用户名: 密码: 验证码:
城市生活垃圾原位水蒸气催化气化制备富氢燃气
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前化石能源短缺以及其利用所带来的严重环境污染问题,人们越来越重视清洁能源—氢能的开发和利用。由于城市生活垃圾产量不断增加,对环境造成的污染日益严重,垃圾的处理问题已经成为目前亟需解决的迫切问题。而城市生活垃圾有机组分中含有大量的碳氢化合物,因而可以看作是一种可再生资源,利用热解气化技术处理城市生活垃圾不仅能对城市生活垃圾进行大量的减量化,而且还能进行能源—氢能的回收。
     本文采用含水城市生活垃圾作为气化原料,利用其本身所含有的水分在高温热解时挥发成蒸汽,形成一个自发的蒸汽氛围,产生的蒸汽作为后续城市生活垃圾气化时所需的气化剂;并在城市生活垃圾原料中添加一定的CaO对气化过程中产生的CO2进行高温原位吸附以及对焦油进行一定的原位催化裂解,提高氢气产率;针对在该条件下焦油含量较高的问题,研制了一种新型的改性白云石载镍催化剂使得城市生活垃圾原位水蒸气催化气化过程中产生的焦油进一步催化裂解和促进富氢燃气的产生。围绕着该工艺的构建,本文开展以下研究工作:
     (1)选取城市生活垃圾有机组分(织物、木屑、纸张、塑料)为气化原料,并测定了样品的工业分析、元素分析及其热值。结果表明,城市生活垃圾有机组分的挥发分和固定碳含量较高,而灰分含量低于2%。主要的元素组成为C、H、O三种元素。此外,混合垃圾样品的低位热值达到17.09MJ/kg。
     (2)通过TG/DTG/DTA方法分别探讨了各单一有机组分的热解特性,分析了各组分间在热解过程中的相互影响规律,对混合垃圾样品的热失重行为和动力学特征进行了研究。结果表明,织物、塑料及木屑的热解过程均只有一个主要的失重阶段,而纸张有两个失重阶段;对城市生活垃圾中各组分之间的共热解特性研究时发现当各组分的组成相似时,混合热解时不受单组分之间的相互影响;当各组分的组成差别较大时,各单独组分热解转化阶段温度分布是否重叠成为混合热解规律的主要影响因素。对混合垃圾进行热重分析时得到在低温区(240-385℃)失重的主要是混合垃圾样品中纤维素和半纤维素的分解以及部分塑料的低温分解,而发生在385~500℃间的第二失重峰主要是塑料和木质素组分的分解。使用等转化率法求解了城市生活垃圾混合组分的热解动力学参数,样品热解的表观活化能E值在170~225kJ/mol范围之间。
     (3)在小型管式炉固定床反应器上对城市生活垃圾原位水蒸气气化特性进行了系统的研究,考察了加热方式、反应温度、含水率、气化停留时间对城市生活垃圾原位水蒸气气化产物分布、气体成分的影响,并对该气化工艺进行了物料衡算和能量分析,探讨了城市生活垃圾原位水蒸气气化工艺的可行性。实验结果表明,快加热方式有利于提高燃气品质和减低焦油含量;随着反应温度的增加,气体产物含量增加,而焦油含量和半焦含量下降,气体组分中H2和CO含量升高,CIO2、CH4和C2烃类气体含量降低;当城市生活垃圾中的含水率为39.45wt.%时,气体成分中H2的含量达到最高值为25.8vol.%;通过N2流速来间接反映气相停留时间,随着N2流速的降低产生的气体中氢气含量从22.84vol.%升高到28.49Vol.%;在该工艺条件下得到的物料平衡误差为6.80%,通过能量分析得到冷气效率、能源回收率和稳态理论能耗比分别为54.24%、85.56%和2.78。
     (4)采用TG-MS分析方法研究CaO的添加对城市生活垃圾热解特性和热解产物的影响,同时对以CaO为添加剂的城市生活垃圾原位水蒸气气化制氢进行了试验研究。结果表明,添加CaO有利于城市生活垃圾在低温区域的热解,能减少焦油组分的逸出,并且能减弱CO2的逸出峰强度;随着[Ca]/[C]由0增加到1.5,H2的浓度和产率由25.89vol.%和10.86gH2/kg MSW增加到45.90vol.%和31.56gH2/kg MSW;水蒸气的引入提高CaO的碳酸化反应活性,促进了H2的产生,但是过高的含水率会降低产气品质,最佳的含水率为39.45wt.%;高温强化了城市生活垃圾、焦油的热分解等反应产生更多的H2,但不利于CaO的碳酸化反应,最佳的操作温度为700~750℃。
     (5)研制了一种以改性白云石为载体,采用沉淀-沉积法负载氧化镍,制备新型的改性白云石载镍催化剂,在自行设计的两段式固定床反应器上对城市生活垃圾原位水蒸气催化气化制氢特性进行研究,评价并比较该催化剂与传统镍基催化剂和煅烧改性白云石催化剂的催化活性,采用GC-MS方法对焦油产物中的主要化学成分在不同催化剂作用下的变化规律进行了分析。结果表明,与Calcined MD催化剂和NiO/O-Al2O3催化剂相比,NiO/MD催化剂具有更好的催化活性和催化稳定性,焦油的去除率能达到90%以上,氢气含量达到了52.79vol.%;随着催化剂依次由Calcined MD、NiO/γ-Al2O3和NiO/MD催化剂的变化,焦油中PAHs的含量持续降低,而单环芳烃的含量则增加;随着催化温度的升高焦油产率降低,气体产物组分中H2和CO的含量提高。
With the shortage of fossil fuels and the environmental pollution during its utilization, people are more focusing on the development and utilization of a clean energy-hydrogen. Moreover, the amount of municipal solid waste (MSW) increases dramatically, which leads to serious environmental pollution. Therefore, the treatment of MSW is becoming an urgent problem to be solved. The organic components in MSW with high content of hydrocarbon can be considered as a renewable energy. The application of MSW pyrolysis-gasification technology not only reduces MSW but also recovers hydrogen energy.
