Angew. Chem. Int. Ed.,2008,47:1766-1769.
    [136]Huang H, Li D, Lin Q, Shao Yu,et al. Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible-light irradiation[J]. J. Phys. Chem. C,2009,113:14264-14269.
    [137]Niu M, Huang F, Cui L, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanaohetero-structures[J]. Acs. Nano.2010,4:681-688.
    [138]Wang X, Liu G, Chen Z, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carries in ZnO/CdS heterostructures[J]. Chem. Commun.,2009:3452-3454.
    [139]Zhu H, Yang B, Xu J, et al. Construction of Z-scheme type CdS-Au-TiO hollow nanorod arrays with enhanced photocatalytic activity[J]. Appl. Catal. B:Environ.,2009,90:463-469.
    [140]Yu C, Yu J C. Sonochemical fabrication, characterization and Photocatalytic properties of Ag/ZnWO4 nanorod catalyst[J]. Mater Sci and Engin:2009,164:16-22.
    [141]Gerischer H, Helier A. The role of oxygen in photo oxidation of organic molecules on semiconductor particles[J]. J. Phys.Chem,1991,95:5261-5267.
    [142]Hush N S. Electron transfer in retrospect and prospectl:adiabatic electrode processes[J]. J. Electroanal. Chem.,1999,470:170-195.
    [143]Creutz C, Brunschwig B S, Sutin N. Interfacial charge-transfer absorption:semiclassical treatment[J]. J. Phys. Chem. B,2005,109:10251-10260.
    [144]Creutz C, Brunschwig B S, Sutin N. Interfacial charge transfer absorption:application to metal-molecule assemblies[J]. Chem. Phys.,2006,324:244-258
    [145]Creutz C, Brunschwig B S, Sutin N. Interfacial charge-transfer absorption:3-application to semiconductor-molecule assemblies[J]. J. Phys. Chem. B,2006,110:25181-25190.
    [146]Irie H, Kamiya K, Shibanuma T, et al. Visible light-sensitive Cu (11)-grafted TiO2 photocatalysts:activities and x-ray absorption fine structure analyses[J]. J. Phys. Chem. C, 2009,113:10761-10766.
    [147]Yu H, Irie H, Hashimoto K. Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst[J]. J. Am. Chem. Soc,2010,132: 6898-6899.
    [148]Liu M, Qiu X, Miyauchi M, et al. Cu (Ⅱ) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2:an efficient visible light photocatalyst[J]. Chem. Mater.,2011,23: 5282-5286.
    [149]Nosaka Y, Takahashi S, Sakamoto H, et al. Reaction mechanism of Cu (Ⅱ)-grafted visible-light responsive TiO2 and WO3 photocatalysts studied by means of ESR spectroscopy and chemiluminescence photometry [J]. J. Phys. Chem. C,2011,115:21283-21290.
    [150]Qiu X, Miyauchi M, Sunada K, et al. Hybrid CuxO/TiO2 Nanocomposites as risk-reduction materials in indoor environments[J]. ACS nano,2012,6:1609-1618.
    [151]. Yu H, Irie H, Shimodaira Y, et al. An efficient visible-light-sensitive Fe (Ⅲ)-grafted TiO2 photocatalyst[J]. J. Phys. Chem. C,2010,114:16481-16487.
    [152]Zhang J, Nosaka Y. Quantitative detection of OH radicals for investigating the reaction mechanism of various visible light TiO2 photocatalysts in aqueous suspension[J]. J. Phys. Chem. C,2013,117:1383-1391.
    [153]Irie H, Shibanuma T, Kamiya K, et al. Characterization of Cr (Ⅲ)-grafted TiO2 for photocatalytic reaction under visible light[J]. Appl. Catal. B:Environ.,2010,96:142-147.
    [154]Lee M Y, Yong K J. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays[J]. Nanotech,2012,23:1940-1945.
