用户名: 密码: 验证码:
波涌灌间歇入渗氮素运移特性与地下水环境效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在查阅大量波涌灌溉理论与技术、土壤氮肥(NO_3~-)运移、转化及其对地下水环境污染等研究成果的基础上,结合国家自然科学基金项目“施肥条件下波涌灌溉农田氮素运移特性及有效性利用研究”和陕西关中灌区的灌溉和施肥等实际,采用室内试验和理论分析相结合的技术路线,对地下水位为70cm条件下,在国内外率先开展波涌灌间歇入渗硝态氮运移、转化及其在地下水中分布(特别是垂向)、运移规律的试验研究,主要研究成果为:
     1、地下水位一定且忽略土面蒸发时,以毛管水上升速率大小为依据将土壤毛管水上升过程可划分为两个阶段:第一阶段毛管水上升速率大,第二阶段毛管水上升速率明显减小;土壤初始含水率大,毛管水上升速度大;毛管水上升渗吸时间与累计渗吸量的关系可采用分段函数或指数函数模型描述。
     2、添加溶质KNO_3加快土壤入渗水分运移速度;溶液间歇入渗表土致密层的形成使间歇入渗较连续入渗具有明显的减渗效果,NO_3~-运移锋推进速度减慢,上层土壤NO_3~-含量高,间歇入渗有效减小其淋失量。
     3、地下水位浅、土壤含水率高的情况下,底土厌氧层的存在为反硝化作用提供良好的反应条件,可减少NO_3~-在下层土及地下水中的累积。
     4、波涌灌技术要素对地下水位为70cm的间歇入渗水、NO_3~-运移分布特性有明显影响,主要为:(1)在试验条件下,在一定范围内减小循环率,减渗作用增强,试验中循环率为1/5时的间歇入渗减渗效果最好,土壤中水分、NO_3~-分布于更浅层土壤中,NO_3~-淋失趋势小;循环率的增大使地下水中NO_3~-含量明显增大。(2)在一定范围内,间歇入渗周期数的增大,平均入渗率减小。(3)增大灌水定额,波涌灌
    
    西妥理工大学硕士学位论文
    间歇入渗减渗作用逐渐减弱,随水运移至下层土壤中的N0;,一增多、反硝化作用氮素
    损失率高且地下水中NO3一浓度高;地下水中N氏一浓度(再分布3小时)与灌水定额
    符合指数函数关系:
     5、相同的灌水定额,间歇入渗溶液浓度增大,土壤N氏含量分布曲线峰值增
    大,分布于浅层(O一3Oc!:)土壤中的NO犷(’不入渗总量的比例增大,地下水NO=t含量
    高;表施肥与深施肥土壤N氏一集中分布于施肥土层,溶液灌施土壤N0;分布曲线峰
    值小、分布相对均匀;表施与溶液灌施条件的地下水N氏一浓度接近、分布均匀,深
    施条件!;的地下水中NO浓度值高,垂向NO;、浓度梯度大。
     6、地一下水N住一主要分布于表层和上层(O一SCm),沿垂向NO:毛浓度逐渐减小,
    再分布过程中N氏浓度分布趋于均匀,垂向浓度梯度减小。
Based on reviewing previous research on surge flow irrigation, nitrogenous fertilizer (NO3-) transfer transformation and its pollution to the groundwater environment, combined with the National Nature Science Found Project "The study on the characteristics of the field N transfer and effective usage with the surge flow irrigation under the fertilization" and the practice of irrigation and fertilization in Guanzhong, Shaanxi province, adopts technical way of experiment and theory analysis, this paper leads the way of research on the nitrate transfer transformation and its distribution in the groundwater (vertically, especially), with a 70cm groundwater table under intermittent infiltration . The main conclusions are as follows:
    1. With a fixed groundwater table and a neglected field surface evaporation, capillary water ascending period has 2 stages. In the first stage, the ascending rate is greater, while in the second, it's decreased apparently. The initial soil moisture is high, so is the ascending rate. The relationship between the time needed and the accumulative amount of attracted water can be simulated by exponential and stepped functions.
    2. The solute KON3 accelerates this ascending; For the forming of the water-sealing layer, the intermittent infiltration achieves a decreased infiltration rate, a decreased NO3- advancing rate , a higher NO3- content on the surface soil and less NO3-leaching compared with the continuous.
    3. Under a shallower groundwater table, the soil moisture is higher. In the deeper
    
