用户名: 密码: 验证码:
木质纤维素对里氏木霉产纤维素酶的诱导
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化石能源日趋短缺与能源需求的日益增长的矛盾形势下,以及化石能源带来的环境问题日益严重背景下,利用木质纤维原料制备燃料乙醇替代传统化石能源的技术成为当今世界的研究热点之一。纤维素酶能够有效将农作物秸秆等富含纤维素的物质水解为单糖,用于乙醇发酵,因此如何获得廉价高效的纤维素酶对我国经济和社会可持续发展具有重要的意义。本论文以里氏木霉RUT C30为产酶菌株,研究了不同碳源诱导产纤维素酶过程。
     以农作物秸秆为原料,研究了稀酸处理、碱处理和绿液预处理工艺条件;不同预处理条件对秸秆碳源诱导纤维素酶的影响;廉价产酶碳源和预处理方式确立;通过响应面分析优化确立稀酸处理纸浆产酶培养基;通过预处理秸秆和稀酸处理纸浆碳源单独分批补料以及混合碳源分批补料制备纤维素酶,以延长产酶周期提高产酶效率;使用电镜扫描和X-衍射等手段分析不同原料通过预处理条件提高产酶能力的原因。主要结果如下:
     比较了稀酸处理、碱处理和绿液预处理方式对不同秸秆碳源诱导产酶能力,结果表明绿液预处理方式处理条件温和、处理方式简单、原料损失小,诱导产酶能力最佳。比较了绿液预处理对稻草、玉米秸秆、棉秆和麦秆诱导里氏木霉产酶的影响,实验表明麦秆比较适合绿液预处理方式用于产酶碳源。比较了不同绿液预处理条件下木质纤维原料的浆料分析、纤维素酶活力与纤维素酶解得率,结果表明,预处理条件越剧烈,原料损失越大,聚糖回收率越低,而木质素移除率越高。绿液预处理对麦秆的影响程度分别为总碱量、蒸煮温度、硫化度。
     麦秆产酶最佳绿液处理条件是蒸煮温度140℃,总碱量4%和硫化度20%,12g/L麦秆纤维素为碳源,间歇培养合成纤维素酶,滤纸酶活第6天最高达4.23FPIU/mL。碳源浓度提高到20g/L麦秆纤维素,滤纸酶活最高达5.89FPIU/mL。
     绿液预处理麦秆酶水解的最适宜条件是蒸煮温度150℃,总碱量8%和硫化度40%的条件。当采用10%底物浓度,15FPIU/g纤维素,酶解72h,以商品纤维素酶为列,葡聚糖得率和木聚糖得率分别由10.50%和5.43%提高到61.41%和55.65%。自产纤维素酶酶解效果好于商品纤维素酶,葡聚糖得率和木聚糖得率分别由61.41%和55.65%提高到81.07%和80.02%,提高了32.01%和43.79%。
     稀酸处理纸浆为碳源产酶,通过PB实验得到影响纤维素酶合成的三个主要因素为酸处理纸浆浓度、C/N和硫酸镁浓度,经响应面实验优化这三个因素得到最佳结果,当酸处理纸浆浓度30.94g/L,C/N为4.06,硫酸镁浓度0.36g/L,滤纸酶活在120h达到最大为10.35FPIU/mL,此时β-G、蛋白质、酶产率和酶得率分别为4.98IU/mL、3.5g/L、86.25IU/(L·h)和334.52IU/g稀酸纸浆。
     通过分批补料产酶方式可以大幅度提高产纤维素酶量。实验得到了以绿液处理麦秆为单独碳源分批补料产酶,最佳补料方式是:补料速度为5.5g/(L·d)纤维素时,第5天开始补料,第10天FPA达到最高值9.56FPIU/mL,此时pH、β-G和酶产率分别为6.56、2.44IU/mL和39.83IU/(L·h)。以稀酸处理纸浆为单独碳源分批补料产酶,最佳补料方式是:补料速度为4g/(L·d)纤维素,第1天开始补料,第10天FPA达到最大值为17.58IU/mL,此时pH、β-G、酶产率和酶得率分别为6.57、7.01IU/mL、73.25IU/(L·h)和399.55IU/g纤维素。以绿液处理麦秆和稀酸处理纸浆混合碳源分批补料产酶,最佳补料方式是,以8.0g/L绿液处理麦秆纤维素为起始碳源,稀酸处理纸浆为补料碳源,补料速度为4g/(L·d)纤维素时,第9天FPA达到最大为15.33FPIU/mL,此时酶产率的酶得率分别为70.97IU/(L·h)和638.75IU/g纤维素,高于间歇产酶和单独碳源分批补料的产酶效率。
Under the circumstance of the contradiction between the shortage of fossil fuel and theincreasing demand for energy, as well as environmental problems become increasingly seriousbring by the fossil energy, using lignocellulose to prepare fuel ethanol instead of traditional fossilenergy has become one the hottest topics for research in today’s world. Cellulase can effectivelyhydrolyze cellulose-rich straws into monosaccharide, which can be fermented to produce fuelethanol. It is very meaningful in the sustaining development of our society and economy that howto produce the costless and effective cellulase. The process of cellulase induction fromTrichoderma reesei RUT C30using different carbon sources was studied.
