用户名: 密码: 验证码:
复杂波形条件下剩余电流检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剩余电流保护技术广泛地应用于低压电网中,以防止人身触电、电气火灾及由接地故障引起的人身伤害与电气设备损坏事故。随着智能电网的发展和用电设备的不断增多,用电设备类型也呈现多样化,电力电子设备不断增多。电力电子设备发生故障时,所产生的剩余电流不再是单一的工频正弦电流,而是具有脉动直流分量、甚至是平滑直流分量,同时在某些场合下剩余电流信号的频率高达1000Hz,甚至更高,传统的剩余电流保护技术无法用于复杂波形剩余电流的保护。
     一般采用铁心电磁式电流互感器(电磁式电流互感器)、霍尔电流传感器及磁调制式电流互感器进行电流的检测,非正弦剩余电流是一种弱差值信号,普通的电流检测方法不能对其进行有效地检测。论文在分析了电流检测原理与技术的基础上,提出一种电压型磁调制式交直流剩余电流检测技术,将剩余电流耦合到激磁电流中,通过激磁电流的检测,实现了复杂剩余电流的检测与保护,克服了传统磁调制式电流检测的缺陷。
     根据磁性材料磁化特性曲线,建立了交直流剩余电流检测数学模型,当激磁电流的激磁频率远大于剩余电流中最高谐波频率时,剩余电流只与激磁电流的低频分量有关,这为复杂剩余电流检测提供了依据。为分析激磁电流的动态变化过程,论文采用了两种磁化曲线描述方法,即分段线性和反正切非线性描述方法。在磁化曲线分段线性化的条件下,推导出基于电压型磁调制原理的激磁电流动态变化过程的数学描述模型,为剩余电流互感器的设计提供一种数学分析方法;在采用反正切函数描述磁化特性曲线时,采用Simulink软件仿真了基于电压型磁调制原理的激磁电流动态变化过程,可以更准确描述激磁电流的变化过程。
     在分析复杂剩余电流的频谱特征的基础上,提出了从激磁信号中提取复杂剩余电流的解调方法,包括基于全相位傅里叶变换(all phase FFT, apFFT)的软件解调方法和基于低通滤波的硬件解调方法,实现了复杂剩余电流的准确检测。通过对激磁电流信号进行采样和A/D转换,并采用apFFT对采集数据进行处理,可以解决频谱泄漏问题,通过软件方法将剩余电流信号从激磁电流信号中分离出来;为降低采样和A/D转换的要求,利用剩余电流与激磁电流中低频分量有关的特点,采用低通滤波的硬件方法将剩余电流信号从激磁电流信号中分离出来,实现剩余电流的检测。
     根据电压型磁调制原理,采用apFFT软件解调方法和低通滤波硬件解调方法设计了两种不同的剩余电流保护器。在硬件设计中,包括了剩余电流互感器的设计、信号检测电路的设计、低通滤波器的设计、电源及脱扣电路等的设计;在软件设计中,根据解调方法的不同,基于微处理器编写了不同的控制软件,其中包括apFFT的解调软件设计,并根据剩余电流值的不同,采用了不同的处理方法,既可以实现在大剩余电流下的快速动作,又可以防止在小剩余电流下的误动作,提高了样机的可靠性。
     开展测试验证试验,对设计的磁调制式剩余电流互感器进行了测试,包括了测量范围、线性度及频率检测范围的测试,基于电压型磁调制原理设计的剩余电流互感器满足复杂剩余电流检测的要求;对基于apFFT的软件解调方法和基于低通滤波的硬件解调方法设计的剩余电流保护器进行测试,两种方法下的剩余电流保护器的动作特性满足设计要求,测试结果与理论分析相吻合。
Residual current devices (RCDs) are widely used in low voltage power system to preventpersonal electric shock, electrical fires, personal injury and electrical equipment damages causedby ground fault. With the development of smart grid and increasing number of electricalequipment, and the widely employment of power electronics products, the types of electricalequipment are diversified. When power electronic equipments fail, the residual current generatedis not just sinusoidal, but also includes pulsating DC, or even smooth DC. At the same time, thefrequency of residual current can be as high as1000Hz in some cases, or even higher. Therefore,the traditional technology is no longer applicable. Electromagnetic current transformers, Hallcurrent sensors and magnetic modulation current transformer are widely used in currentdetecting. However, non-sinusoidal residual current is a kind of weak signal, and the traditionalcurrent detecting methods are no longer applicable. Based on analysis of current detectingprinciples and techniques, a kind of voltage source magnetic modulated AC/DC residual currentdetecting method is introduced. The detection and protection for complicated residual currentcan be achieved, without defects of traditional magnetic modulation current detection method, bydetecting the excitating current, which is coupled to the residual current.