     In this thesis, MSW with a certain content of moisture is used as raw material. The water in MSW turns into steam at high temperature, forming an auto-generated steam atmosphere. The steam produced can be used as gasifying agent during the gasification of MSW. CaO is added into the raw material for hydrogen production with in-situ CO2removal and catalytic cracking of tar at high reaction temperature. Since the tar yield is still high under this condition, the NiO supported on modified dolomite catalyst is developed for further catalytic cracking of tar and hydrogen-rich gas production. According to this process, the following work was carried out in this thesis:
     (1) The organic components of MSW including fabric, sawdust, paper and plastic were selected as raw material. The proximate analysis shows that the MSW is rich in volatile matter and fixed carbon, but the ash content is lower than2wt%. From the ultimate analysis of MSW, the main elements are C, H and O. The lower heating value of MSW is17.09MJ/kg.
     (2) Through the TG/DTG/DTA method, the pyrolysis characteristics of each organic component and mutual influence of the various components in the pyrolysis process were discussed respectively, and the thermogravimetric behavior of MSW sample was analyzed and pyrolysis kinetic parameters were calculated too. The results show that there is only one main weight loss stage during the individual pyrolysis of fabric, plastic and wood, while there are two mass loss processes appeared in waste paper pyrolysis. Studying the co-pyrolysis characteristics of the mixed components, it is found that when the composition of each component is similar, the mixing pyrolysis does not subject to the mutual influence between the single-component. If the composition of each component varies greatly, the overlapping of the conversion stage temperature distribution in the individual component pyrolysis process becomes the main influence factor of mixed pyrolysis. Thermogravimetric analysis of MSW sample indicates that the cellulose, hemicelluloses and some plastics are decomposed in low temperature zone (240~385℃). The second weightlessness peak between385~500℃is mainly attributed to the degradation of plastic and lignin components. The pyrolysis kinetic parameters of MSW were calculated by iso-conversional methods. The apparent activation energy of MSW pyrolysis is in the range of170~225kJ/mol.
     (3) The characteristics of MSW gasification with in-situ steam agent has been systematic studied, which was carried out in a lab-scale fixed bed. The effects of heating rate, temperature, moisture content, and residence time on product distribution and gas composition were investigated. The material balance and energy analysis of this gasification process were also studied to discuss the feasibility of MSW in-situ steam gasification process. The results show that the fast heating method improves the quality of gas and reduces the yield of tar. The gas yield increases with temperature rising, but the yield of tar and char show an opposite trend. Meanwhile, the contents of H2and CO increase, while those of the other gases such as CO2, CH4and C2hydrocarbon gas decrease. When the moisture content of MSW is39.45wt%, the highest value of H2content in gas production is25.8vol%. The flow rate of N2can indirectly reflect the gas residence time, and the H2content increases from22.84vol%to28.49vol%as N2flow rate reduced. The error of material balance is6.8%under this experimental condition. The energy evaluation on the gasification process showed that cold gas efficiency, energy recovery and steady-state theoretical energy consumption ratio are54.24%,85.56%and2.78, respectively.
     (4) The TG-MS was used to analyze the pyrolysis characteristics of MSW with CaO addition. Meanwhile, hydrogen-rich gas production from in-situ steam gasification of MSW with CaO addition was experimental investigated. The results show that the addition of CaO is favorable to the pyrolysis of MSW in lower temperature. Adding CaO in MSW can reduce the escape of tar components and weaken the escape intensity of CO2. With the [Ca]/[C] ratio increasing from0to1.5, the hydrogen content and hydrogen yield increase from25.89%to45.90%and10.86g H2/kg MSW to31.56g H2/kg MSW, respectively. The introduction of steam can improve the activity of CaO carbonation reaction, which promotes the hydrogen production. However, the higher content of moisture would reduce the quality of gas production, and the optimal moisture content of MSW is found to be39.45wt%. Higher temperature could strengthen the thermal decomposition of MSW, which is greatly benefit for hydrogen production but unfavorable to CaO carbonation reaction. The best operating temperature is in the range of700-750℃.