    [155]Zhang J, Yu J G, Zhang Y, et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer[J]. Nano. lett., 2011,11:4774-4779.
    [156]Yang H, Shi R, Zhang K, et al. Synthesis of WO3/TiO2 nanocomposites via sol-gel method[J]. Alloy Compd.,2005,398:200-202.
    [157]Shinguu H, Bhuiyan M M H, Ikegami T, et al. Preparation of TiO2/WO3 multilayer thin film by PLD method and its catalytic response to visible light[J]. Thin Solid Films,2006,506: 111-114.
    [158]Shifu C, Lei C, Shen G, et al. The preparation of coupled TiO2/WO3 photocatalyst by ball milling[J]. Powder technol.,2005,160:198-202.
    [159]Akurati K K, Vital A, Dellemann J P, et al. Flame-made TiO2/WO3 nanoparticles:Relation between surface acidity, structure and photocatalytic activity[J]. Appl. Catal. B Environ., 2008,79:53-62.
    [160]Ke D, Liu H, Peng T, et al. Preparation and photocatalytic activity of TiO2/WO3 nanocomposite particles[J]. Mater. Lett.,2008,62:447-450.
    [161]Xiao M, Wang L, Huang X, et al. Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties[J]. J. Alloy Compd.,2008,470:486-491.
    [162]Tatsuma T, Saitoh S, Ngaotrakanwiwat P, et al. Energy storage of TiO2-WO3 photocatalysis systems in the gas phase[J]. Langmuir,2002,18:7777-7779.
    [163]Wang C,Zhao J C,Wang X M, et al. Preparati on characterization and photoeatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts[f]. Appl. Catal. B:Environ.,2002,39: 269-279.
    [164]Georgieva J, Armyanov S, Valova E, et al. Enhanced photocatalytic activity of electro-synthesised tungsten trioxide-titanium dioxide bi-layer coatings under ultraviolet and visible light illumination[J]. Electrochem. Commun.,2007,9:365-370.
    [165]Kawahara T, Konishi Y, Tada H, et al. A patterned TiO2 (Anatase)/TiO2 (Rutile) bilayer-Type photocatalyst:effect of the anatase/rutile junction on the photocatalytic activity[J]. Angewe. Chem.,2002,114:2811-2813.
    [166]Ozawa T, Iwasaki M, Tada H, et al. Low-temperature synthesis of anatase-brookite composite nanocrystals:the junction effect on photocatalytic activity[J]. J. colloid int. Sci., 2005,281:510-513.
    [167]Ardizzone S, Bianchi C L, Cappelletti G, et al. Tailored anatase/brookite nanocrystalline TiO2:the optimal particle features for liquid-and gas-phase photocatalytic reactions[J]. J. Physic. Chem. C,2007,111:13222-13231.
    [168]Ye F X, Tsumura T, Nakata K, et al. Dependence of photocatalytic activity on the compositions and photo-absorption of functional TiO2-Fe3O4 coatings deposited by plasma spray[J]. Mater. Sci & Eng:B,2008,148:154-161.
    [169]Kim H G, Jeong E D, Borse P H, et al. Photocatalytic ohmic layered nanocomposite for efficient utilization of visible light photons[J]. Appl. Phys. Rev. lett.2006,89:064103.
    [170]Xiao G, Wang X, Li D, et al. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light[J]. J. Photochem. Photobiol. A:Chem.,2008,193:213-216.
    [171]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites[J]. Adv. Mater.,2009,21:2233-2239.
    [172]Min S, Wang F, Han Y. An investigation on synthesisand photocatalytic activity of polyani-line sensitized nanocrystalline TiO2 composites[J]. Mater. Sci,2007,42:9966-9967.
    [173]Zhang H, Zong R L, Zhao J C, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI[J]. Environ. Sci & Techno.,2008, 42:3803-3807.
    [174]Li J, Zhu L H, Wu Y H, et al. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization [J]. Polymer,2006,47:7361-7367.