     A mathematical model of AC/DC residual current detection is built based on coremagnetization curve. Residual currents are only related to the low frequency components ofexciting current when the frequency of exciting current is much higher than that of the highestharmonic of exciting current. Therefore, it provides a basis for measurement of residual currentsunder complicated wave conditions. In order to analyze the dynamic process of exciting current,two kinds of models of core magnetization curve, which are called piecewise-linear model andanti-tangent nonlinear model, are used. The mathematical model of dynamic process of exciting current based on voltage type magnetic modulation principle was deduced and it provides amathematical method for design of residual current transformer by using piecewise-linear model.The dynamic process of exciting current based on voltage type magnetic modulation principlewas simulated using Simulink with anti-tangent nonlinear model. In addition, it provides a moreaccurate description of variation of exciting current.
     The characteristics of frequency spectrum of residual currents under complicated conditionsare analyzed. Moreover, the demodulation methods to extract signals are present, includingsoftware demodulation method based on all phase FFT (apFFT) and hardware demodulationmethod based on low-pass filter and residual current detection under complicated waveformconditions are implemented. The problem of frequency leakage can be solved effectively by A/Dconversion and digital signal process by using apFFT for the exciting current. In order to reducethe requirement for A/D conversion and digital sampling, a hardware low-pass filter is used toextract the residual current from exciting current.
     Two types of RCDs are designed based on apFFT software demodulation method andhardware low-pass filter method. Residual current transformer, signal detecting circuit, low-passfilter design, power supply circuit and trip circuit are including in hardware design. Differentcontrol software is designed separately according different types of demodulation methodsincluding apFFT software demodulation. And different signal processing methods are used toimplement residual current instantaneous protection as well as reducing malfunction. Thus, thereliability of RCD is improved.
     Finally, prototypes based on apFFT and low pass filter are tested separately, includingdetecting range test, linearity test and frequency ranges test. In addition, it is experimentallyverified test that the prototypes can meet the requirements of relevant standards. Meanwhile, testresults are consistent with the theoretical analyses, which verify the correctness of the simplifiedmathematical model for further.
引文
[1]陈小荣,李小文.我国电气火灾规律特点的数据统计分析及应用[J].科技信息,2011,No.22:381-382.
    [2]张贤,张悦.北京市2007年1月1日至20日火灾分析[J].安全,2007, No.2:58.
    [3]陈磊.电气火灾监控系统的设置[J].现代建筑电气,2011, No.2:43-45.
    [4]常亮,王东平.建筑电气短路火灾的分析与预防[J].黑龙江科技信息,2011, No.5:316.
    [5]田宏等.研究电气火灾原因提高安全性[J].消防技术与产品信息,2011, No.1:76-79.
    [6]王建华.预防农电人身触电事故的若干措施[J].中国水能及电气化,2009, No.1:84-87.
    [7]张磊.剩余电流动作保护装置对电气火灾的防护作用[J].农村电气化,2004, No.12:7,11.
    [8]岳大为.新型漏电保护技术研究[D].河北工业大学,2009.
    [9]朱遵义,刘静波.剩余电流互感器的特性分析[J].变压器,2007, No.5:34-37.
    [10]李耀天.漏电开关与磁性材料[J].金属功能材料,2000,No.2:18-25.
    [11]周纲. A型剩余电流保护器[J].电气时代,2008, No.4:114-116.
    [12] IEC/TR60755General requirements for residual current operated protective devices[S],2008.
    [13] IEC/TS60479-2ed3.0Effects of current passing through the human beings and livestock-Part2:Special aspects[S].2007.
    [14] Colin Bruno, Chillet Christian, Kedous-Lebouc Afef, et al. Effects of magnetic core geometry on falsedetection in residual current sensor[J], Journal of Magnetism and Magnetic Materials,2006,304:804-806.