     (5) The NiO supported on modified dolomite (NiO/MD) was prepared by deposition-precipitation (DP) method. The effect of catalyst on hydrogen production from catalytic gasification of MSW with in-situ steam agent was investigated in a two-stage fixed bed reactor. The GC-MS was used to analyze the main chemical components of tar product with different catalysts. The results show that the NiO/MD catalyst is better at catalytic activity and stability than that calcined MD and NiO/γ-Al2O3catalyst. With the NiO/MD catalyst, the removal ratio of tar is over90%, and the content of hydrogen in gas production reaches52.79vol%. As the catalyst changed from calcined MD to NiO/γ-Al2O3and NiO/MD, the content of PAHs in tar components continues to decrease, while that of single-ring aromatic increases. The higher catalytic temperature could favor the steam cracking and tar reforming, and promote H2and CO production.
引文
[1]世界能源理事会.新的可再生能源-未来发展指南.北京:海洋出版社,1998
    [2]曹静.中国可再生能源开发政策选择研究:[硕士学位论文].北京师范大学图书馆,2004
    [3]董玉平,邓波,景元琢等.中国生物质气化技术的研究和发展现状.山东大学学报(工学版),2007,37(2):1-7,29
    [4]蒋剑春,戴伟娣,应浩等.城市垃圾气化试验研究初探.可再生能源,2003(2):14-17
    [5]Asadullah M, Miyazawa T, Ito S, et al. Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency. Applied Catalysis A:General,2004,267(1):95-102
    [6]Cheng H, Zhang Y, Meng A, et al. Municipal solid waste fueled power generation in China:a case study of waste-to-energy in Changchun city. Environmental science & technology,2007,41(21):7509-7515
    [7]冯文,王淑娟,倪维斗等.氢能的安全性和燃料电池汽车的氢安全问题.太阳能学报,2003,24(5):677-682
    [8]Hwang J. Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renewable and Sustainable Energy Reviews,2013,19:220-229
    [9]王革华,戴志远.”氢经济”与氢能发展战略的思考.太阳能,2005(3):9-10
    [10]Abbas H F, Wan Daud W. Hydrogen production by methane decomposition:A review. International Journal of Hydrogen Energy,2010,35(3):1160-1190
    [11]Muradov N. Hydrogen via methane decomposition:an application for decarbonization of fossil fuels. International Journal of Hydrogen Energy,2001, 26(11):1165-1175
    [12]肖云汉.煤制氢零排放系统.工程热物理学报,2001,22(1):13-15
    [13]Sa S, Silva H, Brandao L, et al. Catalysts for methanol steam reforming-A review. Applied Catalysis B:Environmental,2010,99(1):43-57
    [14]吴倩,王弘轼,朱炳辰等.甲醇制氢反应器的一维模拟及工况分析.高校化学工程学报,2003,17(3):298-303
    [15]Mazloomi K, Gomes C. Hydrogen as an energy carrier:prospects and challenges. Renewable and Sustainable Energy Reviews,2012,16(5):3024-3033
    [16]Abdel-Aal H K, Hussein I A. Parametric study for saline water electrolysis:Part I-hydrogen production. International Journal of Hydrogen Energy,1993,18(6): 485-489
    [17]Lin F N, Moore W I, Walker S W. Economics of liquid hydrogen from water electrolysis. International Journal of Hydrogen Energy,1985,10(12):811-815
    [18]Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38
    [19]Licht S, Wang B, Mukerji S, et al. Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. International Journal of Hydrogen Energy,2001,26(7):653-659
    [20]黄金昭,徐征,李海玲等.太阳能制氢技术研究进展.太阳能学报,2006,27(9):947-954
    [21]冯进来,王宝辉,王志涛等.太阳能制氢技术及其进展.可再生能源,2004(5):10-13
    [22]Chang J, Lee K, Lin P. Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy,2002,27(11):1167-1174
    [23]Mckendry P. Energy production from biomass (part 2):conversion technologies. Bioresource Technology,2002,83(1):47-54
    [24]Putun E, Uzun B B, Putiin A E. Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresource Technology,2006,97(5):701-710
    [25]Demirbas A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Conversion and Management,2002, 43(7):897-909
    [26]Czernik S, French R, Feik C, et al. Production of hydrogen from biomass-derived liquids. DOE Hydrogen Program Review,2001
    [27]Chittick D E. Fuel gas-producing pyrolysis reactors:U. S. Patent 4,584,947. 1986-4-29
    [28]Samolada M C, Papafotica A, Vasalos I A. Catalyst evaluation for catalytic biomass pyrolysis. Energy & Fuels,2000,14(6):1161-1167
    [29]Garcia L, Salvador M L, Arauzo J, et al. Influence of catalyst weight/biomass flow rate ratio on gas production in the catalytic pyrolysis of pine sawdust at low temperatures. Industrial & Engineering Chemistry Research,1998,37(10): 3812-3819
    [30]Demiral I, nsoz S. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresource technology,2008,99(17): 8002-8007
    [31]Simell P A, Hakala N A, Haario H E, et al. Catalytic decomposition of gasification gas tar with benzene as the model compound. Industrial & Engineering Chemistry Research,1997,36(1):42-51