    [175]Serpone, Nick, Ezio Pelizzetti, et al. Photocatalysis:fundamentals and applications. New York:Wiley,1989,35:603-605.
    [176]Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Mater.,2006,5:782-786.
    [177]Nayak J, Sahu S N, Kasuya J, et al. CdS-ZnO composite nanorods:synthesis, characterizati-on and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid[J]. Appl. Surf. Science,2008,254:7215-7218.
    [178]Zhang J, Xu Q, Feng Z, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angew. Chem. Inter. Ed.,2008,47:1766-1769.
    [179]Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. J.Catal.,2009,266:165-168.
    [180]Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. J. Am. Chem. Soc.,2008,130: 7176-7177.
    [181]Zong X, Wu G, Yan H, et al. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation[J]. J. Physic. Chem. C,2010,114:1963-1968.
    [182]Rodney F J, David J C-H. Photochemical production of hydrogen from water and nucleophilic platinum metal complexes[J]. Chem. Commun.,1981,46:58-59.
    [183]Kalyanasundaram K. Photochemistry and sensitized evolution of hydrogen from water using water-soluble cationic porphyrins. Tetrakis trimethy laminopheny porphyrinatozinc and its free base[J]. J. Chem. Soc. Faraday. Trans.2,1983,79:1365-1374.
    [184]Mills. A, Douglas. P and Russell. T. Kinetic study of the reduction of water to hydrogen by reduced methyl viologen mediated by platinised alumina [J]. J. Chem. Soc. Faraday. Trans., 1990,86:1417-1423.
    [185]Chung K H, Park D C. Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts[J]. J. Mol. Catal. A-Chem.,1998,129:53-59.
    [186]Zou Z, Ye J, Sayama K, et al. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTai-xNbxO (0    [187]Maeda K, Teramura K, Domen K, et al. Photocatalyst releasing hydrogen from water[J]. Nature,2006,440:295-298.
    [188]Maeda K, Teramura K, Domen K. Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(Ni-xO) solid solution for overall water splitting under visible light[J]. J. Catal., 2008,254:198-204.
    [189]Liu H, Yuan J, Shangguan W, et al. Visible-light-responding BiYWOs solid solution for stoichiometric photocatalytic water splitting [J]. J. Phys. Chem. C,2008,112:8521-8523.
    [190]Licht S., Wang B., Mukerji S., et al. Over 18% solar energy conversion to generation of hydrogen fuel:theory and experiment for efficient solar water splitting [J]. Int. J. Hydrogen Energy,2001,26:653-659.
    [191]Nowotny J.Sorrell CC, Sheppard LR, et al. Solar-hydrogen:environmentally safe fuel for the future[J]. Int. J. Hydrogen Energy,2005,30:521-544.
    [192]Zou Z, Ye J, Arakawa H. Surface characterization of nanoparticles of NiOx/In0.9Ni0.1Ta04: effects on photocatalytic activity[J]. J. Phys. and Chem. B,2002,106:13098-13101.
    [193]Zou Z, Arakawa H. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts[J]. J. Photochem. Photobiol., A: Chem,2003,158:145-147.
    [194]Lei Z B, You W S, Liu M Y, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalystsynthesized by hydrothermal method [J]. Chem Commun,2003,17: 2142-2143.
    [195]Li Y, Chen G, Wang Q, et al. Hierarchical ZnS-In2S3-CuS nanospheres with nanoporous structure:facile synthesis growth mechanism and excellent photocatalytic activity [J]. Adv. Funct. Mater.,2010,20:3390-3398.
    [196]Linsebigler A, Lu L G, Jr J, et al. Photocatalysis on TiO2 surfaces:Principles mechanisms, and selected results[J]. Chem. Rev.,1995,95:735-758.
    [197]Wang R, Hashimoto K, Fujishima A, et al. Photo generation of highly amphiphilic TiO2 surfaces[J]. Adv. Mater.,1998,10:135-138.