    [15] Colin B., Kedous-Lebouc A., Chillet C., Mas P.. Wound magnetic core consequences on false residualcurrents[J], The International Journal for Computation and Mathematics in Electrical and ElectronicEngineering,2008,27(1):246-255.
    [16] Liew, A.C.. Nuisance trippings of residual current circuit breakers or ground fault protectors of powersources connected to computer and electronic loads[J], Electric Power Systems Research,1990,20(1):23-30.
    [17]李奎,陆俭国,武一,岳大为等.自适应漏电保护技术及其应用[J].电工技术学报,2008, Vol.23No.10:53-57.
    [18]武一,李奎,岳大为等.消除剩余电流保护动作死区的理论与方法[J].电工技术学报,2008, Vol.23,No.6:44-49.
    [19]李奎,陆俭国,武一.消除漏电保护死区的新技术及其试验方法[J].电力系统保护与控制,2008,36(20):28-32.
    [20]吴会琴,陈宝新,朱才荣.一种无死区的电流脉冲型漏电保护器的设计[J].机床电器,2005, No.2:8-10.
    [21]田萍果,刘文汉.解决漏电保护的死区问题[J].科技广场,2008, No.5:224-225.
    [22]周喜章.鉴相鉴幅型漏电保护的死区问题[J].低压电器,2001, No.1:15-16.
    [23] S. Czapp, Protection against electric shock using residual current devices in circuits with electronicequipment[J]. Electronics And Electrical Engineering,2007,4(76):51-54.
    [24] Jacques Schonek. Residual current device in LV[M].Cahier Technique Schneider Electric.2006.
    [25] R Niehaus. Protection against electric shock through indirect contact by appropriate choice of earthconductor protection in low-voltage network[A].CIRED13thinternational Conference on Electricitydistribution[C].Brussels,Belgium,May8-11,1995,Vol.2:2611-2616.
    [26]周喜章.鉴相鉴幅型漏电保护的死区问题[J].低压电器,2001,No.1:15-16.
    [27]王泽.家保级低功耗智能漏电保护器芯片的设计[D].浙江大学硕士学位论文,2006.2.
    [28]谢俊杰.一种新型低功耗智能漏电保护器芯片的设计[D].浙江大学硕士学位论文,2003.2.
    [29] IEC/TS60479-1Ed.4.0Effects of current on human beings and livestock-Part1: General aspects[S],2005.
    [30] IEC/TS60479-3ed1.0Effects of current on human beings and livestock-Part3: Effects of currentspassing through the body of livestock[S],1998.
    [31] IEC TR60479-4Effects of current on human beings and livestock-Part4:Effects of lightning strokes[S],2011.
    [32]王厚余.低压电气装置的设计安装和检验(第二版)[M].北京:中国电力出版社,2007:1-4.
    [33]刘金琰,季慧玉.剩余电流保护器的IEC标准最新动态研究[J].低压电器,2008, No.23:59-61.
    [34]刘金琰.国际电击防护的最新标准工作动态[J].低压电器,2009, No.1:66-67.
    [35] GB/Z6829剩余电流保护器的一般要求[S],2008.
    [36] Lee, T.M. The effects of harmonics on the operational characteristics of residual-current circuitbreakers[C]. Proceedings of EMPD '95,1995, vol.2:548-553.
    [37] Xiang Luo; Du, Y.; Wang, X.H.; Chen, M.L.; Tripping characteristics of residual current devices undernon-sinusoidal currents[J]. IEEE T IND APPL., vol.47, no.3, pp.1515-1521, May-June2011.
    [38] Czapp, Stanislaw. The impact of higher-order harmonics on tripping of residual current devices[C].13thInternational Power Electronics and Motion Control Conference. Sep.1-3,2008.Poznan, Poland,:2059-2065.
    [39] Czapp, Stanislaw. The effect of earth fault current harmonics on tripping of residual current devices[C].Proceedings of the International School on Nonsinusoidal Currents and Compensation. June10-13,Lagow, Poland:1-6.
    [40]张冠英,杨晓光,李奎等.剩余电流互感器的设计与特性分析[J].天津大学学报,2011,44(6):547-552.
    [41]李耀天.漏电开关与磁性材料[J].金属功能材料,2000, No.2:18-25.
    [42] S. Czapp. The Impact of DC Earth Fault Current Shape on Tripping of Residual Current Devices[J].Electronics and electrical engineering,2008, No.4:9-12.