    [32]Li J, Yan R, Xiao B, et al. Preparation of Nano-NiO Particles and Evaluation of Their Catalytic Activity in Pyrolyzing Biomass Components. Energy & Fuels, 2007,22(1):16-23
    [33]Williams P T, Brindle A J. Catalytic pyrolysis of tyres:Influence of catalyst temperature. Fuel,2002,81(18):2425-2434
    [34]Sutton D, Kelleher B, Ross J R. Catalytic conditioning of organic volatile products produced by peat pyrolysis. Biomass and Bioenergy,2002,23(3): 209-216
    [35]王明峰,许细微,李伯松等.Fe2O3/γ-Al2O3催化裂解生物质制氢研究.可再生能源,2010,28(4):49-53
    [36]Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Conversion and Management,2003,44:2289-2296
    [37]杜丽娟,李建芬,肖波等.生物质催化裂解制合成气的研究.化学工程师,2008,22(6):3-4,9
    [38]李倩,刘石明,成功等.Lao. 5Cao. 5Nio. 5Feo.5O3催化剂的制备及其对生物质热解特性的影响.环境科学学报,2012,32(8):1827-1832
    [39]McKeny P. Energy production from biomass (part 3):gasification technologies. Bioresource technology,2002,83(1):55-63
    [40]Lv P, Yuan Z, Ma L, et al. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy,2007, 32(13):2173-2185
    [41]Toledo J M, Corella J, Molina G. Catalytic hot gas cleaning with monoliths in biomass gasification in fluidized beds.4. Performance of an advanced, second-generation, two-layers-based monolithic reactor. Industrial & Engineering Chemistry Research,2006,45(4):1389-1396
    [42]Ruoppolo G, Ammendola P, Chirone R, et al. H2-rich syngas production by fluidized bed gasification of biomass and plastic fuel. Waste Management,2012, 32(4):724-732
    [43]Rapagna S, Provendier H, Petit C, et al. Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification. Biomass and Bioenergy, 2002,22(5):377-388
    [44]Franco C, Pinto F, Gulyurtlu I, et al. The study of reactions influencing the biomass steam gasification process. Fuel,2003,82(7):835-842
    [45]Turn S, Kinoshita C, Zhang Z, et al. An experimental investigation of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 1998,23(8):641-648
    [46]Herguido J, Corella J, Gonzalez-Saiz J. Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock. Industrial & Engineering Chemistry Research,1992,31(5):1274-1282
    [47]Karmakar M K, Datta A B. Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresource Technology,2011,102(2):1907-1913
    [48]Loha C, Chattopadhyay H, Chatterjee P K. Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk. Energy, 2011,36(7):4063-4071
    [49]Howaniec N, Smolinski A. Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. International Journal of Hydrogen Energy, 2011,36(3):2038-2043
    [50]吕鹏梅,常杰,熊祖鸿等.生物质在流化床中的空气-水蒸气气化研究.燃料化学学报,2003,31(4):305-310
    [51]吴家桦,沈来宏,王雷等.串行流化床生物质气化制氢试验研究.太阳能学报,2010,31(2):242-247
    [52]肖波,邹先枚,杨家宽等.生物质燃料的破碎研究.能源研究与信息,2006,22(1):6-11
    [53]Luo S, Xiao B, Hu Z, et al. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace. Energy Conversion and Management,2010, 51(11):2098-2102
    [54]Xianjun G, Xiao B, Zhiquan H, et al. Gasification characteristics of biomass micron fuel (BMF):study on steam gasification for hydrogen-rich gas production. Fresenius Environmental Bulletin,2008,17(5):524-529
    [55]Guo X J, Xiao B, Zhang X L, et al. Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier. Bioresource Technology,2009, 100(2):1003-1006
    [56]刘石明,郭献军,胡智泉等.生物质微米燃料(BMF)空气-水蒸气气化实验研究.太阳能学报,2010,31(2):237-241
    [57]汪宝华.中华人民共和国固体废弃物污染环境防治法实施手册.北京:中国环境保护出版社,2005
    [58]Themelis N J. An overview of the global waste-to-energy industry. Waste Management World,2003:40-48
    [59]王绍文,梁富智,王纪曾.固体废弃物资源化技术与应用.北京:冶金工业出版社,2003
    [60]任连海,田媛,何亮.城市典型固体废弃物资源化工程.北京:化学工业出版社,2009
    [61]徐嘉.城市生活垃圾典型组分的流化床气化特性实验研究:[硕士学位论文].浙江:浙江大学图书馆,2004
    [62]张益,陶华.垃圾处理处置技术及工程实例.北京:化学工业出版社,2002
    [63]王艳.城市生活垃圾中低温热解特性研究:[博士学位论文].天津:天津大学图书馆,2005
    [64]国家环境保护总局污染控制司.城市固体废弃物管理与处理处置技术.北京:中国石化出版社,2000
    [65]金宜英,田洪海,聂永丰等.3个城市生活垃圾焚烧炉飞灰中二噁英类分析.环境科学,2003(03):21-25
    [66]杜吴鹏,高庆先,张恩琛等.中国城市生活垃圾处理及趋势分析.环境科学研究,2006,19(6):115-120
    [67]赵由才,柴晓理.生活垃圾资源化原理与技术.北京:化学工业出版社,2001
    [68]朱能武.固体废弃物处理与利用.北京:北京大学出版社,2006
    [69]Chang Y, Chen W C, Chang N. Comparative evaluation of RDF and MSW incineration. Journal of Hazardous Materials,1998,58(1):33-45
    [70]Thipse S S, Sheng C, Booty M R, et al. Synthetic fuel for imitation of municipal solid waste in experimental studies of waste incineration. Chemosphere,2001, 44(5):1071-1077
    [71]Zheng J, Jin Y, Chi Y, et al. Pyrolysis characteristics of organic components of municipal solid waste at high heating rates. Waste Management,2009,29(3): 1089-1094
    [72]Kwak T, Lee S, Maken S, et al. A study of gasification of municipal solid waste using a double inverse diffusion flame burner. Energy & Fuels,2005,19(6): 2268-2272