    [198]Khaselev O, Bansal A, Turner J A. High-efficiency integrated multijunction photo voltaic /electrolysis systems for hydrogen production[J]. Int. J. Hydrogen Energy,2001,26:127-132.
    [199]Chen X B, Liu L, Yu P Y, et al. Increasing solar absorptionfor photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science,2011,331:746-750.
    [200]Li X Z, Li F B. Study of Au/Au3+-TiO2 Photocatalysts toward visible photo oxidation for water and wastewater treatment[J]. Environ. Sci. Technol.,2001,35:2381-2387.
    [201]Hara M, Kondo T, Domen K, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chem. Commun.,1998,3:357-358.
    [202]Wu N L, Lee M S, Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. Int. J. Hydrogen Energy,2004,29:1601-1605.
    [203]Choi H J, Kang M, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2[J]. Int. J. Hydrogen Energy, 2007,32:3841-3848.
    [204]GombacV, Sordelli L, Montini T. CuOx-TiO2 Photocatalysts for H2 Production from ethanol and glycerol solutions[J]. J. Physic. Chem.A,2010,114:3916-3925.
    [205]Li L K, Xu L L, Shi W D, Guan J G. Facile preparation and size-dependent photocatalytic activity of Cu2O nanocrystals modified titania for hydrogen evolution[J]. Int. J. Hydrogen Energy,2013,32:3841-3848.
    [206]Lalitha K, Sadanandam G, Kumari VD, et al. Highly stabilized and finely dispersed Cu2O/TiO2:a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:water mixtures[J]. J. Phys. Chem. C,2010,114:22181-22189.
    [207]Nian J N, Hu C C, Hsisheng T. Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination[J]. Int. J. Hydrogen Energy,2008, 33:2897-2903.
    [208]Somasundaram S, Chenthamarakshan C, Raman N & Tacconi N R. Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors[J]. Int. J. Hydrogen Energy,2007,32:4661-4669.
    [209]Li L F, Zhang M L. Preparation, characterization and photocatalytic property of Cu2O-TiO2 nanocomposites[J]. Int. J. Photoenergy,2012,15:256-259.
    [210]Chen S F, Zhang S J, Liu W. Study on the photocatalytic activity of p-n junction photocatalyst Cu2O/TiO2[J]. J. Nanosci. Nanotech.,2009,9:4397-4398.
    [211]Hou Y, Li X Y, Zhao Q D, et al. Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of itsphotoelectrochemical behavior[J].Appl. Phys. Lett.,2009,95: 3108-3110.
    [212]Zheng X J, Yong J W, Li F W, et al. Photocatalytic H2 production from acetic acid solution ogel CuO/SnO2 nanocomposites under UV irradiation[J].Int. J. Hydrogen Energy,2010,35: 11709-11718.
    [213]Hu C C, Nian J N, Teng H. Electrodeposited P-type Cu2O photocatalyst for H2 evolution from water reduction in thepresence of WO3[J].Sol Energy Mater. Solar Cell,2008, 92:1071-1076.
    [214]Li Z H, Liu J W, Wang DJ, et al. Cu2O/Cu/riO2 nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity[J]. Int. J. Hydrogen Energy, 2012,37:6431-6417.
    [215]Yu J G, Hai Y, Jaroniec M. Photocatalytic hydrogen production over CuO-modified titania[J]. J. Colloid Interf. Sci.,2011,357:223-228.
    [216]Hou Y, Li X Y, Zou X J, et al. Photoeletrocatalytic activity of a Cu2O-Loaded Self-Organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation[J]. Environ. Sci. Technol.,2009,43:858-863.
    [217]Wang Y B, Zhang Y N, Zhao G H, et al. Design of a Novel Cu2O/TiO2/Carbon Aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol[J]. Appl. Mat. Infer,2012,4:3965-3972.