    [43]白韶红.集成霍尔传感器的发展[J].自动化仪表,2003, No.3:1-9.
    [44]瞿华富,唐涛.基于霍尔效应的可调式直流电压传感器的研究[J].四川大学学报,2006, No.6:1300-1304.
    [45]李映辉.霍尔电流传感器在智能仪表电气参数测试中应用[J].工业计量,2001, No.1:255-257.
    [46]鲁光辉.霍尔电流传感器的性能及应用[J].四川文理学院学报,2007, No.2:40-42.
    [47]贾秀芳,黄辉福.霍尔磁势平衡原理在检测直流小电流中的应用[J].东北电力大学学报,1999,No.4:15-18.
    [48]王奕军.霍尔传感器[J].电气传动,2000, No.10:26-28.
    [49]李大明.磁场测量讲座[J].电测与仪表,1990, No.2:42-27.
    [50]李大明.磁场测量讲座——第三讲磁饱和法[J].电测与仪表,1990, No.1:42-48.
    [51] Vainshtein, A. Isolation electromagnetically coupled DC and AC current sensor and detector[J]. Circuitsand Systems,1994,5(5):69-72.
    [52] Sonoda, T. An AC and DC current sensor of high accuracy[J]. Industry Applications,1992,28(5):1087-1094.
    [53] Takahiro Kudo, Dev. Center. Wide-Range AC DC Earth Leakage Current Sensor using fluxgate withself-excitation system[C]. IEEE Sensors,2011:512-515.
    [54]张学孚,陆怡良.磁通门技术[M].北京:国防工业出版社,1995.
    [55]蔡宣三.可控饱和电抗器主回路谐波问题[J].电力电子,2008,No.1:3-9.
    [56]王秉钧.含铁芯电感线圈磁链、励磁电流特性曲线的转换问题.88-94.
    [57]涂有瑞.飞速发展的磁传感器[J].传感器技术,1999,Vol.18No.4:5-8.
    [58]王连加.多项式拟合铁磁材料的磁滞回线曲线[J].大学物理实验,2006,Vol.19No.3:58-61.
    [59]陈绪轩,田翠华,陈伯超,刘耀中,袁佳.多级饱和磁阀式可控电抗器谐波分析数学模型[J].电工技术学报,2011,Vol.26No.3:57-64.
    [60]王敬,耿英三,姚建军,王建华.多传感器电流测量系统信号处理算法研究[J].中国电机工程学报,2005,Vol.25No.22:130-135.
    [61]李维波,毛承雄,陆继明,余翔.单磁芯可控饱和和电抗器控制量研究[J].电工技术学报,2005,Vol.20No.2:46-50.
    [62]郭来祥.磁通门磁计的一种计算法[J].仪器仪表学报,1981,Vol.2No.2:10-16.
    [63]褚江,任士焱.磁势自平衡回馈补偿式直流传感器难点研究[J].电测与仪表,2006,Vol.43No.490:4-7.
    [64]马爱清,任士焱,周术,崔林.磁势自平衡回馈补偿式直流传感器建模与仿真[J].华中科技大学学报,2003,Vol.31No.11:10-11.
    [65]陈伯超,陈维贤.磁阀式可控电抗器的数学模型及特性[J].武汉水利电力大学学报,1995,Vol.28No.3:293-298.
    [66]董希林.磁调制式直流放大器的动态性能分析[J].南通工学院学报,2000,11-15.
    [67]揭秉信.磁调制器的理论分析与计算[J].仪器仪表学报,1982,Vol.3No.1:57-63.
    [68]李前,毛承雄,陆继明,李维波.磁调制器的建模与仿真研究[J].传感器技术,2005,Vol.24No.2:29-34.
    [69]田铭兴,励庆孚,王曙鸿.磁饱和式可控电抗器的等效物理模型及数学模型[J].电工技术学报,2002,Vol.17No.4:18-35.
    [70]田铭兴,励庆孚.磁饱和式可控电抗器的等效电路及仿真分析[J].电工技术学报,2003,Vol.18No.6:64-67.
    [71] Ponjavic, M.M.; Duric, R.M.; Nonlinear Modeling of the Self-Oscillating Fluxgate Current Sensor[J].IEEE Sensor Journal.,2007, vol.7, pp.1546–1553.