     In this dissertation, straws were used as the raw materials pretreated by dilute acid, alkaliand green liquor. Effects of pretreatment conditions for different carbon source on cellulaseinduction were compared. Cheap carbon source and pretreatment method for enzyme productionwas optimized. Response Surface Analysis was applied to optimize the enzyme productionmedium when dilute-acid treated pulp was used as the carbon sourse. To extend enzymeproduction cycle and to improve the efficiency of enzyme production, pretreated wheat straw anddilute-acid pretreated pulp were used separately or together in batch fermentation or fed-batchfermentation. SEM and X-ray diffraction were used to examine the structure changes oflignocellulose pretreated with different conditions and to investigate the effect on the increase ofthe enzyme production ability. The main results are as follows.
     The capability of enzyme induction by different straws pretreated with dilute acid, alkali,and green liquor was compared. Results indicated that green liquor pretreatment was preferredbecause of mild conditions, simple processing, less material loss, and high enzyme inducingability. The effects of green liquor pretreatment of rice straw, corn stalk, cotton stalk and wheatstraw on cellulase production with Trichoderma reesei were studied. Data showed that wheatstraw pretreated by green liquor was the more suitable carbon source for enzyme production.Analysis of pulp yield, cellulase activity and yield of enzymatic hydrolysis with different greenliquid pretreated lignocellulose indicated that higher weight loss, lower glycan recovery, andhigher level of delignification were observed when more severe condition of pretreatment was applied. The order of influence of green liquor pretreatment on wheat straw was total alkalicharge (Na2O, on oven dry material, TTA), cooking temperature, and sulfidity.
     For enzyme production with wheat straw, the best green liquor pretreatment condition wascooking temperature140°C, total alkali charge4%, and sulfidity20%. The pretreated wheatstraw was used as carbon source for enzyme production. When12g/L of cellulose was used forcellulase synthesis, batch fermentation could reach a filter paper activity of4.23FPIU/mL at thesixth day. Increasing the carbon source concentration to20g/L of cellulose resulted a filterpaper activity of5.89FPIU/mL.
     For enzymatic hydrolysis of wheat straw, the optimum condition of green liquorpretreatment was cooking temperature150℃, total alkali charge8%, and sulfidity40%.Hydrolysis was conducted at substrate concentration of10%for72h with a cellulase loading of15FPIU/g cellulose. Compared to un-pretreated wheat straw, the green liquor pretreated whatstraw was hydrolyzed more efficiently. When commercial cellulose was used, hydrolysis yield ofglucan was increase from10.50%to61.41%, and hydrolysis yield of xylan was increase from5.43%to55.65%. When lab-produced cellulase was used, however, hydrolysis was furtherimproved. Hydrolysis yield of glucan and hydrolysis yield of xylan were increased to81.07%and80.02%, respectively.
     Pulp pretreated with1.5%H2SO4was the most efficient carbon source in inducingTrichoderma reesei for cellulase production. Plackett-Burman (PB) experiments indicated thatthe three main factors of pretreatment affecting enzyme synthesis were pulp concentration, C/Nand MgSO4concentration. Response Surface Analysis experiments optimized these three factors.When the dilute acid-hydrolyzed pulp(AHP)concentration was30.94g/L, C/N was4.06, andMgSO4concentration was0.36g/L, after120h growth, the filter paper activity reached it’smaximum of10.35FPIU/mL, with β-glucosidase activity, protein content, cellulase productionrate and cellulase yield being4.98IU/mL,3.5g/L,86.25IU/L·h and334.52IU/g cellulose,respectively.
     Fed-batch culture could increase cellulase production significantly and was optimized fordifferent carbon sources. When green liquor pretreated wheat straw was used as the carbonsource in fed-batch enzyme production, the optimal feeding condition was addition of5.5g/L·dcellulose starting at the fifth day. At the tenth day filter paper activity reached the highest valueof9.56FPIU/mL; pH, β-glucosidase activity and cellulase production rate were6.56,2.44IU/mL and39.83IU/L·h, respectively. In fed-batch enzyme production with dilute-acid pretreatedpulp as the single carbon source, the best feeding mode was adding4g/L·d cellulose every dayfrom the first day. At the tenth day filter paper activity reached the highest value of17.58FPIU/mL, whereas pH, β-glucosidase activity, cellulase production rate and cellulose yield were6.57,7.01IU/mL,73.25IU/L·h and399.55IU/g cellulose, respectively. When green liquidpretreated wheat straw and dilute-acid pretreated pulp were used as mixed carbon source for fed-batch enzyme production, the best way of carbon source feeding was started with greenliquid pretreated wheat straw at8.0g/L of cellulose, followed by addition of dilute-acidpretreated pulp, from the first day and on, at a concentration of4g/L·d cellulose. The highestvalue of filter paper activity,15.33FPIU/mL, was determined at the ninth day. At the meantimecellulase production rate and cellulose yield were70.97g/L·h and638.75IU/g cellulose,respectively, higher than that when single carbon source was used.
引文
[1]刘荣厚,梅晓岩,颜涌捷主编.燃料乙醇的制取工艺与实例[M].化学工业出版社,2007.
    [2]徐有明,黄月琴.木质纤维原料生产燃料乙醇开发技术研究进展[J].2006:182-187.
    [3]张娥(记者).07年中国石油进口量近2亿吨,进口步伐呈现超速度.中国石油石化,2008.03.02.
    [4] Knauf M, Moniruzzaman M. Lignocellulosic biomass processing: A perspective [J]. Internationalsugar joural,2004(106):147-150.
    [5] Kaltschmitt M, Thr n D, Smith K. Renewable energy from biomass [J]. Encyclopedia of physicalscience and technology,2002:203-228.
    [6] Rosillo-Calle F, Cortez L A B. Towards ProAlcool II-a review of the Brazilian bioethanol programme[J]. Biomass and Bioenergy,1998,14(2):115-124.
