用户名: 密码: 验证码:
水稻黑条矮缩病抗性鉴定技术和遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻黑条矮缩病(Rice black-streaked dwarf disease)是一种主要由灰飞虱(Laodephax striatellus Fallen)以持久性不经卵方式传播的恶性水稻病毒病。发掘抗性基因和培育抗性品种是解决这类病毒病害的根本策略,但受制于品种抗性人工接种鉴定方法的缺乏,水稻黑条矮缩病品种抗性的遗传学研究和育种实践一直进展较慢。为此,本研究在破解了南方水稻黑条矮缩病毒假阳性毒源干扰、病毒毒源保存和灰飞虱携带水稻条纹病毒干扰等技术难点的基础上,构建了高效引发水稻黑条矮缩病的人工接种鉴定方法。同时,采用多年多点方法在重病区抗鉴圃中对水稻品种和资源进行水稻黑条矮缩病的抗性鉴定,利用上述人工接种鉴定方法对筛选出的抗性品种进行进一步的抗性确认,并分析其对水稻黑条矮缩病的抗性特征。将抗性品种与感病品种构建分离群体,采用人工接种鉴定方法分析其遗传模式,同时利用分子标记分析方法构建遗传连锁图谱,对抗性基因进行了定位研究。主要结论如下。
     1.建立一种快速、灵敏检测的水稻黑条矮缩病毒的逆转录环介导等温扩增方法(Reverse Transcription Loop-Mediated Isothermal Amplification, RT-LAMP)。该方法可排除南方水稻黑条矮病毒的干扰而特异的检测植物和飞虱体内的水稻黑条矮缩病毒,其灵敏性与RT-PCR基本一致,但检测结果易于判定。这一方法的建立成功破解了水稻黑条矮缩病品种抗性的人工接种鉴定方法中南方水稻黑条矮缩病毒假阳性毒源干扰。
     2.发明了一种利用灰飞虱从冻存病叶中获得水稻黑条矮缩病毒的方法。以冷冻保存的水稻黑条矮缩病罹病植株叶片对灰飞虱进行饲毒,随后接种感病水稻品种,结果发现灰飞虱可从冻存病叶上获得并传播水稻黑条矮缩病毒,且获毒能力和传毒能力与未冻存病叶处理相比无显著性差异。这表明从冻存病叶上获得水稻黑条矮缩病毒的灰飞虱可以应用于品种抗性人工接种鉴定。
     3.利用梯度试验分别研究了病毒在介体体内的循回时间、接种时间、接种强度、水稻接种苗龄4个因素对鉴定效果的影响。结果显示,病毒在介体体内的循回时间为12-15d或21-24d条件下,鉴定效果优于8-11d和16-17d处理;接种48-72h条件下,鉴定效果优于12-24h处理;有效接种强度4-20虫/苗条件下,鉴定效果优于1-3虫//苗处理;水稻接种苗龄0.5-2.5叶龄条件下,鉴定效果优于2.5-3.5叶龄处理。由此构建了水稻抗黑条矮缩病人工接种鉴定方法:循回时间为12-15d、接种时间48-72h、有效接种强度4-20虫/苗和水稻接种苗龄0.5-2.5叶。在此条件下对不同抗性表现的水稻品种进行鉴定,其鉴定效果与重病区田间鉴定效果无显著性差异,表明所构建的水稻黑条矮缩病品种抗性人工接种鉴定方法能客观地反映水稻品种对水稻黑条矮缩病的抗性水平。
     4.在常年水稻黑条矮缩病重发的地区江苏省建湖县、盐都县和灌云县分别建立抗性鉴定圃,对主栽品种和资源材料进行了多年多点田间抗性鉴定,发现水稻品种对水稻黑条矮缩病的田间抗性在不同地点和不同年份间并不相同,尽管不同品种对水稻黑条矮缩病表现出一定差异,但没有发现免疫或高抗的品种。一份来自越南的籼稻资源材料特特勃在两年三点的田间试验中表现出抗病和中抗的抗性水平,可望作为抗性资源运用于针对水稻黑条矮缩病的抗性育种。
     5.利用人工接种鉴定、非嗜性测验及抗生性测验分析了特特勃对水稻黑条矮缩病和传毒介体灰飞虱的抗性特征,结果表明特特勃对水稻黑条矮缩病表现为抗病,抗虫性鉴定发现特特勃仅表现出弱非嗜性,而无抗生性。综合抗病性和抗虫性表现,特特勃对水稻黑条矮缩病的抗性主要来自于对病毒本身的抗性,而不是对传毒介体灰飞虱的抗性。采用人工接种鉴定方法对淮稻5号/特特勃构建的F2:3家系进行水稻黑条矮缩病抗性遗传分析,发现其对水稻黑条矮缩病的抗性为数量性状,可能由1-2个主效基因控制。
     6.在842对微卫星标记中筛选获得在淮稻5号和特特勃间存在多态性标记160个(多态性频率19%),从中选用127个标记对淮稻5号/特特勃F2群体的138个株系进行分析,构建覆盖基因组2179.6cM的水稻遗传连锁图谱,标记间平均间距为17.16cM。采用基于复合区间作图法的软件Windows QTL Cartographer V2.5对构建的遗传图谱和之前获得表型数据进行分析,从淮稻5号/特特勃的F2群体检测出2个水稻黑条矮缩病抗性QTL,分别命名为qRBSDV-3和qRBSDV-11.其中qRBSDV-3位于第3染色体的RM5626-RM7097之间,LOD值为4.07,贡献率为17.5%。qRBSDV-11位于第11染色体的RM202-RM7120之间,LOD值为2.21,贡献率为12.4%,两抗性QTL均来自于抗病品种特特勃。通过图谱比对表明本研究获得的两个抗性QTL是新的水稻黑条矮缩病抗性位点。
Rice black-streaked dwarf disease is a very serious virus disease in rice currently in China, which is mainly transmitted by small brown planthopper (SBPH, Laodephax striatellus Fallen) in a persistent manner but could not be transmitted to offspring of SBPH through ovary. The identification of the resistance gene against Rice black-streaked dwarf disease and the development of the resistance cultivars are the basic strategy to get this disease under control. The genetic study of resistance to Rice black-streaked dwarf disease in rice varieties and the breeding process against the disease were pretty slowly because of the lack of the artificial inoculation identification. An artificial inoculation identification method of rice varieties against Rice black-streaked dwarf disease was developed after the three bottlenecks, including the interference from southern rice black-streaked dwarf virus(SRBSDV), the preserve of the source with rice black-streaked dwarf virus and the interference from rice stripe virus, were broken. Identification the resistance lever among the cultivars and varieties were taken by multi-point test for several years in evaluation nursery. After confirm the resistance lever by artificial inoculation identification method, the resistance mechanism of the resistance variety against rice black-streaked dwarf virus was analyzed. The genetic mode of resistance variety was analyzed in the population cross by the resistance variety and susceptible variety. Meanwhile the genetic linkage map was built by molecular marker analysis and the resistance loci against Rice black-streaked dwarf disease were mapped. The main results are as follows.