    [72] Predrag Pejovi′c. A Simple Circuit for Direct Current Measurement Using a Transformer[J]. IEEEtransactions on circuits and systems-I: fundamental theory and application,1998,Vol.45, No.8:830-837.
    [73] Min Yingzong. An AC/DC sensing method based on adaptive magnetic modulation technology withdouble feedback properties[C],2011IEEE International Workshop on Applied Measurements for PowerSystems,2011.9:48-52.
    [74] P. Ripka. Current sensors using magnetic materials [J]. Journal of Optoelectronics and AdvancedMaterials,2004, No.2:587-592.
    [75] A.Q. Ma. DC sensor based on magnetic potential self-balance and feedback compensation [J]. IETScience, Measurement and Technology,2009,No.31:312-316.
    [76] James Lenz. Magnetic sensors and their applications [J]. IEEE Sensors journal,2006, No.3:631-649.
    [77]刘诗斌.微型智能磁航向系统研究[D].2001,西北工业大学.
    [78]黄浩.直流大电流传感器的研究[D].2004,华中科技大学.
    [79] Filanovsky, I.M, V. A. Piskarev. Sensing and measurement of DC current using a transformer andRL-multivibrator[J]. IEEE Transactions on Circuits and Systems,1991,38(11):1366-1370.
    [80]赵彩虹,姜克志,盛文利.磁调制式固定偏差直流系统绝缘在线检测[J].吉林电力.2000,No.6:33-49.
    [81]向小民,曾维鲁,高学军.一种新式磁调制直流电流测量方法[J].华中理工大学学报.1998,26(12):65-67.
    [82]盛文利.磁调制式直流传感器的简化设计与应用[J].电子世界.2011,No.07:30-32.
    [83]王雪楠,王亚飞.基于磁调制原理的直流剩余电流测量装置[C].中国技术电工协会低压电器专业委员会.2010,No.15:478-484.
    [84] P. Kejik. Contactless measurement of currents and current ratio by fluxgate method [D], PhD thesis (inCzech), Czech Technical University,1999.
    [85]张民,王向军,嵇斗,卞强.磁调制式电流传感器的数学模型与性能分析[J].海军工程大学学报.2008,20(06):75-78.
    [86]李前,毛承雄,陆继明等.磁调制器的建模与仿真研究[J].传感器技术.2005,24(2):29-34.
    [87]马爱清,任士焱,周术等.磁势自平衡回馈补偿式直流传感器建模与仿真[J].华中科技大学学报,2003,31(11):10-11.
    [88]褚江,任士焱.磁势自平衡回馈补偿式直流传感器难点研究[J].电测与仪表.2006,43(490):4-7.
    [89] Young-Tae Part, Young-Kap Jung, Young-Beom Kim, et al. Openable-core AC and DC leakage-currentdetector [J]. ScienceDirect.2007,No.3:249-251.
    [90] zge ZORLU. Orthogonal fluxgate type magnetic microsensors with wide linear operation range [D],2008, Cole Polytechnique Fédérale de Lausanne, Swiss.
    [91] YANG Hong, LIN Da-wei, ZHANG Hong-li.“Comparison and Analysis of Three Order being Suitablefor Data Fitting in MATLAB,” Journal of Daqing Normal University.2010,30(6):58~61.
    [92]罗成汉,刘小山.曲线拟合法的Matlab实现[J].现代电源技术.2003,No.20:16-20.
    [93]陆健.最小二乘法及其应用[J].中国西部科技.2007,No.19:19-21.
    [94]王兆华,黄翔东.数字信号全相位谱分析与滤波技术[M],北京:电子工业出版社,2009.
    [95]郭来祥.磁调制器的理论与计算(一)[J],电测与仪表.1978,No.06:13-21.
    [96]郭来祥.磁调制器的理论与计算(二)[J],电测与仪表.1978,No.07:20-26.
    [97]郭来祥.磁调制器的理论与计算(四)[J],电测与仪表.1978,No.09:.
    [98]吴慎山,洪新华,吴东芳.漏电保护器的研究[J].河南职技师院学报,2001,No.1:42-44.
    [99]李奎,陆俭国,岳大为等.漏电信号的识别技术及其方法[J].低压电器,2008,No.23:1-4,10.