    
    layer an anaerobe layer is formed, and dinitrification weaken the accumulation of NO3-both in the soil and in the groundwater.
    4. The main effects of surge flow irrigation technological elements on the infiltrated water and NO3- transfer and distribution with a 70cm groundwater table are as follows: (l)To some extent, infiltration rate decreases with a decreased cycle rate; In this experiment, the optimal cycle rate is 1/5, which leads to a shallower distribution of the moisture and NO3- in soil and weakens the trend of NO3" leaching. The concentration of NO3- in the groundwater increases with an increased cycle rate. (2) To some extent, the average infiltration rate decreases with an increasing cycle number; (3) The function of decrease infiltration will reduce as the irrigating water quota increases. It showed that the concentration of NO3- in the deeper soil and the groundwater and the lost of dinitrification increase with an increased quota; The relationship of the concentration of NO3- in the groundwater (3 hours redistributed) and the irrigating water quota can be simulated by exponential functions
    .
    5. With a same irrigating quota, the max. concentration of NO3- in the soil , the percentage of NO3- distributed in 0~30cm and the concentration of NO3- in the groundwater will increase as the concentration of the infiltrated solution increases. Under the surface and deep-lying fertilization, the NO3- in the soil centralized at the depth it's applied. Concentration peak of chemigation's NO3- is smaller and the NO3- is well-distributed in the soil. The NO3- is well-distributed in the groundwater under surface applying and chemigation, while with deep-lying fertilization, the concentration of NO3- is high and the gradient of the concentration of NO3- is great.
    6. The NO3- is mainly distributed in upper layer (0~5cm) in the groundwater, and the concentration decreases vertically downward. During the redistribution, the gradient of concentration decreases, the NO3- is getting well-distributed.
引文
[1] 水利部科技司,节水农业技术发展综述,节水灌溉,1999,(2);
    [2] 王文焰,波涌灌溉试验研究与应用[M],西安:西北工业大学出版社,1994;
    [3] 汪志荣,波涌灌溉理论与应用研究[D],西安:西安理工大学博士学位论文,1995;
    [4] 王文焰、汪志荣、费良军等,波涌灌溉的灌水质量评价及计算,水利学报,2000.3;
    [5] 李家康,林葆,梁国庆等,对我国化肥施用前景的剖析,植物营养与肥料学报,2001,7:1~10;
    [6] 朱兆良,我国土壤氮素研究工作的现状与展望,北京,科学出版社,1996;
    [7] 巨晓棠,张福锁,中国北方土壤硝态氮的累积及其对环境的影响,生态环境,2003,12:24-28;
    [8] 朱济成,关于氮肥地下流失率的初步研究,环境科学,1998,4(5):23-28;
    [9] 张国梁,章申,农田氮素淋失研究进展,土壤,1998年,第6期;
    [10] 司友斌,王慎强,陈怀满,农田氮、磷的流失与水体富营养化,土壤,2000年,第4期;
    [11] 葛鑫,戴其根,霍中洋等,农田氮素流失对环境的污染现状及防治对策,耕作与栽培,2003年,第1期;
    [12] 孙彭力,王慧君,氮素化肥的环境污染,环境污染与防治,1995年2月;
    [13] 冯绍元,黄冠华,试论水环境中的氮污染行为,灌溉排水,97.16(2)34:
    [14] 刘小兰,李世清,土壤中的氮素与环境,干旱地区农业研究,第16
    