    [7] Persson I, Tjerneld F, Hahn-H gerdal B. Fungal cellulolytic enzyme production: A review [J]. ProcessBiochemistry,1991,26(2):65-74.
    [8] Parisi F. Advances in lignocellulosics hydrolysis and in the utilization of the hydrolyzates [J].Advances in Biochemical Engineering/Biotechnology,1989,38:53-87.
    [9] Lee J. Biological conversion of lignocellulosic biomass to ethanol [J]. Biotechnology,1997,56(1):1-24.
    [10] Hinman N D, Wright J D, Hoagland W, et al. Xylose Fermentation: An Economic Analysis [J].Applied Biochemistry and Biotechnology.1989,20/21(1):391-401.
    [11] Palmqvist E. Fermentation of lignocellulosic hydrolysates:inhibition and detoxification [D].Department of Applied Microbiology, lund university doctoral dissertation,1998.
    [12] Gong C S, Cao N J, Du J, et al. Ethanol production from renewable resources [M]. Recent Progress inBioconversion of Lignocellulosics. Springer Berlin Heidelberg,1999:207-241.
    [13] Balat M, Balat H, z C. Progress in bioethanol processing [J]. Progress in energy and combustionscience,2008,34(5):551-573.
    [14] Mcmillan J D. Bioethanol production: status and prospects [J]. Renewable Energy,1997,10(2-3):295-302.
    [15]勇强.植物纤维资源生物转化制取酒精的研究[D].南京林业大学博士学位论文,1998.
    [16] Saxena R C, Adhikari D K, Goya H B. Biomass-based energy fuel through biochemical routes: Areview [J]. Renewable and Sustainable Energy Reviews,2007,13(1):167-178.
    [17] Henrissat B, Coutinho P M. Classification of glycoside hydrolases and glycosyl transferases fromhyperthermophiles [J]. Methods in Enzymology,2001,330:183-201.
    [18] Coughlan M. The properties of fungal and bacterial cellulases with comment on their production andapplication [J]. Biotechnology and Genetic Engineering Review,1985,3:39-109.
    [19] DOE/SC-0095,Breaking the Biologlical barriers to cellulosic ethanol. A Joint Reasearch Agenda,June2006.
    [20] Kraulis P J, Clore G M, Nilges M, et al. Determination of the three-dimensional solution structure ofthe C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclearmagnetic resonance and hybrid distance geometry-dynamical simulated annealing [J]. Biochemistry,1989,28(18):7241-7257.
    [21]Pettersson G, Linder M, Reinikaninen T, et al. Identification of functionally important amino acids inthe cellulose-binding domain of Trichoderma reesei cellobiohydrolases I [J]. Protein Science,1995,4(6):1056-1064.
    [22] Ljungdahl L G, Eriksson K E. Ecology of Microbial Cellulose Degradation [J]. Advances in MicrobialEcology,1985,8:237-299.
    [23] Aubert J P, Beguin P, Millet J. Biochemistry and genetics of cellulose degradation [J].1988.
    [24] Kovács K, Szakacs G, Zacchi G. Comparative enzymatic hydrolysis of pretreated spruce bysupernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichodermaatroviride [J]. Bioresource Technology,2009,100(3):1350-1357.
    [25] Chandra M, Kalra A, Sangwan N. Development of a mutant of Trichoderma citrinoviride forenhanced production of cellulases [J]. Bioresource Technology,2009,100(4):1659-1662.
    [26] Sukumaran R, Singhania R, Mathew G, et al. Cellulase production using biomass feed stock and itsapplication in lignocellulose saccharification for bio-ethanol production [J]. Renewable Energy,2009,34(2):421-424.
    [27] José A, Velho T, Laguna S. Generation of recombinants strains to cellulases production by protoplastfusion between Penicillium echinulatum and Trichoderma harzianum [J]. Enzyme and MicrobialTechnology,2008,43(6):403-409.
    [28] Camassola M, Dillon A. Biological pretreatment of sugar cane bagasse for the production of cellulasesand xylanases by Penicillium echinulatum [J]. Industrial Crops and Products,2009,29(2-3):642-647.
    [29] Gao J, Zhu D, Yuan M, et al. Production and characterization of cellulolytic enzymes from thethermoacidophilic fungal Aspergillus terreus M11under solid-state cultivation of corn stover [J].Bioresource Technology,2008,99(16):7623-7629.
    [30] Membrillo I, Sánchez C, Meneses M, et al. Effect of substrate particle size and additional nitrogensource on production of lignocellulolytic enzymes by Pleurotus ostreatus strains [J]. BioresourceTechnology,2008,99(16):7842-7847.
    [31] Pakdeedashakiat W, Avatcharamas V, Piyatheerawong W. Utilization of lignocellulosic wastes forxylanase and cellulase production by Paenibacillus curdlanolyticus B6[J]. Journal of Biotechnology,2008,136: S300-S301.
    [32] Boyer M, Bally R, Perrotto S, et al. A quorum-quenching approach to identifyquorum-sensing-regulated functions in Azospirillum lipoferum [J]. Research in Microbiology,2008,159(9-10):699-708.
    [33] Fang X, Yano S, Inoue H, et al. Cellulase and hemicellulase production by Acremonium cellulolyticusfor hydrolysis of biomass [J]. Journal of Biotechnology,2008,136: S330.