     1. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for rapid and sensitive detection of Rice black-streaked dwarf virus (RBSDV) from host plants and insect vector which demonstrated a high degree of specificity for RBSDV, which can distinguish RBSDV from SRBSDV. The method was also proved to be extremely sensitive, which was as much as the RT-PCR for RBSDV detection. The detection of amplified products was easily monitored. The development of this method could break the bottleneck of the artificial inoculation identification against Rice black-streaked dwarf disease which came from the interference by SRBSDV.
     2. A simple and reliable method which can get the rice stripe virus free SBPH acquired RBSDV from frozen infected leaves and transmitted the virus to healthy rice plants was developed. SBPHs acquired RBSDV from the thaw frozen infected leaves were put in the healthy plants to transmit the virus. The result showed that there is no different between the SBPHs acquired the virus from thaw frozen infected leaves and these acquired the virus from the normal infected plants. It demonstrated that the new method can be used in artificial inoculation identification against rice black-streaked dwarf disease and keep the virus source live for SBPH acquiring the virus for a longer time.
     3. The effects of four factors to the artificial inoculation identification against rice black-streaked dwarf disease, including virus latent period in vectors, inoculation time, inoculation intensity and stage of the seedlings for inoculating, were evaluated in this study. The results revealed that the effects of artificial identification for12-15days'or21-24days' virus latent period in vectors treatment were better than that for8-11days'or16-17days', the effects for48-72hours'inoculation time treatment were better than that of12-24hours', the effects of the treatment inoculated by4-20viruliferous insects per seedling were better than by1-3viruliferous insects per seedling, and the effects of the treatment inoculated in0.5-2.5leaf age were better than in3.5leaf age. Thus the optimal conditions for artificial identification of resistance to RBSDV in rice varieties were12-15days'virus latent period in vectors,48-72hours'inoculation time,4-20viruliferous insects per seedling and0.5-2.5leaf age's seedlings. The artificial inoculation identification showed the same results as field identification in further research, which fully proved this method can reflect the RBSDV resistance levels of rice varieties.
     4. Several evaluation nurseries against rice black-streaked dwarf disease were set in Jianhu county, Yandu county and Guanyun county in Jiangsu province around the area where the disease was very seriously recently. Although it showed some difference among the cultivars and varieties, there was no cultivar or variety showing immune or highly resistance to Rice black-streaked dwarf disease in the multi-point test for two years in evaluation nursery. A variety, Tetep, from Vietnam represented resistance or medium resistance to the disease in the entire field test, which can be widely used in the breeding program against the disease.
     5. The resistance to RBSDV and the vector, SBPH were analyzed in Tetep by using the method of artificial inoculation identification, non-preference test and antibiosis test. The result showed that Tetep was resistant to RBSDV and weakly resistant to vector, i.e. the Rice black-streaked dwarf disease resistance in Tetep was mainly derived from the resistance to virus. The inheritance of Rice black-streaked dwarf disease resistance in F2·3lines from the cross Huaidao No.5/Tetep was studied by using artificial inoculation identification method. The result demonstrated that the resistance in Tetep was inherited as quantitative trait, which might control by one or two major quantitative trait locus (QTLs).
     6.160markers with polymorphism between two parents were acquired by screeningyin842Simple Sequence Repeat (SSR) markers, which the ratio of polymorphisms was19%.129SSR markers were analyzed in138lines from the cross between Huaidao No.5and Tetep. A molecular linkage map covered2179.6cM in rice genome was acquired by these markers analysis with an average interval size of17.16cM. Resistance QTL against Rice black-streaked dwarf disease was analyzed by software of Windows QTL Cartographer2.5. Two major resistance QTLs were identified. One was mapped between RM5626%nd RM7079on chromosome3was named qRBSDV-3, which can explain17.5%of total phenotypic variation with LOD scores of4.07. The other was mapped between RM202and RM7120on chromosome11was named qRBSDV-3, which can explain12.4%of total phenotypic variation with LOD scores of2.21. Both of resistance QTLs were derived from Tetep and were newly identified by comparing the loci with these published before.
引文
1. Abel PP, Nelson RS, De B, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science,1986,232(4751):738-743.
    2. Albar L, Ndjiondjop MN, Esshak Z, et al. Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement. Theor Appl Genet,2003,107:371-378.
    3. Albar L, Bangratz-Reyser M, