用户名: 密码: 验证码:
连续扫描式高精度电感传感器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比电容式传感器、光栅传感器等微位移测量装置,电感式传感器具有灵敏度高、重复性好、性能较为稳定的优势,在用于超精密加工与测量场合的圆度仪系统中有广泛的应用。近年来,在圆柱度和圆度测量中,随着对回转型零件的测量精度要求越来越高,电感传感器的测量精度也越来越受到人们的普遍关注,其发展已成为圆度仪等测量仪器的主要限制因素。为了进一步提高电感传感器系统的测量精度,需要从测头机械结构和数采测量电路两方面同时进行性能改善。为此本课题在本所已研制出的传感器系统的基础上,针对其灵敏度低、非线性严重等问题,做出了相关改进设计,并进行了对比性实验验证。本文完成的主要工作有:
     首先,从螺管型线圈结构模型出发,依据毕奥萨法尔电磁场原理,分析了磁场特性与线圈结构的灵敏度;又从磁电转换的测量电路角度对提高灵敏度进行了研究分析。为系统灵敏度的提高提出了有效措施,进行了线圈结构自身和测量电路的具体改进设计,诸如线圈和磁芯的材料选择、尺寸参数优化、激磁信号源的电压和频率选择、量程切换模块的应用等。
     其次,通过对原有系统进行大量实验,发现并分析了其非线性的问题。从机械结构和测量电路两方面分析了其影响因素,对常用的非线性校正方法进行了介绍和比较,提出了针对本系统的非线性补偿方案,并编程应用于系统软件程序中,实现了系统的非线性校正。
     再次,针对圆度测量中遇到的定位问题,特在测量系统中设计了采样的触发控制模块,实现了采样数据的时间控制,保证了圆度数据采集的重复性,使圆度评定更加可靠。
     最后,对电感传感器系统进行了对比性实验,验证本课题所作的改进措施对其性能的有效性。实验结果表明,系统灵敏度提高了一倍以上,非线性误差也由原来的3.4%下降到0.41%,系统稳定性和重复性也有所改善。
Inductive transducer, compared to the other micro displacement measurement devices such as capacitance sensor and grating sensor, has advantages of high sensitivity, good repeatability and relatively stable performance. Therefore, it is used widely in the roundness measuring meter systems for ultra-precision processing and measurement. In recent years, with the measurement accuracy requirement on rotating parts being higher and higher in the area of cylindricity measuring, inductive transducer’s measurement precision has attracted more and more universal attention. Its development has become a main limit factor of the roundness measuring instrument. In order to raise the measuring accuracy of the inductance sensor system further, we need make the performance improvement from both the mechanical structure of the measuring head and measuring circuit. In allusion to the problem such as low sensitivity and the serious nonlinear problems, this topic did some related design and improvement on the basis of the former sensor system, made the comparative experiments and did the verification. In this paper the main work accomplished are:
     Firstly, according to Biot-Savart Law of electromagnetic field, the characteristics of the magnetic field and the sensitivity of the coil structure have been analyzed from the structure model of solenoid coil; And from the point view of magnetoelectricity conversion in measurement circuit, the sensitivity improvement has been analyzed. In order to propose effective measures to raise the sensitivity of system, some detailed improvement designs in the coil structure itself and the measurement circuit have been made, such as the material selection of coil and magnetic cores, size parameters optimization, voltage and frequency selection of excitation signal source and the application of switch range module.
     Secondly, through a large number of experiments of the original system, nonlinear problems have been found and analyzed. This article analyzes its effect factors both in mechanical structure and the measurement circuit, gives the introduction and comparison of the common nonlinearity correction methods, puts forward the nonlinear compensation scheme and programs in the system software. Therefore the nonlinearity correction of the system has been realized.
     Thirdly, this paper contraposes the localization problem met in the roundness measurement, especially designs the sampling trigger control module in the measuring system which realizes the time control of sampled data, ensures the repeatability of collecting data and makes the roundness assess more reliable.
     Finally, the comparative experiments of the inductance sensor system have been done and verified the improvements’effectiveness to its performance in this subject. Experimental results show that the system has increased sensitivity two fold, nonlinear error has decreased from original 3.4% to 0.41%. The system’s stability and repeatability have also been improved.
引文
1吴敏镜.从精密加工看计量技术的现状与发展.宇航计测技术. 2000, 20(2): 25~27
    2 X. Jiang, P. J. Scott, D. J. Whitehouse, L. Blunt. Paradigm shifts in surface metrology. Part I. Historical philosophy. Proceedings of the Royal Society. 2007, 463: 2049~2070
    3 Yang Xudong, Chen Yurong, Xie Tiebang. A two-dimension displacement sensor and its application in profile measurement. Proceedings of SPIE, 2006, v 6358 I: 635816
    4 D. G. Chetwynd. Roundness measurement using limacons. Precision Engineering. 1979, 1(3): 137~143
    5殷建,李志远.电感式传感器在圆度仪中的应用.机械工程师. 2007, 5(4):107~108
    6 De. Cos. D, Garcia-Arribas. A, Barandiaran. J.M. Simplified electronic interfaces for sensors based on inductance changes. Sens Actuators A Phys. 2004, 112(1): 302 ~ 307
    7贺大兴,盛伯浩.超精密加工技术的发展现状与趋势.新技术新工艺[J]. 2006, 5:2~3
    8连慧芳.形位误差测量的不确定度评定.合肥工业大学硕士学位论文. 2010.