    卷第4期,1998年12月;
    [15] 李伏生,陆申年,灌溉施肥的研究和应用,植物营养与肥料学报2000,6(2):233-240;
    [16] 樊菊平,波涌灌间歇入渗水分与氮素运移特性试验研究[D].西安、西安理工大学硕士学位论文,2003.
    [17] 费良军,浑水波涌灌溉理论与技术要素试验研究[D].西安、西安理工大学博士学位论文,1997.
    [18] 刘洪禄,戴洪文,杨培岭等,波涌灌间歇供水土壤水分入渗机理的数值模拟,中国农业工程大学学报,1998.3:377-392;
    [19] 刘洪禄,吕露,杨培岭等,波涌灌间歇供水表面密实层特性的实验研究,灌溉排水,97.16(4)6;
    [20] 刘贤赵,康绍忠,连续与间歇积水入渗对比试验研究,水科学进展,第10卷第1期,1999年3月;
    [21] 彭立新,周和平,张荣等,地面节水灌溉新技术-波涌灌综述,节水灌溉,2000年第6期;
    [22] 彭立新,周和平,张荣等,波涌灌节水增产效果分析,节水灌溉,2001年第3期;
    [23] 王文焰,张建丰,汪志荣等,波涌灌溉条件下土壤致密层的形成及其对入渗特性的影响,水利学报,1996年7月,第7期;
    [24] B.L.Benham, D.L.Reddell, T.H.Marek, Performance of three infiltration models under surge irrigation, Irrig Sci(2000)20:37-43;
    [25] R.M.Seymour, Air entrapment and consolidation occurring with saturated hydraulic conductivity changes with intermittent wetting, Irrig Sci.(2000)20:9-14;
    [26] 汪志荣,王文焰,张建丰,波涌畦灌个渗规律及数值模拟,水利学报,1995.1;
    [27] 汪志荣,王文焰,王全九等,间歇供水条件下Green-Ampt模型,西
    
    北水资源与水工程,1998.9;
    [28] 费良军,王云涛,魏小抗,涌流畦灌水流运动的零惯量数值模拟,水利学报,1995第8期;
    [29] 南京农学院主编,土壤农业化学,北京:农业出版社,1980;
    [30] 冉炜,沈其荣,郑金伟等,土壤硝化作用过程中亚硝态氮的累积研究,土壤学报,第37卷第4期,2000年11月;
    [31] S. Milkha Aulakh, Tejinder S.Khera, Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil Ⅰ Effect of nitrate and ammoniacal nitrogen, Biol Fertil Soils(2000)31:162-167;
    [32] A. H. Samater, O.Van Cleemput, T. Ertebo, Influence of the presence of nitrite and nitrate in soil on maize biomass production, nitrogen immobilization and nitrogen recovery, Biol Fertil Soils(1998)27:211-218;
    [33] 依纯真等,模拟温度、湿度及通气状况对土壤中No_2释放量的影响研究[J],北京农业大学报,1993,19(3):85-90;
    [34] 谢建治,尹君,王殿武等,田间土壤反硝化作用动态初探,农业环境保护,1999,18(6):272-274;
    [35] 依纯真等,麦田土壤反硝化速率变化规律的研究,[J],北京农业大学学报,1994,20(1):68-73;
    [36] 邹国元、张福锁、李新慧,下层土壤反硝化作用的研究,植物营养与肥料学报,2001.7(4);
    [37] 徐华,邢光熹,蔡祖聪,土壤水分状况和氮肥施用及品种对稻田NO_2排放的影响,应用生态学报,第10卷第2期,1999年4月;
    [38] 郭大应,熊清瑞,谢成春等,灌溉土壤硝态氮运移与土壤湿度的关系,灌溉排水,第20卷第2期,2001年6月;
    [39] 李韵珠,李保国,土壤溶质运移[M],北京;科学出版社,1998;
    [40] S.A.Taylor,物理的土壤学,农业出版社,1983;
    [41] 秦耀东,土壤物理学,北京:高等教育出版社,2003.3
    