    [73]Senneca O, Salatino P, Chirone R. A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel,1999,78(13):1575-1581
    [74]Galvagno S, Casu S, Casabianca T, et al. Pyrolysis process for the treatment of scrap tyres:preliminary experimental results. Waste Management,2002,22(8): 917-923
    [75]Ahmed I, Gupta A K. Characteristic of hydrogen and syngas evolution from gasification and pyrolysis of rubber. International Journal of Hydrogen Energy, 2011,36(7):4340-4347
    [76]Ahmed I, Gupta A K. Syngas yield during pyrolysis and steam gasification of paper. Applied Energy,2009,86(9):1813-1821
    [77]李季,张铮,杨学民等.城市生活垃圾热解特性的TG-DSC分析.化工学报,2002,53(7):759-764
    [78]金余其,严建华,池涌等.PVC热解动力学的研究.燃料化学学报,2001,29(4):381-384
    [79]李权柄,汪华林,张振华等.两段式热解厨余垃圾实验研究.环境工程学报,2009,3(1):175-178
    [80]Luo S, Xiao B, Hu Z, et al. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International Journal of Hydrogen Energy,2010,35(1):93-97
    [81]Kwak T, Maken S, Lee S, et al. Environmental aspects of gasification of Korean municipal solid waste in a pilot plant. Fuel,2006,85(14):2012-2017
    [82]Kim J, Mun T, Kim J, et al. Air gasification of mixed plastic wastes using a two-stage gasifier for the production of producer gas with low tar and a high caloric value. Fuel,2011,90(6):2266-2272
    [83]Thamavithya M, Dutta A. An investigation of MSW gasification in a spout-fluid bed reactor. Fuel Processing Technology,2008,89(10):949-957
    [84]熊祖鸿,李海滨,吴创之等.下吸式气化炉处理城市生活垃圾.环境污染治理技术与设备,2005,6(8):75-78
    [85]刘荣厚.生物质能工程.北京:化学工业出版社,2009
    [86]Galvagno S, Casu S, Casciaro G, et al. Steam gasification of refuse-derived fuel (RDF):influence of process temperature on yield and product composition. Energy & Fuels,2006,20(5):2284-2288
    [87]Li J, Liao S, Dan W, et al. Experimental study on catalytic steam gasification of municipal solid waste for bioenergy production in a combined fixed bed reactor. Biomass and Bioenergy,2012,46(0):174-180
    [88]贺茂云,胡智泉,肖波等.城市生活垃圾催化气化制取富氢气体的研究.环境工程,2009,27(2):97-101
    [89]罗思义.城市生活垃圾破碎机的研制及粒径对垃圾热解气化特性的影响研究:[博士学位论文].武汉:华中科技大学图书馆,2010
    [90]肖波,汪莹莹,苏琼.垃圾气化处理新技术研究.中国资源综合利用,2006,24(10):18-20
    [91]Seshadri K S, Shamsi A. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor. Industrial & Engineering Chemistry Research,1998,37(10): 3830-3837
    [92]He M, Xiao B, Liu S, et al. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. Journal of Analytical and Applied Pyrolysis,2010,87(2):181-187
    [93]Abu El-Rub Z, Bramer E A, Brem G. Review of catalysts for tar elimination in biomass gasification processes. Industrial & Engineering Chemistry Research, 2004,43(22):6911-6919
    [94]Devi L, Craje M, Thune P, et al. Olivine as tar removal catalyst for biomass gasifiers:Catalyst characterization. Applied Catalysis A:General,2005,294(1): 68-79
    [95]Wang T, Chang J, Lv P, et al. Novel catalyst for cracking of biomass tar. Energy & Fuels,2005,19(1):22-27
    [96]Devi L, Ptasinski K J, Janssen F J, et al. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy,2005,30(4):565-587
    [97]Jin G, Iwaki H, Arai N, et al. Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts. Energy,2005,30(7):1192-1203
    [98]Encinar J M, Beltran F J, Ramiro A, et al. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables. Fuel Processing Technology,1998,55(3):219-233
    [99]蒋剑春.生物质化学转化行为和工程化学研究:[博士学位论文].北京:中国林业科学研究院,2003
    [100]He M, Xiao B, Hu Z, et al. Syngas production from catalytic gasification of waste polyethylene:influence of temperature on gas yield and composition. International Journal of Hydrogen Energy,2009,34(3):1342-1348
    [101]Yang X, Xu S, Xu H, et al. Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar. Catalysis Communications,2010, 11(5):383-386
    [102]Park H J, Park S H, Sohn J M, et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresource Technology,2010,101:S101
    [103]Zhang R, Brown R C, Suby A, et al. Catalytic destruction of tar in biomass derived producer gas. Energy Conversion and Management,2004,45(7):995-1014
    [104]Luo S, Xiao B, Hu Z, et al. An experimental study on a novel shredder for municipal solid waste (MSW). International Journal of Hydrogen Energy,2009, 34(3):1270-1274
    [105]刘荣厚,牛卫生,张大雷.生物质热化学转化技术.北京:化学工业出版社,2005
    [106]Werle S, Wilk R K. A review of methods for the thermal utilization of sewage sludge:The Polish perspective. Renewable Energy,2010,35(9):1914-1919
    [107]陈港,刘玉莎,文艾等.基于热重法的纸张热老化特性分析及其评价模型.华南理工大学学报(自然科学版),2012,40(1):19-23,29
    [108]沈祥智.生活垃圾中主要可燃组分热解特性的试验研究:[博士学位论文].浙江大学图书馆,2006
    [109]Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel,2008,87(3):414-421