    [34] Ariffin H, Hassan M A, Shirai U K M, et al. Production of bacterial endoglucanase from pretreated oilpalm empty fruit bunch by bacillus pumilus EB3[J]. Journal of Bioscience and Bioengineering.2008,106(3):231-236.
    [35] Sakamoto K, Uji S, Kurokawa T, et al. Immunohistochemical, in situ hybridization and biochemicalstudies on endogenous cellulase of Corbicula japonica [J]. Comparative Biochemistry and PhysiologyPart B: Biochemistry and Molecular Biology,2008,150(2):216-221.
    [36] Niranjane A P, Madhou P, Stevenson T W. The effect of carbohydrate carbon sources on theproduction of cellulase by Phlebia gigantean [J]. Enzyme and Microbial Technology,2007,40(6):1464-1468.
    [37] Caspi J, Irwin D, Lamed R, et al. Conversion of Thermobifida fusca free exoglucanases intocellulosomal components: comparative impact on cellulose-degrading activity [J]. Journal ofBiotechnology,2008,135(4):351-357.
    [38] Chinn M S, Nokes S E, Strobel H J. Influence of moisture content and cultivation duration onClostridium thermocellum27405end-product formation in solid substrate cultivation on Avicel [J].Bioresource Technology,2008,99(7):2664-2671.
    [39] Wyman C. Handbook on Bioethanol: Production and Utilization [M]. Applied Energy Technology,1996, CRC press:217-218.
    [40] Barbagallo R N, Spagna G, Palmeri R, et al. Selection, characterization and comparison ofβ-glucosidase from mould and yeasts employable for enological applications [J]. Enzyme andMicrobial Technology,2004,35(1):58-66.
    [41] Dduenas R, Tengerdy R P, Gutierrez-Correa M. Cellulase production by mixed fungi in solid-substratefermentation of bagasse [J]. World Journal of Microbiology and Biotechnology,1995,11(3):333–337.
    [42] Flachner B, Brumbauer A, Reczey K. Stabilization of beta-glucosidase in Aspergillus phoenicis QM329pellets [J]. Enzyme and Microbial Technology,1999,24(5-6):362–367.
    [43] Hofer F, Weissinger E, Mischak H, et al. A monoclonal antibody against the alkaline extracellularβ-glucosidase from Trichoderma reesei: reactivity with other Trichoderma β-glucosidases [J].Biochimica et Biophysica Acta (BBA)-General Subjects,1989,992(3):298-306.
    [44] Chen H, Hayn M, Esterbauer H. Purification and characterization of two extracellular β-glucosidasesfrom Trichoderma reesei [J]. Biochimica et Biophysica Acta,(BBA),1992,1121(1):54-60.
    [45] Koibe J, Kubicek C P. Quantification of the main compinents of the Trichoderma cellulose complexwith monoclonal antibodies using an enzyme linked immunosorbent assay (ELISA)[J]. AppliedMicrobiology and Biotechnology,1990,34(1):26-30.
    [46] Hayn M, Esterbauer H. Separation and partial characterization of Trichoderma reesei cellulose by fastchromatofocusing [J]. Journal of Chromatography A,1985,329:379-387.
    [47] Ellouz S, Durand H, Tiraby G. Analytical separation of Trichoderma reesei cellulases by ion-exchangefast protein liquid chromatography [J]. Journal of Chromatography A,1987,396:307-317.
    [48] Medve J, Lee D, Tjerneld F. Ion-exchange chromatographic purification and quantitative analysis ofTrichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquidchromatography [J]. Journal of Chromatography A,1998,808(1):153-165.
    [49] Sprey B, Uelker A. Isolation and properties of a low molecular mass endoglucanase from Trichodermareesei [J]. FEMS Microbiology Letters,1992,92(3):253-257.
    [50] Ulker A, Sprey B. Characterization of an unglycosylated low molecular weight1,4-β-glucan-glucanohydrolase of Trichoderma reesei [J]. FEMS Microbiology Letters,1990,69(3):215-219.
    [51] Kyriacou A, MacKenzie C R, Neufeld R J. Detection and characterization of the specific andnonspecific endoglucanases of Trichoderma reesei: Evidence demonstrating endoglucanase activity bycellobiohydrolase II [J]. Enzyme and microbial technology,1987,9(1):25-32.
    [52]连之娜.里氏木霉纤维素酶蛋白组分及水解性能比较[D].南京林业大学硕士论文,2008.
    [53] Domingues F C, Queiroz J A, Cabral J M S, et al. The influence of culture conditions on mycelialstructure and cellulose [J]. Enzyme and Microbial Technology,2000,26(5):394-401.
    [54] Lynd L R, Weimer P J, Van Zyl W H, et al. Microbial Cellulose Utilization: Fundamentals andBiotechnology [J]. Microbiology and molecular biology reviews,2002,66(3):506-577.
    [55] Percival Zhang Y H, Himmel M E, Mielenz J R. Outlook for cellulase improvement: screening andselection strategies [J]. Biotechnology advances,2006,24(5):452-481.
    [56] Berlin A, Balakshin M, Gikes N, et al. Inhibition of cellulase, xylanase and β-glucosidase activities bysoftwood lignin preparation [J]. Journal of Biotechnology,2006,125(2):198-209.
    [57]俞俊棠,唐孝宣.生物工艺学[M].上海:华东化工学院出版社,1992.34-63
    [58] Kubicek C P, Penttil M E. Regulation of production of plant polysaccharide degrading enzymes byTrichoderma [J]. Trichoderma and Gliocladium,1998,2:49-71.
    [59] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials [J].Science,2006,311(5760):484-489.