    
    [42] 侯春霞,胡海英等,土壤溶质运移动态及展望,土壤通报,第34卷第6期,2003年2月;
    [43] D.B.Jaynes, S.D.Logsdon, and R.Horton, Field Method for Measuring Mobile/Immobile Water Content and Solute Transfer Rate Coefficient, Soil Sci. Am.J.59:352-356(1995);
    [44] X.M. Casey, D.B. Jaynes, R. Horton, and S.D.Logsdon, Comparing Field Methods that Estimate Mobile-Immoble Model Parameters, Soil Sci.Soc.Am.J.63:800-806(1999);
    [45] 刘春平、邵明安,土壤溶质运移的边界层运动,水利学报,1999.12;
    [46] T M Addiscott and Wagenet R J. Concepts of solute leaching in soils: a review of modelirig approaches. Joumal of Soil Science, 1985, 36: 411-424;
    [47] Jaehoon Lee, Dan B. Jaynes, and Robert Horton, Evaluation of Simple Method for Estimating Solute Transport Parameters: Laboratory Studies, Sci.Soc.Am.J.64:492-498(2000);
    [48] Quanjiu Wang, Robert Horton, and Jaehoon Lee, A Simple Model Relating Soil Water Characteristic Curve and Soil Solute Breakthrough Curve, Journal Paper no. J-19482 of the Iowa Agric.
    [49] 张瑜芳、刘培斌,不同渗漏强度条件下淹水稻田中氨态氮转化和运移的研究,水利学报,1994.6(6);
    [50] 冯绍元、张瑜芳、沈荣开,排水条件下饱和土壤中氮肥转化与运移模拟,水利学报,1995.6(6);
    [51] 张瑜芳,张蔚榛,沈荣开,排水农田氮素运移、转化和流失规律的研究,水动力学研究与进展,A辑第11卷第3期,1996年6月;
    [52] 冯绍元、张瑜芳、沈荣开,非饱和土壤中氮素运移与转化试验及其数值模拟,水利学报,1996.8(8);
    [53] 黄元仿、李韵珠、陆锦文,田间条件下土壤氮素运移的模拟模型Ⅰ,
    
    水利学报,1996.6(6);
    [54] 黄元仿、李韵珠、陆锦文,田间条件下土壤氮素运移的模拟模型Ⅱ田间检验与应用,水利学报,1996.6(6);
    [55] 张思聪、吕贤弼、黄永刚,灌溉施肥条件下氮素在土壤中迁移转化的研究,水利水电技术,1995(5);
    [56] 张思聪,吕贤弼,黄永刚,灌溉施肥条件下氮素在土壤中迁移转化的研究,水利水电技术,第30卷第5期,1999年;
    [57] 魏新平,灌溉对作物根区硝酸钾运移影响的研究[D],西安:西安理工大学博士学位论文,1999;
    [58] William A. Jury, Simulation of Solute Transport Using a Transfer Function Model, WANTER RESOUR RESEARCH, VOL.18 NO.2, PAGES363-368, APPLE 1982;
    [59] Kurt Roth and William A.Jury Modeling the Transport of Solutes to Groundwater Using Transfer Function, J. Environ. Qual. 22:487-493(1993);
    [60] 杨金钟、蔡树英、叶自桐,区域地下水溶质运移随机理论的研究与进展,水科学进展,1998.9(1);
    [61] 叶自桐,利用盐分歉意函数模型研究入渗条件下土层的水盐动态[J],水利学报,1990,(2):1-8;
    [62] 黄冠华、叶自桐、杨金忠,一维非饱和溶质随机运移模型的谱分析,水利学报,1995.11;
    [63] 任理、李保国等,土壤溶质运移两种新的求参方法的应用,水利学报,1999.11;
    [64] 任理、刘兆光、李保国,非稳定条件下非饱和均质土壤溶质运移的传递函数解,水利学报,2000.2;
    [65] 任理、马军花,考虑土壤中硝态氮转化作用的传递函数模型,水利学报,2000.5;
    