    [218]Yang L X, Luo S L, Li Y, et al. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst [J]. Environ. Sci. Technol., 2010,44:7641-7646.
    [219]Zhang J Y, Zhu H L, Zheng S K, et al. TiO2 film/Cu2O microgrid heterojunction with photocatalytic Activity under Solar Light Irradiation[J]. Appl. Mater. Interf,2009,1: 2111-21114.
    [220]Wu Y Q, Lu G X, Li S B. The role of Cu (Ⅰ) species for photocatalytic hydrogen generation over CuOx/TiO2[J]. Catal. Lett.,2009,133:97-105.
    [221]Senevirathna M K, Pitigala P, Tennakone K. Water photoreduction with Cu2O quantum dots on TiO2nano-particles[J]. J. Photoch. Photobio. A,2005,171:257-259..
    [222]Yong X, Martin A A S. The absolute energy positions of conduction and valence bands ofselected semiconducting minerals[J]. Am. Mineral.,2000,85:543-546.
    [223]Xu L L, Guan J G, Shi W D. Enhanced interfacial charger transfer and visible photocatalytic activity for hydrogen evolution of Ta2O5-based mesoporous composite by the incorporation of quantum-sized CdS[J]. Chem. Cat. Chem.,2012,4:1353-1359.
    [224]Montini T, Gombac V, Sordelli L, et al. Nanostructured Cu/TiO2 photocatalysts for H2 production from ethanol and glycerol aqueous solutions[J]. Chem. Cat. Chem.,2011,3: 574-577.
    [225]Huang L, Peng F, Ohuchi F S. XPS study of band structures at Cu2O/TiO2 heterojunctions interface[J]. Surf. Sci.,2009,603:2825-2834.
    [226]Zhang J, Yu J G, Zhang Y M, et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer[J]. Nano Lett.,2011,11:4774-4779.
    [227]Hurum D C, Agrios A G, Gray K A, et al. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR[J], J. Phys. Chem. B,2003,107:4545-4549.
    [228]Rodriguez J A, Liu G, Jirsak T, et al. Activation of gold on titania:Adsorption and reaction of SO2 on Au/TiO2(110). J. Am. Chem. Soc.,2002,124:5242-5250.
    [229]Xu L L, Guan J G, Shi W D, et al, Heterostructured mesoporous In2O3/Ta2O5 composite photocatalysts for hydrogen evolution:Impacts of In2O3 content and calcination temperature[J]. J. Colloid Interf. Sci.,2012,377:160-168.
    [230]Park Y, Kang S H, Choi W. Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion[J]. Phys. Chem. Chem. Phys.,2011,13:9425-9431.
    [231]Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment[J]. Appl. Catal. A,2002,228:15-27.
    [232]Yu J C, Yu J G, Ho W K, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem. Mater.,2002,14:3808-3816.
    [233]Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method[J]. Thin Solid Films,2000,379:7-14.
    [234]Zhang W F, Zhang M S, Yin Z, et al. Photoluminescence in anatase titanium dioxide nanocrystals[J]. Appl. Phys. B,2000,70:261-265.
    [235]Xu S P, Ng J W, Zhang X W, et al. Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water [J]. International Journal of Hydrogen Energy,2010,35:5254-5261.
    [236]Yu J G, Ran J R, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J], Int. J. Hydrogen Energy,2011,4:1364-1371.
    [237]Shan J, Pulkkinen P, Vainio U, et al. Synthesis and characterization of copper sulfide nanocrystallites with low sintering temperatures[J]. J. Mater. Chem.,2008,18:3200-3208.
    [238]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst[J]. Chem. Commun.,2000:1371-1372.
    [239]Arai T, Senda S I, Sato Y, et al. Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light[J]. Chem. Mater.,2008, 20:1997-2000.
    [240]Tsuji, Kudo A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts[J]. J. Photochem. Photobiol. A,2003,156: 249-252.