    [60] Mandels M, Medeiros J E., Andreotti R E, et al. Enzymatic hydrolysis of cellulase: Evaluation ofcellulase culture filtrates under use condition [J]. Biotechnology and Bioengineering,1981,23(9):2009-2026.
    [61] Mohagheghi A, Grohmann K, Wyman C E. Production of cellulase on mixtures of xylose andcellulose in a fed-batch process [J]. Biotechnology and bioengineering,1990,35(2):211-216.
    [62] Persson I, Tjerneld F, Hahn-H gerdal B. Fungal cellulolytic enzyme production: A review [J]. Processbiochemistry,1991,26(2):65-74.
    [63] Warzywoda M, Vandecasteele J P, Pourquie J. A comparison of genetically improved strains of thecellulolytic fungus Trichoderma reesei [J]. Biotechnology Letters,1983,5(4):243-246.
    [64] Chen S, Wayman M. Use of sorbose to enhance cellobiase activity in a Trichoderma reesei cellulasesystem produced on wheat hydrolysate [J]. Biotechnology techniques,1993,7(5):345-350.
    [65]张晓萍.低聚糖和纤维类碳源对里氏木霉合成纤维素酶的诱导作用[D].南京林业大学研究生博士学位论文,2010.
    [66] Shoemaker S P, Raymond J C, Bruner R. Cellulases: diversity amongst improved Trichoderma strains
    [M]. Trends in the Biology of Fermentations for Fuels and Chemicals, Springer US,1981:89-109.
    [67] Watson T G, Nelligan I, Lessing L. Cellulase production by Trichoderma reesei (RUT-C30) infed-batch culture [J]. Biotechnology letters,1984,6(10):667-672.
    [68] Hendy N, Wilke C, Blanch H. Enhanced cellulase production using Solka Floc in a fed-batchfermentation [J]. Biotechnology Letters,1982,4(12):785-788.
    [69] Hendy N A, Wilke C R, Blanch H W. Enhanced cellulase production in fed-batch culture ofTrichoderma reesei C30[J]. Enzyme and Microbial Technology,1984,6(2):73-77.
    [70] McLean D D, Abear K, Podruzny M F. Fed-batch production of cellulases using trichoderma reeseirutgers c-30[J]. The Canadian Journal of Chemical Engineering,1986,64(4):588-597.
    [71] Martin R S, Blanch H W, Wilke C R, et al. Production of cellulase enzymes and hydrolysis ofsteam-exploded wood [J]. Biotechnology and bioengineering,1986,28(4):564-569.
    [72] Stewart J C, Lester A, Milburn B, et al. Xylanase and cellulase production by aspergillus fumigatusfresenius [J]. Biotechnology Letters,1983,5(8):543-548.
    [73] Kang S W, Kim S W, Lee J S. Production of cellulase and xylanase in a bubble column usingimmobilized Aspergillus Niger KKS [J]. Applied biochemistry and biotechnology,1995,53(2):101-106.
    [74] Bailey M J, Poutanen K. Production of xylanolytic enzymes by strains of Aspergillus [J]. AppliedMicrobiology and Biotechnology,1989,30(1):5-10.
    [75] Khanna P, Sundari S S, Kumar N J. Production, isolation and partial purification of xylanases from anAspergillus sp.[J]. World Journal of Microbiology and Biotechnology,1995,11(2):242-243.
    [76] Hrmová M, Biely P, Vr anská M. Cellulose-and xylan-degrading enzymes of Aspergillus terreus andAspergillus niger [J]. Enzyme and microbial technology,1989,11(9):610-616.
    [77] Bansod S M, Dutta-Choudhary M, Srinivasan M C, et al. Xylanase active at high pH from analkalotolerant Cephalosporium species [J]. Biotechnology letters,1993,15(9):965-970.
    [78] Wiacek-Zychlinska A, Czakaj J, Jedrychowska B, et al. Production of xylanases by Chaetomiumglobosum [J]. Prog Biotechnol,1992,7:493-496.
    [79] Mishra C, Seeta R, Rao M. Production of xylanolytic enzymes in association with the cellulolyticactivities of Penicillium funiculosum [J]. Enzyme and microbial technology,1985,7(6):295-299.
    [80] Saddler J N, Hogan C M, Louis-Seize G. A comparison between the cellulase systems of Trichodermaharzianum E58and Trichoderma reesei C30[J]. Applied microbiology and biotechnology,1985,22(2):139-145.
    [81] Brown J A, Collin S A, Wood T M. Development of a medium for high cellulase, xylanase andβ-glucosidase production by a mutant strain (NTG III/6) of the cellulolytic fungus Penicilliuminophilum [J]. Enzyme and Microbial Technology,1987,9(6):355-360.
    [82] Warzywoda M, Ferre V, Pourquie J. Development of a culture medium for large-scale production ofcellulolytic enzymes by Trichoderma reesei [J]. Biotechnology and bioengineering,1983,25(12):3005-3011.
    [83] Kawamori M, Morikawa Y, Ado Y, et al. Production of cellulases from alkali-treated bagasse inTrichoderma reesei [J]. Applied microbiology and biotechnology,1986,24(6):454-458.
    [84] Brown J A, Falconer D J, Wood T M. Isolation and properties of mutants of the fungus Penicilliumpinophilum with enhanced cellulase and β-glucosidase production [J]. Enzyme and microbialtechnology,1987,9(3):169-175.
    [85] Gokhale D V, Patil S G, Bastawde K B. Optimization of cellulase production by Aspergillus nigerNCIM1207[J]. Applied biochemistry and biotechnology,1991,30(1):99-109.