    [110]Muller-Hagedorn M, Bockhorn H, Krebs L, et al. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis,2003,68:231-249
    [111]吴旺明,严建华,温俊明等.垃圾典型组分混合热解特性的实验研究.环境科学与技术,2005,28(5):21-22,41
    [112]Sorum L, Gronli M G, Hustad J E. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel,2001,80(9):1217-1227
    [113]Moltp J, Font R, Conesa J A, et al. Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. Journal of Analytical and Applied Pyrolysis,2006,76(1):124-131
    [114]Jakab E, Blazso M, Faix O. Thermal decomposition of mixtures of vinyl polymers and lignocellulosic materials. Journal of Analytical and Applied Pyrolysis,2001, 58:49-62
    [115]Munikenche Gowda T, Naidu A, Chhaya R. Some mechanical properties of untreated jute fabric-reinforced polyester composites. Composites Part A:Applied Science and Manufacturing,1999,30(3):277-284
    [116]Williams P T, Besler S. Thermogravimetric analysis of the components of biomass. Advances in Thermochemical Biomass Conversion,1994,2:771-783
    [117]Aguiar L, Marquez-Montesinos F, Gonzalo A, et al. Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. Journal of Analytical and Applied Pyrolysis,2008,83(1):124-130
    [118]廖艳芬,王树荣,骆仲泱等.纤维素热裂解过程动力学的试验分析研究.浙江大学学报(工学版),2002,36(2):172-176,189
    [119]Kim S, Kim S. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. Chemical Engineering Journal,2004,98(1):53-60
    [120]Hu S, Jess A, Xu M. Kinetic study of Chinese biomass slow pyrolysis:Comparison of different kinetic models. Fuel,2007,86(17):2778-2788
    [121]Li D, Chen L, Zhao J, et al. Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China. Chemical Engineering Research and Design,2010,88(5):647-652
    [122]Aboulkas A, El Harfi K, El Bouadili A. Pyrolysis of olive residue/low density polyethylene mixture:Part I Thermogravimetric kinetics. Journal of Fuel Chemistry and Technology,2008,36(6):672-678
    [123]Cheng G, Zhang L, He P, et al. Pyrolysis of ramie residue:kinetic study and fuel gas produced in a cyclone furnace. Bioresource Technology,2011,102(3): 3451-3456
    [124]Park Y, Kim J, Kim S, et al. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. Bioresource Technology,2009,100(1):400-405
    [125]Guan Y, Luo S, Liu S, et al. Steam catalytic gasification of municipal solid waste for producing tar-free fuel gas. International Journal of Hydrogen Energy,2009, 34(23):9341-9346
    [126]Bjorklund A, Melaina M, Keoleian G. Hydrogen as a transportation fuel produced from thermal gasification of municipal solid waste:an examination of two integrated technologies. International Journal of Hydrogen Energy,2001,26(11): 1209-1221
    [127]李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较.首都师范大学学报(自然科学版),2004,25(3):73-80
    [128]贺茂云.纳米镍基催化剂的制备及其对城市生活垃圾裂解气化制氢的催化性能研究:[博士学位论文].武汉:华中科技大学图书馆,2009
    [129]江建方.城市生活垃圾外热式热解技术的研究:[博士学位论文].武汉:华中科技大学图书馆,2006
    [130]Mayerhofer M, Mitsakis P, Meng X, et al. Influence of pressure, temperature and steam on tar and gas in allothermal fluidized bed gasification. Fuel,2012,99: 204-209
    [131]Pinto F, Franco C, Andre R N, et al. Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel,2003,82(15):1967-1976
    [132]谭洪.生物质热裂解机理试验研究:[博士学位论文].杭州:浙江大学图书馆,2005
    [133]Asadullah M, Miyazawa T, Ito S, et al. A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems. Biomass and Bioenergy,2004,26(3): 269-279
    [134]Lv P, Chang J, Wang T, et al. Hydrogen-rich gas production from biomass catalytic gasification. Energy & Fuels,2004,18(1):228-233
    [135]Guoxin H, Hao H, Yanhong L. Hydrogen-rich Gas production from pyrolysis of biomass in an autogenerated steam atmosphere. Energy & Fuels,2009,23(3): 1748-1753
    [136]Suresh Kumar Reddy K, Kannan P, Al Shoaibi A, et al. Thermal Pyrolysis of Polyethylene in Fluidized Beds:Review of the Influence of Process Parameters on Product Distribution. Journal of Energy Resources Technology,2012,134(3): 034001.1-034001.6
    [137]黄浩.湿生物质定向气化制取高浓度氢气的实验研究及理论分析:[博士学位论文].上海:上海交通大学图书馆,2010
    [138]李建芬.生物质催化热解和气化的应用基础研究:[博士学位论文].武汉:华中科技大学图书馆,2007
    [139]Kasozi G N, Zimmerman A R, Nkedi-Kizza P, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental Science & Technology,2010,44(16):6189-6195
    [140]Chen B, Chen Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere,2009,76(1):127-133
    [141]Yao Y, Gao B, Inyang M, et al. Biochar derived from anaerobically digested sugar beet tailings:Characterization and phosphate removal potential. Bioresource Technology,2011,102(10):6273-6278
    [142]Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. Journal of Thermal Analysis and Calorimetry,2000,60(2):641-658