    [100]王汝文,宋政湘,杨伟.电器智能化原理及应用(第2版)[M].北京:电子工业出版社,2009.
    [101]佟为明.智能电器综述[J].电气时代,2006,No.05:18-22.
    [102]陈德桂.面向21世纪的低压电器新技术[J].低压电器,2001,No.1:3-8.
    [103]王建华,宋政湘,耿英三等.智能电器理论与关键技术研究[J].电力设备,2008,No.3:1-4.
    [104]周积刚,王云香.农村电网的漏电保护方式及其装置的选择[J].全国剩余电流动作保护器(漏电保护器)学术研讨会,2000.
    [105]刘帼巾.剩余电流动作保护器的可靠性研究[D].河北工业大学博士学位论文,2002.6.
    [106]李家贤.剩余电流保护系统及运行管理[M].北京:中国水利水电出版社,2002.2.
    [107]杨东.触/漏电保护器[M].北京:化学工业出版社,2008.1.
    [108]陆俭国,何瑞华,陈德桂等.中国电气工程大典第11卷配电工程[M].北京:中国电力出版社,2009.2.
    [109] Dawei Yue, Kui Li, Jinli Yuan, Guanying Zhang.Residual Current Monitoring Based on Devicenet[A].Proceedings of the7th World Congress on Intelligent Control and Automation[C], June25-27,2008,Chongqing,China:6027-6030.
    [110] X.K. Fang, et al, Development of DeviceNet intelligent node[A]. Proceedings of Fifth World Congresson Intelligent Control and Automation[C],June15-19,2004,Hangzhou,China:1396-1400.
    [111]王萍.单片机在剩余电流断路器上的应用[J].电工技术杂志,2004,No.1:33-34.
    [112]周喜章.基于PIC单片机技术的漏电继电器[J].低压电器,2003,No.1:37-39.
    [113]李奎,陆俭国等.新型鉴相鉴幅漏电继电器的研究[J].低压电器,2001,No.4:12-13,47.
    [114]李奎,瞿建喜.智能化漏电保护器的研究[J].机床电器,2002,No.4:7-9.
    [115]潘学海,宋涛.适用农村电网的矢量型触漏电保护器的设计[J].山东理工大学学报(自然科学版),2004,No.4:56-59.
    [116]陈奎,李烨,唐轶.基于正交变换的漏电保护的研制[J].电工技术杂志,2001,No.07:23-24.
    [117] Van Tichelen, Paul J.L.A Comparison of residual current devices with insulation resistance monitoringdevices when considering safety in DC systems[A].Proceedings of the Fourth IASTED InternationalConference on Power and Energy Systems[C],2004,643-646.
    [118] J. Schoneck, Y. Nebon. LV protection devices and variable speed drives[M].Cahier technique no.204.Schneider Electric,2002.
    [119] Xu Zeliang, Min Yingzong, et al. Type B RCD with a simplified magnetic modulationdemodulationmethod[A]. Proceedings of2009IEEE6th International Power Electronic and Motion ControlConference[C], May18-20, Wuhan, China:769-772.
    [120]刘祥水.剩余电流动作保护器在电气火灾防范中的应用分析[J].2003,No.3:31-35.
    [121]余健明,同向前,苏文成等.供电技术[M].北京:机械工业出版社,2008.7.
    [122]陈世忠.剩余电流动作保护器[M].北京:中国电力出版社,2003.1.
    [123]王尧.基于无线通讯技术的漏电保护技术的研究[D].河北工业大学硕士学位论文,2008.12.
    [124]何金良,曾嵘著.电力系统接地技术[M].科学出版社,北京:2007
    [125] Lacroix and R. Calvas. Earthing systems in LV[M]. Cahier Technique,No.172.
    [126] Bender, Installation monitoring with residual current monitors[J]. Technical information,2004, No.3:1-8.
    [127] Schneider Electric, Vigirex Technical Aspects, France:2004.
    [128] F.nolte. Uninterrupted security[J].The Technical journal IEE,2005.
    [129] M54123L-earth leakage current detector datasheet, Mitsubishi Electric Semiconductor.2005.
    [130] Fairchild. RV4141A-Low power ground fault interrupter. Fairchild semiconductor,2004.
    [131]张冠英.基于A型的剩余电流智能保护技术研究[D].河北工业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700