    [86] Mandels M, Reese E T. Induction of cellulase in Trichoderma viride as influenced by carbon sourcesand metals [J]. Journal of Bacteriology,1957,73(2):269-278.
    [87] Morton A G, Broadbent D. The formation of extracellular nitrogen compounds by fungi [J]. Journal ofGeneral Microbiology,1955,12(2):248-258.
    [88] Mukhopadhyay S N, Malik R K. Increased production of cellulase of Trichoderma sp. by pH cyclingand temperature profiling [J]. Biotechnology and Bioengineering,1980,22(11):2237-2250.
    [89] Tangnu S K, Blanch H W, Wilke C R. Enhanced production of cellulase, hemicellulase, andβ-glucosidase by Trichoderma reesei (Rut C-30)[J]. Biotechnology and Bioengineering,1981,23(8):1837-1849.
    [90] Kadam K L, Keutzer W J. Enhancement in cellulase production by Trichoderma reesei Rut-C30due tocitric acid[J]. Biotechnology Letters,1995,17(10):1111-1114.
    [91]Domingues F C, Queiroz J A, Cabral J M S, et al. The influence of culture conditions on mycelialstructure and cellulase production by Trichoderma reesei Rut C-30[J]. Enzyme and MicrobialTechnology,2000,26(5):394-401.
    [92] Gadgil N J, Daginawala H F, Chakrabarti T, et al. Enhanced cellulase production by a mutant ofTrichoderma reesei [J]. Enzyme and Microbial Technology,1995,17(10):942-946.
    [93] Warzywoda M, Vandecasteele J P, Pourquie J. A comparison of genetically improved strains of thecellulolytic fungus Trichoderma reesei [J]. Biotechnology Letters,1983,5(4):243-246.
    [94] Amouri B, Gargouri A. Characterization of a novel β-glucosidase from a Stachybotrys strain [J].Biochemical Engineering Journal,2006,32(3):191-197.
    [95]万海玲.农林废弃物制备纤维素酶的研究[D].南京林业大学硕士学位论文,2008.
    [96] Liming X, Xueliang S. High-yield cellulase production by Trichoderma reesei ZU-02on corn cobresidue [J]. Bioresource Technology,2004,91(3):259-262.
    [97]金加明.木霉纤维素酶产酶适宜条件及对秸秆降解参数优化的研究[D].甘肃农业大学硕士学位论文,2006.
    [98] Domingues F C, Queiroz J A, Cabral J M S, et al. The influence of culture conditions on mycelialstructure and cellulase production by Trichoderma reesei Rut C-30[J]. Enzyme and MicrobialTechnology,2000,26(5):394-401.
    [99] Liu J, Yuan X, Zeng G, et al. Effect of biosurfactant on cellulase and xylanase production byTrichoderma viride in solid substrate fermentation [J]. Process biochemistry,2006,41(11):2347-2351.
    [100]窦烨,王清路,李俏俏.纤维素酶的应用现状[J].中国酿造,2008,(12):15~16.
    [101]周正红,高孔荣等.纤维素酶在食品发酵工业中的应用及前景[J].暨南大学学报(自科与医学版),1998,19(5):125~130.
    [102]韩进诚,瞿红侠.纤维素酶在动物生产中的应用[J].山东饲料,2004,(7):13~15.
    [103]张树政.酶制剂工业[M].北京:科学出版社,1984.
    [104]梁敏,邹东恢,王少艳.纤维素酶的研究进展与展望[J].食品研究与开发,2005,26(6):202-204
    [105]王瑞红,侯靖宇.纤维素酶在金银花提取工艺中的应用[J].黑龙江医药,2003,16(4):286-287.
    [106]奚奇辉,李士敏.纤维素酶在竹叶总黄酮提取中的应用[J].中草药,2004,35(2):166-167.
    [107] Sluiter A, Hames R, Ruia A, et al. Laboratory analytical procedure[S]. American: NREL BiomassProgram,2004.
    [108] Ghose T K. Measurement of cellulase activities [J]. Pure and Applied Chemistry,1987,59(2):257-268.
    [109] Brumbauer A, Johansson G, Réczey K. Study on heterogeneity of β-glucosidase from Aspergillusspecies by using counter-current distribution[J]. Journal of Chromatography B: Biomedical Sciencesand Applications,2000,743(1):247-254.
    [110] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding [J]. Analytical biochemistry,1976,72(1):248-254.
    [111] Saddler J N. Bioconversion of forest and agricultural plant residues [M]. CAB International,1993.
    [112] Kubicek C P, Penttil M E. Regulation of production of plant polysaccharide degrading enzymes byTrichoderma [J]. Trichoderma and Gliocladium,1998,2:49-71.
    [113] Cao W, Sun C, Liu R, et al. Comparison of the effects of five pretreatment methods on enhancing theenzymatic digestibility and ethanol production from sweet sorghum bagasse [J]. BioresourceTechnology,2012,111:215-221.
    [114]陈尚钘,勇强,徐勇等.稀酸预处理对玉米秸秆纤维组分及结构的影响[J].中国粮油学报,2011,26(6):13-19.
    [115]闫志英,姚梦吟,李旭东等.稀硫酸预处理玉米秸秆条件的优化研究[J].可再生能源,2012,30(7):104-110.
    [116] Gutierrez-Correa M, Tengerdy R P. Production of cellulase on sugar cane bagasse by fungal mixedculture solid substrate fermentation [J]. Biotechnology letters,1997,19(7):665-667.