    9 O.Horikawa, N.Maruyama, M.Shimada. A low cost, high accuracy roundness measuring system. Precision Engineering[J]. 2001, Vol.25(3):200~205
    10曹麟祥,王丙甲.圆度检测技术.北京:国防工业出版社. 1998. 120~127
    11 Hyun-Seung Choi, Jang-Ryeol Seo, Sun-Kyu Lee. Maehining error compennsation of extern cylindrical grinding using a thermally actuated rest. Joumal of Materials Proeessing Teclmology[J]. 2002, Vol. 127(2):280~28
    12 D. J. Whitehouse. Handbook of Surface and Nanometrology. CRC Press. 2002: 305
    13张彤.最新圆度仪TALYROND 265.上海计量测试. 1999年第4期. 45~46
    14张勇.基于LEITZ万工显分度头与光栅测微计的圆柱度测量装置.工业计量.2009.01
    15花世群,骆英.基于单缝衍射原理的圆度误差测量方法.光电工程. 2007, 34(3): 140~144
    16黄楚雄.大型圆柱度仪数据采集及处理系统的研制.哈尔滨工业大学硕士论文. 1995:3~19
    17唐文彦.传感器[M].北京:机械工业出版社, 2006.
    18张洪润,傅谨新,吕泉,张亚凡.传感器技术大全[M].北京:北京航空航天大学出版社, 2007.
    19 Bayard.J. An improve method of generating analog waveforms from digital data. Review of Scientific Instruments. 1998, 69(6): 2569~2571
    20 A. Sacconi, W. Pasin. An Intercomparision of Rundness Measurements between Ten European National Standards Laboratories Measurement. 1994.1,3(6): 119~128
    21 H. Haitjema, H. Bosse, M. Frennberg, A. Sacconi, R. Thalmann. International comparison of roundness profiles with nanometric accuracy. 1996
    22 Electrical and Electronic Technology (8th ed), Edward Hughes, Pearson Education, 2002
    23孙桂荣.基于USB总线的电感传感器信号采集系统的研制.哈尔滨工业大学硕士论文. 2009(03)
    24 G. Winther, D. M. Parsons, J. L. Schrag. A High-speed, High-precision Data Acquisition and Processing System for Experiments Producing Steady-state Periodic Signals. Journal of Polymer Science Part B: Polymer Physics. 2003, 32(4): 659~670
    25洪小丽,李涛.电感测微仪中激励电源的研究.组合机床与自动化加工技术. 2007.05: 40~42
    26 S.Kevin. Software Modeling of Electromagnetic Interference. EMC Test and Design. 1991, (2):47~49
    27田裕鹏,姚恩涛,李开宇.传感器原理(第三版).科学出版社. 2007, 9
    28 Arthur B Williams, Fred J Taylor(著);宁彦卿,姚金科(译).电子滤波器设计[M].北京:科学出版社, 2008, 1: 276.
    29李泉华,热处理实用技术[M],北京,机械工业出版社,2000.
    30孙瑜,封勇.铍青铜热处理工艺研究[J].机电元件. 2002, 3: 33~36
    31吕莉.基于ARM的电感位移传感器非线性补偿系统的研究.哈尔滨工业大学硕士论文. 2006
    32阚保强,张安堂,王建业,杜洁.传感器信号非线性的软件补偿.空军工程大学学报. 2005, 4: 25~27
    33严剑明.高精度电感传感器相关技术研究.哈尔滨工业大学硕士论文. 2008.
    34 Santosuosso, GiovanniL. Global adaptive output feedback controllers with application to non-linear friction compensation. International Journal of Adaptive Control and Signal Processing, November, 2002
    35周立功等.I2C总线规范.北京航空航天大学出版社,2003:12-15
    36 M.A.Donnez,D.S.Blomquist. A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation. Precision Engineering. 1986
    37 Li, Xun; Zhu, Pengcheng; Experimental Investigation of a Three-Phase Series-Parallel Compensated UPS for Non- linear Load. IECON Proceedings (Industrial Electronics Conference). 2003
    38 Zhang, Yinying. Wang, Dexiang; Tunable dispersion compensation based on the non-linear chirped FBG Guangzi Xuebao/Acta Photonica Sinica, December, 2002, 1505
    39 Maurel, Yvon. Subjective quality evaluation of acoustic vibrations generated by non- linear compensated acoustic source. Acta Acustica (Stuggart), May, 2003
    40刘强.不确定度表示体系的误差分析和数据处理方法[J].工科物理, 1999, (5) : 27~29.
    41 Sun Zongyao, Liu Yunggang. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems[ J]. Automatica, 2007, 43(10).
    42孙慧卿,郭志友.传感器的误差补偿技术[J].传感技术学报, 2004, 15(1): 90~93.
    43张琦,宋民,高梅国,杨静.采用FIFO级联实现可编程的采样预触发与缓存容量扩展.北京理工大学学报. 2005, 11: 985~988
    44林志熙,黄富贵,周景亮.具有最少采样点的圆度误差测量研究[J].福建工程学院学报, 2006, 4(4): 455~458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700