    
    [66] 任理、袁福生、张福锁,土壤硝态氮淋洗的传递函数模拟和预报,水利学报,2001.4;
    [67] 黄元仿、李韵珠、李保国等,区域农田土壤水和氮素行为的模拟,水利学报,2001.11;
    [68] 李伏生,灌溉施肥的研究初探,[J]灌溉排水,1999.18;
    [69] 张源沛,张益民,张建民,灌溉施肥原理及其应用,宁夏农林科技,2000年第3期;
    [70] 李冬光,许秀成,张艳丽,灌溉施肥技术,郑州大学学报(工学报)第23卷第1期,2003年3月;
    [71] Dong Wang, Scott R Yates, Jirka Simunek, et al. Solute transport in simulated conductivity fields under different irrigation. Journal of Irrigation and Drainage Engineering, 1997
    [72] R.C.Rice, D.J.Hunsaker, F.J.Adamsen, A.J.Clemmens, Irrigation and Nitrate Movement Evaluation in Convention and Alternate-Furrow Irrigation Cotton, Transactions of Agriculture Engineers ISSN 0001-2351
    [73] 张建军,李久生,任理,滴灌施肥灌溉条件下土壤水氮运移的研究进展,灌溉排水,第21卷第2期,2002年6月;
    [74] Li Jiusheng,Zhang jianjun,Ren Li,Nitrogen Distribution in Soil Under Fertigation From a Point Source,农业工程学报,第18卷第5期,2002年9月;
    [75] F Coelho Eugenio and Or Dani, Applicability of analytical solutions for flow from point sources to drip irrigation management[J], Soil Sci.Soc Am.J,1997,61:1331-1341;
    [76] 何华,地下滴灌条件下作污水氮吸收利用与最佳灌水技术参数的研究[D],杨凌:中国科学院水土保持研究所博士学位论文,2001年3月;
    [77] 王凤新,冯绍元,黄冠华,喷灌条件下冬小麦水肥耦合效应的田间
    
    试验研究,灌溉排水,1999.18(1);
    [78] 冯绍元,詹卫华,黄冠华,喷灌条件下冬小麦水肥调控技术田间试验研究,农业工程学报,第15卷第4期;1999;
    [79] 魏新平,漫灌和喷灌条件下土壤养分运移特征的初步研究,农业工程学报,第15卷第4期;1999年12月;
    [80] 曹红霞,不同灌水条件下氮素在土壤中运移规律的研究[D],杨陵:西北农业大学博士学位论文,2002;
    [81] 张富仓,土壤-根系统养分迁移机制及其数值模拟[D],杨陵:西北农业大学博士学位论文,2001;
    [82] C A Madramootoo, Dodds G T, Papadopoulos A, Agronomic and environment benefits of water-table management, Journal of Irrigation and Drainage Engineering, 1993,119:1052-1065;
    [83] Tan C S.Drury C F, Gaynor J D, et al. Effect of corn water-table management and nitrogen supply on yield, plant growth and water use of corn in undisturbed soil columns, Canadian Journal of Plant Science, 1995,76:229-235;
    [84] P K Kalita, Kanwar R S, Effect of water-table management practices on the transport of nitrate-N to shallow groundwater, Transaction of the ASAE, 1993,36:453-461;
    [85] T Sarwar, Kanwar R S, NO_3-N and metoachlor concentration in the soil water as affected by water table depth, Transaction of the ASAE,1996,39:2119-2129;
    [86] C F Drury, Tan C S, Gaynor J D,et al. Optimizing corn production and reducing nitrate losses with water control-sub-irrigation, Soil Sci Soc. Am. J, 1997, 61: 889-895;
    [87] P J Chilton, Forster S D. Control of ground water nitrate pollution in Britain by land-use chang. In "Nitrate contamination: Exposure,
    
    consequence, and control" NATO ASI Ser. G: Ecological Science 30.pp.333-347
    [88] Dong Wang, Scott R Yates, Jirka Simunek, et al. Solute transport in simulated conductivity fields under different irrigation, Journal of Irrigation and Drainage Engineering, 1997;
    [89] 李保国,白由路,胡克林等,黄淮海平原浅层地下水中NO_3—N含量的空间变异与分布特征,中国工程科学,第3卷第4期,2001年4月;
    [90] J.Vrba[捷]和E.Romijn[荷],朱西岭,仇祥华译.农业活动对地下水的影响[M].北京:地质出版社,1991.1.Ⅺ-Ⅻ;
    [91] B Singh, Sekhon G S. Agriculture and Environment, 1978, 4: 207-225;
    [92] J W Gilliam, Skaggs R W. Weed S B. Drainage control to diminish nitrate losses from agricultural fields. Jenviron.qual, 1979,8:137-142;
    [93] 罗阳、张增阁、张思聪等,灌溉施肥条件下田间氮素在土壤中迁移情况的研究,水资源保护,2002.12,NO.4;
    [94] 范丙全、胡春芳、平建立,灌溉施肥对壤质潮土硝态氮淋溶的影响,植物营养与肥料学报,1998.4(1):16-21;
    [95] 王玉、张一平、郑继勇、张建军,饱和流运移土壤溶质剖面分布研究,西北农业大学学报,2000.12;
    [96] 王福利,降雨淋洗条件下溶质在土壤中运移的初步研究,土壤学报,1992.11;
    [97] 袁锋明等,北京地区潮土表层中NO_3~--N的转化积累及其淋洗损失,土壤学报,1995.11;
    [98] 武晓峰,谢森传,冬小麦田间根层中氮素迁移转化规律研究,灌溉排水,1996.15(4);
    [99] 武晓峰等,节水灌溉条件下冬小麦生长期田间氮素迁移转化试验,清华大学学报(自然科学版),第38卷第1期,1998:92-95;
    