    [117]伍红,秦天莺,谭德勇等.瑞氏木霉QM9414利用蔗渣发酵产纤维素酶的研究[J].云南大学学报(自然科学版),2008,30(6):620-624.
    [118] Selig M J, Vinzant T B, Himmel M E, et al. The effect of lignin removal by alkaline peroxidepretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes [J].Applied biochemistry and biotechnology,2009,155(1-3):94-103.
    [119]欧阳嘉,李鑫,董郑伟,等.碱法-酶法处理玉米秸秆的制糖工艺研究[J].南京林业大学学报(自然科学版),2010,34(3):1-5.
    [120]田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程,2005,3(1):14-19.
    [121] Kadam K L, McMillan J D. Availability of corn stover as a sustainable feedstock for bioethanolproduction [J]. Bioresource Technology,2003,88(1):17-25.
    [122]董博等.碳源对里氏木霉β-聚糖酶合成的影响[J].南京林业大学学报,2005,6:88-90.
    [123] Jin Y, Jameel H, Chang H, et al. Green liquor pretreatment of mixed hardwood for ethanol productionin a repurposed kraft pulp mill [J]. Journal of Wood Chemistry and Technology,2010,30(1):86-104.
    [124] Ban W, Wang S, Lucia L A. The relationship of pretreatment pulping parameters with respect toselectivity: optimization of green liquor pretreatment conditions for improved kraft pulping [J]. Paperija Puu–Paper and Timber,2003,85(7):1-7.
    [125]蒋忠道,许元春,王志彦.草浆低温快速蒸煮工艺研讨[J].湖北造纸,2005,2:5-7.
    [126]饶庆隆,杭志喜,赖晨欢等.纸浆浓度及分批补料对里氏木霉产纤维素酶的影响[J].南京林业大学学报(自然科学版),32(3):57-60.
    [127] Fritscher C, Messner R, Kubicek C P. Cellobiose metabolism and cellobiohydrolase I biosynthesis byTrichoderma reesei [J]. Experimental mycology,1990,14(4):405-415.
    [128] Vázquez G, Antorrena G, Parajó J C, et al. Acid prehydrolysis of Pinus pinaster bark with dilutesulfuric acid [J]. Wood science and technology,1988,22(3):219-225.
    [129] Carrillo F, Lis M J, Colom X, et al. Effect of alkali pretreatment on cellulase hydrolysis of wheatstraw: Kinetic study [J]. Process Biochemistry,2005,40(10):3360-3364.
    [130]素茂尧,由利丽.纤维素经液氨预处理对其结构和晶型的影响[J].纤维素科学与技术,1997,5(3):7-12.
    [131] Esteves B, Pereira H. Wood modification by heat treatment: a review [J]. BioResources,2008,4(1):370-404.
    [132] Kubicek C P, Messner R, Gruber F, et al. The Trichoderma cellulase regulatory puzzle: From theinterior life of a secretory fungus [J]. Enzyme and microbial technology,1993,15(2):90-99.
    [133] Xu Z, Wang Q, Jiang Z H, et al. Enzymatic hydrolysis of pretreated soybean straw [J]. Biomass andBioenergy,2007,31(2):162-167.
    [134]南京林业大学主编.木材化学[M].北京:中国林业出版社,1990.
    [135] Heck J X, Fl res S H, Hertz P F, et al. Optimization of cellulase-free xylanase activity produced byBacillus coagulans BL69in solid-state cultivation [J]. Process Biochemistry,2005,40(1):107-112.
    [136] Latifian M, Hamidi-Esfahani Z, Barzegar M. Evaluation of culture conditions for cellulase productionby two Trichoderma reesei mutants under solid-state fermentation conditions [J]. BioresourceTechnology,2007,98(18):3634-3637.
    [137] Senthilkumar S R, Ashokkumar B, Chandra Raj K, et al. Optimization of medium composition foralkali-stable xylanase production by Aspergillus fischeri Fxn1in solid-state fermentation using centralcomposite rotary design [J]. Bioresource Technology,2005,96(12):1380-1386.
    [138] Muthuvelayudham R, Viruthagiri T. Optimization and modeling of cellulase protein from Trichodermareesei Rut C30using mixed substrate [J]. African Journal of Biotechnology,2007,6(1):41-46.
    [139]勇强,徐勇,宋向阳,等.分批补料合成纤维素酶扩大试验[J].南京林业大学学报:自然科学版,2004,28(1):9-12.
    [140]饶庆隆.里氏木霉产纤维素酶碳源选择与条件优化[D].南京林业大学研究生博士学位论文,2008.
    [141] Li X, Ouyang J, Xu Y, et al. Optimization of culture conditions for production of yeast biomass usingbamboo wastewater by response surface methodology [J]. Bioresource technology,2009,100(14):3613-3617.
    [142]杭志喜.溶解氧对里氏木霉产纤维素酶的作用与控制[D].南京林业大学研究生博士学位论文,2008.
    [143]王铁群和陈家楠.纤维素在丝光化处理过程中结构变化的研究,纤维素科学与技术,1996,4:13-18.
    [144] Weimer P J, Hackney J M, French A D. Effects of chemical treatments and heating on the crystallinityof celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation[J]. Biotechnology and bioengineering,1995,48(2):169-178.
    [145] Torget R, Walter P, Himmel M, et al. Dilute-acid pretreatment of corn residues and short-rotationwoody crops [J]. Applied Biochemistry and Biotechnology,1991,28(1):75-86.