    [143]Ortega A. The kinetics of solid-state reactions toward consensus, Part 2:Fitting kinetics data in dynamic conventional thermal analysis. International Journal of Chemical Kinetics,2002,34(3):193-208
    [144]李阳初,王耀斌.石油化学工程基础.东营:石油大学出版社,1997
    [145]国家建筑材料工业局.JC 488-92玻璃池窑热平衡测定与计算方法.北京:中国标准出版社出版,1992
    [146]李海英.生物污泥热解资源化技术研究:[博士学位论文].天津:天津大学图书馆,2006
    [147]Florin N H, Harris A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chemical Engineering Science,2008,63(2):287-316
    [148]Lin S, Harada M, Suzuki Y, et al. Hydrogen production from coal by separating carbon dioxide during gasification. Fuel,2002,81(16):2079-2085
    [149]Hanaoka T, Yoshida T, Fujimoto S, et al. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass and Bioenergy,2005, 28(1):63-68
    [150]Acharya B, Dutta A, Basu P. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. International Journal of Hydrogen Energy,2010,35(4):1582-1589
    [151]Guoxin H, Hao H. Hydrogen rich fuel gas production by gasification of wet biomass using a CO 2 sorbent. Biomass and bioenergy,2009,33(5):899-906
    [152]Han L, Wang Q, Yang Y, et al. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. International Journal of Hydrogen Energy,2011,36(8):4820-4829
    [153]Xu G, Murakami T, Suda T, et al. Distinctive effects of CaO additive on atmospheric gasification of biomass at different temperatures. Industrial & Engineering Chemistry Research,2005,44(15):5864-5868
    [154]Sutton D, Kelleher B, Ross J R. Review of literature on catalysts for biomass gasification. Fuel Processing Technology,2001,73(3):155-173
    [155]Delgado J, Aznar M P, Corella J. Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam:Life and usefulness. Industrial & Engineering Chemistry Research,1996,35(10):3637-3643
    [156]陈娟娟,杨海真.热重分析(TG)与质谱分析(MS)联用技术在环境领域应用前景分析.环境科学与管理,2007,32(4):131-134
    [157]朱文辉,杨柳,杨红燕等.热重-质谱联用技术应用进展.云南化工,2009,36(5):56-59
    [158]Raveendran K, Ganesh A, Khilar K C. Influence of mineral matter on biomass pyrolysis characteristics. Fuel,1995,74(12):1812-1822
    [159]Nowakowski D J, Jones J M, Brydson R, et al. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel,2007,86(15):2389-2402
    [160]赵巍,汪琦,刘海啸等.热分析-质谱联用分析生物垃圾热解机理.环境科学与技术,2010,33(5):55-58
    [161]Liodakis S E, Statheropoulos M K, Tzamtzis N E, et al. The effect of salt and oxide-hydroxide additives on the pyrolysis of cellulose and Pinus halepensis pine needles. Thermochimica Acta,1996,278:99-108
    [162]Widyawati M, Church T L, Florin N H, et al. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy,2011,36(8):4800-4813
    [163]Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel,2007,86(12):1781-1788
    [164]Han L, Wang Q, Ma Q, et al. Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 2010,88(2):199-206
    [165]Rupp J L, Scherrer B, Harvey A S, et al. Crystallization and grain growth kinetics for precipitation-based ceramics:a case study on amorphous ceria thin films from spray pyrolysis. Advanced Functional Materials,2009,19(17):2790-2799
    [166]Faix O, Jakab E, Till F, et al. Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry. Wood Science and Technology,1988,22(4):323-334
    [167]朱廷钰,刘丽鹏,王洋等.氧化钙催化煤温和气化研究.燃料化学学报,2000,28(1):36-39
    [168]Yongbin J, Jiejie H, Yang W. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed. Energy & Fuels,2004,18(6):1625-1632
    [169]Guan J, Wang Q, Li X, et al. Thermodynamic analysis of a biomass anaerobic gasification process for hydrogen production with sufficient CaO. Renewable Energy,2007,32(15):2502-2515
    [170]Florin N H, Harris A T. Hydrogen production from biomass coupled with carbon dioxide capture:The implications of thermodynamic equilibrium. International Journal of Hydrogen Energy,2007,32(17):4119-4134
    [171]韩龙.以CaO为吸收体的生物质无氧气化制氢的机理研究与试验研究:[博士学位学位论文].杭州:浙江大学图书馆,2011
    [172]Silaban A, Harrison D P. High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO (s) and CO2 (g). Chemical Engineering Communications,1995,137(1):177-190
    [173]Manovic V, Anthony E J. Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent. Fuel,2008,87(8):1564-1573
    [174]Nipattummakul N, Ahmed I I, Kerdsuwan S, et al. Hydrogen and syngas production from sewage sludge via steam gasification. International Journal of Hydrogen Energy,2010,35(21):11738-11745
    [175]Comas J, Laborde M, Amadeo N. Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources,2004,138(1): 61-67
    [176]Feng B, Bhatia S K, Barry J C. Variation of the crystalline structure of coal char during gasification. Energy & Fuels,2003,17(3):744-754