    
    [100] 张蔚榛,排水条件下化肥流失的研究-现状与展望,张蔚榛论文集,武汉:武汉大学出版社,2002.12;
    [101] 刘培斌,程伦国,陈瑞忠等,排水条件下稻田中氮素运移转化规律的试验研究,农田水利与小水电,1994年第4期;
    [102] 王家玉等,稻田土壤氮素淋湿的研究,土壤学报,第33卷第1期,1996年2月;
    [103] 杨路华,沈荣开,农田氮素时空分布规律的试验研究,农业水土环境保护;
    [104] 王少平,俞立中等,上海青紫泥土壤氮素淋溶及其对水环境影响研究,长江流域资源与环境,第11卷第6期,2002年11月;
    [105] R D Jones, Schwab A P, NO_3~- leaching and NO_2~- occurrence in a fine-textured soil, Soil Sci,1993,155: 272-281;
    [106] R V Smith, Burns L C, Doyle R M, et al. Free ammonia inhibition of nitrification in river sediments leading to NO_2~- accumulation, J. Environ. Qual, 1997,26:1049-1055;
    [107] R L Biggar, Nielsen D W. Spatial variability of the leaching characteristics of a field soil. Water Reous. Res, 1976, 12: 78-84;
    [108] R K Bauder, Montgomery B R.N-source and irrigation effects on nitrate leaching. Agronomy Journal, 1980,72:593-596;
    [109] M J Spalding, Exer M E, Occurrence of nitrate in ground water—a review, J.Environ, Qual., 1993, 32: 392-402;
    [110] 冯绍元,郑耀泉,农田氮素的转化与损失及其对水环境的影响,农业环境保护,1996,15(6):277-280;
    [111] 张思聪、沈子寅,唐山平原区地下水硝酸盐污染变化趋势的研究,水力发电学报,2001.第1期;
    [112] P J Chilton,Forster S S D. Control of groundwater nitrate pollution in Britain by land-use change, In "Nitrate contamination: Exposure,
    
    consequence, and control" NATO ASI Ser. G: Ecological Science 30.pp. 333-347, Springer-Verlag,Berlin, 1991;
    [113] P J Chilton. Groundwater quality studies for pollution risk assessment in Babados: Results of monitoring in the Belle and Hampton catchment, 1987-1991, British Geol. Surv. Tech Rep.WD/91/40, British Geol. Surv. Keyworth, Nottinghamshire, U.K., 1991;
    [114] 宋静、骆永明、赵其国,土壤溶液采样技术进展,土壤,2000(2);
    [115] 沈晋、王文焰、沈冰,动力水文试验研究,陕西科学技术出版社,1991;
    [116] 饱和渗透仪用户手册,西安理工大学水资源研究所,2002.9.20
    [117] 孙鸿烈 刘光崧,中国生态系统研究网络观测与分析标准方法土壤理化分析与剖面描述,中国标准出版社,1996.6
    [118] 宋德明,阴冶农,西安地理志[M],西安:陕西人民出版社,2000;
    [119] H.D.福斯,《土壤科学原理》,1984,农业出版社。
    [120] 费良军,王云涛,波涌畦灌灌水技术要素的优化组合研究,水利学报,1996.12;
    [121] 费良军,王云涛,杨宏德,涌流畦灌技术要素试验及其设计方法研究,灌溉排水,1993.12(3);
    [122] 樊贵盛、邢黎明、赵生义、张小明,波涌畦灌灌水技术参数确定方法的。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700