    [146] Whitaker A. Fed-batch culture [J]. Process Biochem,1980,15:10-15.
    [147]瞿丽莉. β-葡萄糖苷酶的分离纯化及在纤维素水解上的应用[D].南京林业大学研究生硕士学位论文,2008.
    [148]朱均均. β-葡萄糖苷酶的固定化及纤维素辅助水解技术[D].南京林业大学研究生硕士学位论文,2006.
    [149]肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志,2002(2):33-35.
    [150]朱年青.里氏木霉纤维素酶的分离纯化及应用的研究[D].南京林业大学研究生硕士学位论文,2008.
    [151] Fernandez-Bolanos J, Felizon B, Heredia A, et al. Steam-explosion of olive stones: hemicellulosesolubilization and enhancement of enzymatic hydrolysis of cellulose [J]. Bioresource technology,2001,79(1):53-61.
    [152] Negro M J, Manzanares P, Oliva J M, et al. Changes in various physical/chemical parameters of Pinuspinaster wood after wood after steam explosion preatment [J]. Biomass and Bioenergy,2003,25(3):301-308.
    [153] Hayn M, Steiner W, Klinger R, et al. Basic research and pilot studies on the enzymatic conversion oflignocellulosics [J]. Biotechnology in Agriculture,1993:33-33.
    [154] Xu Z, Wang Q, Jiang Z H, et al. Enzymatic hydrolysis of pretreated soybean straw [J]. Biomass andBioenergy,2007,31(2):162-167.
    [155] Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production [M].Biofuels. Springer Berlin Heidelberg,2007:41-65.
    [156]赵士明,陆青山,谷峰等.液预处理玉米秸秆产纤维素酶的研究[J].生物质化学工程,2012,46(3):13-19.
    [157]赵士明,陆青山,储秋露等.绿液预处理麦秆纤维素酶水解的研究[J].林产化学与工业,2012,32(5):69-76.
    [158]黄婷,陆青山,金永灿等.绿液预处理对麦草化学成分及酶水解糖化的影响[J].林产化学与工业,2011,31(5):48-54.
    [159]赵士明.绿液预处理木质纤维原料酶水解的研究[D].南京林业大学研究生硕士学位论文,2012.
    [160] Boyer M, Bally R, Perrotto S, et al. A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum [J]. Research in microbiology,2008,159(9):699-708.
    [161] Balat M, Balat H. Progress in biodiesel processing [J]. Applied Energy,2010,87(6):1815-1835.
    [162]张坤,吴祯,梅广.纤维素发酵生产燃料酒精研究[J].粮食与油脂,2007(2):10-12.
    [163] Gray K A, Zhao L, Emptage M. Bioethanol [J]. Current opinion in chemical biology,2006,10(2):141-146.
    [164]王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学工程,2006,14(6):37-42.
    [165] Wyman C E. Biomass ethanol: technical progress, opportunities, and commercial challenges [J].Annual Review of Energy and the Environment,1999,24(1):189-226.
    [166]苏茂尧,张力田.纤维素的酶水解糖化[J].纤维素科学与技术,1995,3(1):11-15.
    [167] Tomaz C T, Queiroz J A. Studies on the chromatographic fractionation of Trichoderma reeseicellulases by hydrophobic interaction [J]. Journal of Chromatography A,1999,865(1):123-128.
    [168] Kim D W, Jeong Y K, Jang Y H, et al. Purification and characterization of endoglucanase andexoglucanase components from Trichoderma viride [J]. Journal of fermentation and bioengineering,1994,77(4):363-369.
    [169] Hayn M, Esterbauer H. Separation and partial characterization of trichoderma reesei cellulase by fastchromatofocusing [J]. Journal of Chromatography A,1985,329:379-387.
    [170] Kaur J, Chadha B S, Saini H S. Regulation of cellulase production in two thermophilic fungiMelanocarpus sp. MTCC3922and Scytalidium thermophilum MTCC4520[J]. Enzyme andmicrobial technology,2006,38(7):931-936.
    [171] S derstr m J, Pilcher L, Galbe M, et al. Two-step steam pretreatment of softwood by dilute H2SO4impregnation for ethanol production [J]. Biomass and Bioenergy,2003,24(6):475-486.
    [172] McKendry P. Energy production from biomass (part1): overview of biomass [J]. Bioresourcetechnology,2002,83(1):37-46.
    [173] Bjerre A B, Olesen A B, Fernqvist T. Pretreatment of wheat straw using combined wet oxidation andalkaline hydrolysis resulting in convertible cellulose and hemicellulose [J]. Biotechnology andBioengineering,1996,49(5):568-577.
    [174] Ban W, Wang S, Lucia L A. The relationship of pretreatment pulping parameters with respect toselectivity: optimization of green liquor pretreatment conditions for improved kraft pulping [J]. Paperija Puu–Paper and Timber,2003,85(7).
    [175]詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2009.
    [176] J ms S, Viitaniemi P. Heat treatment of wood-Better durability without chemicals [J]. In: Review onheat treatments of wood. Cost Action E,2001,22:2001.
    [177] Ballesteros M, Oliva J M, Negro M J, et al. Ethanol from lignocellulosic materials by a simultaneoussaccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT10875[J].Process Biochemistry,2004,39(12):1843-1848.
    [178]徐勇,勇强,单谷,等.汽喷玉米秸秆纤维素酶水解的研究[J].林产化工通讯,1999,33(6):15–18.
    [179]何艳婷,李继林.浅谈麦秆的综合开发与利用[J].科技信息,2008(19):364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700