    [241]Bang J H, Helmich R J, Suslick K S. Nanostructured ZnS:Ni2+photocatalysts prepared by ultrasonic spray pyrolysis[J]. Adv. Mater.,2008,20:2599-2603.
    [242]Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution reaction from aqueous solutions overhand structure-controlled (AgIn)xZn2(i-x)S2 solid solution photocatalysts with visible-light responseand their surface nanostructures [J]. J. Am. Chem. Soc.,2004,126: 13406-13413.
    [243]Tsuji I, Kato H, Kobayashi H, et al. Photocatalytic H2 evolution under visible-light irradiation overband-structure-controlled (CuIn)xZn2(i-x)S2 solid solutions [J]. J. Phys. Chem. B,2005,109:7323-7329.
    [244]Kai Z,Guo L J, Significantly improved photocatalytic hydrogen production activity over Cd(1-x)ZnxS photocatalyst prepare by a novel thermal sulfuration method[J]. Inter.J. Hydrogen Energy,2007,32:4685-4691.
    [245]Tsuji I, Kato H, Kudo A. et al, Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions[J]. J. Phys. Chem. B,2004, 108:8992-8995.
    [246]Tsuji I, Kato H, Kudo A, Photocatalytic hydrogen evolutionon ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands[J]. Chem. Mater.,2006,18: 1969-1975.
    [247]Yu J G, Zhang J, Jaroniec M, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-Sensitized Zn1-xCdxS solid solution[J].Green Chem., 2010,12:1611-1614.
    [248]Zhang W, Zhong Z Y, Wang Y S, et al. Doped solid solution:(Zno.95Cuo.o5)(1-x)CdxS nanocrystals with high activity for H2 evolution from aqueous solutions under visible light[J]. J. Phys. Chem. C,2008,112:17635-17642.
    [249]Zhang W, Xu R, Surface engineered active photocatalysts without noble metals: CuS-ZnxCd1-xS nanospheres by one-step synthesis[J]. Int. J. Hydrogen Energy,2009,34: 8495-8503.
    [250]Liu G J, Zhao L, Ma L J, et al.Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1-x-yS catalyst[J]. Catal. Commun.,2008,9:126-130.
    [251]Shen S H, Zhao L, Zhou Z H, et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation[J]. J. Phys. Chem. C,2008,112: 16148-16155.
    [252]Li Y X, Chen G, Wang Q, et al. Hierarchical ZnS-In2S3-CuS nanospheres with nanoporous structure:facile synthesis, growth mechanism, and excellent photocatalytic activity[J]. Adv. Func. Mater.,2010,20:3390-3398.
    [253]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solution photocatalysts[J]. Catal. Lett.,1999,58:241-243.
    [254]Ikeda S, Nakamura T, HaradaT, et al. Multicomponent sulfides as narrow gap hydrogen evolution photocatalysts[J]. Phys. Chem. Phys.,2010,42:13943-13949.
    [255]Dloczik L, Konenkamp R. Nanostructure transfer in semiconductors by ion exchange[J]. Nano Lett.,2003,3:651-653.
    [256]Li Y D, Liao H W, Ding Y, et al. Nonaqueous synthesis of CdS nanorod semiconductor[J]. Chem. Mater,1998,10:2301-2303.
    [257]Liu H P, Zhang K, Jing D W, et al. SrS/CdS composite powder as a novel photocatalyst for hydrogen production under visible light irradiation[J]. Int. J. Hydrogen Energy,2010,35: 7080-7086.
    [258]Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. J. Catal.,2009,266:165-168.
    [259]Reber J F, Meier K. Photochemical production of hydrogen with zinc sulfide suspensions[J]. J. Phys. Chem.,1984,88:5903-5913.
    [260]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem.,1985,57,603-619.
    [261]Yu J G, Fan J J, Cheng B. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films[J]. J. Power Sources,2011,196,7891-7898.
    [262]Yu J G, Yu J C, Leung K, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal.,2003, 217,69-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700