    [177]Abanades J C. The maximum capture efficiency of CO2 using a carbonation/ calcination cycle of CaO/CaCO3. Chemical Engineering Journal,2002,90(3): 303-306
    [178]Lin S, Harada M, Suzuki Y, et al. Continuous experiment regarding hydrogen production by Coal/CaO reaction with steam (II) solid formation. Fuel,2006, 85(7):1143-1150
    [179]Grasa G S, Abanades J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research,2006, 45(26):8846-8851
    [180]He M, Xiao B, Liu S, et al. Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW):Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. International Journal of Hydrogen Energy,2009,34(5):2174-2183
    [181]Furusawa T, Sato T, Sugito H, et al. Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. International Journal of Hydrogen Energy,2007,32(6):699-704
    [182]Corella J, Aznar M P, Caballero M A, et al.140 gH2/kg biomass daf by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer. International Journal of Hydrogen Energy,2008,33(7):1820-1826
    [183]Wu C, Williams P T. A novel Ni-Mg-Al-CaO catalyst with the dual functions of catalysis and CO2 sorption for H2 production from the pyrolysis-gasification of polypropylene. Fuel,2010,89(7):1435-1441
    [184]Elbaba I F, Wu C, Williams P T. Hydrogen production from the pyrolysis-gasification of waste tyres with a nickel/cerium catalyst. International Journal of Hydrogen Energy,2011,36(11):6628-6637
    [185]Kong M, Fei J, Wang S, et al. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification. Bioresource Technology,2011,102(2):2004-2008
    [186]Richardson S M, Gray M R. Enhancement of residue hydroprocessing catalysts by doping with alkali metals. Energy & Fuels,1997,11(6):1119-1126
    [187]Srinakruang J, Sato K, Vitidsant T, et al. Highly efficient sulfur and coking resistance catalysts for tar gasification with steam. Fuel,2006,85(17):2419-2426
    [188]Li J, Yan R, Xiao B, et al. Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification. Environmental Science & Technology,2008, 42(16):6224-6229
    [189]冯宇.外热式生物质催化气化制氢的研究:[博士学位学位论文].武汉:华中科技大学图书馆,2011
    [190]Devi L, Ptasinski K J, Janssen F J. A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy,2003,24(2): 125-140
    [191]孙云娟.生物质催化气化及焦油裂解的研究:[硕士学位论文].北京:中国林业科学研究院,2006
    [192]Hao X H, Guo L J, Mao X, et al. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. International Journal of Hydrogen Energy,2003,28(1):55-64
    [193]Caballero M A, Aznar M P, Gil J, et al. Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures.1. Hot gas upgrading by the catalytic reactor. Industrial & Engineering Chemistry Research,1997, 36(12):5227-5239
    [194]Li J, Yin Y, Zhang X, et al. Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst. International Journal of Hydrogen Energy,2009,34(22):9108-9115
    [195]Srinakruang J, Sato K, Vitidsant T, et al. A highly efficient catalyst for tar gasification with steam. Catalysis Communications,2005,6(6):437-440
    [196]Hou Z, Yashima T. Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Applied Catalysis A:General,2004,261(2):205-209
    [197]Elbaba I F, Williams P T. High yield hydrogen from the pyrolysis-catalytic gasification of waste tyres with a nickel/dolomite catalyst. Fuel,2013,106: 528-536
    [198]Tomishige K, Chen Y G, Fujimoto K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. Journal of Catalysis,1999,181(1):91-103
    [199]Chen Y, Tomishige K, Yokoyama K, et al. Catalytic performance and catalyst structure of nickel-magnesia Ccatalysts for CO2 reforming of methane. Journal of Catalysis,1999,184(2):479-490
    [200]汪正范,杨树民,吴侔天等.色谱联用技术.北京:化学工业出版社,2001
    [201]Evans R J, Milne T A. Molecular characterization of the pyrolysis of biomass. Energy & Fuels,1987,1(2):123-137
    [202]许小荣.新型镍基催化剂的开发及在生物质催化气化重的应用研究:[硕士学位学位论文].武汉:武汉工业学院图书馆,2009
    [203]Morf P, Hasler P, Nussbaumer T. Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel,2002, 81(7):843-853
    [204]Tsai W, Lee M, Chang J, et al. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis. Bioresource Technology,2009,100(9):2650-2654
    [205]Branca C, Giudicianni P, Di Blasi C. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Industrial & Engineering Chemistry Research,2003,42(14):3190-3202
    [206]Nurul Islam M, Rafiqul Alam Beg M, Rofiqul Islam M. Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization. Renewable Energy, 2005,30(3):413-420
    [207]Hu G, Xu S, Li S, et al. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Processing Technology,2006,87(5): 375-382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700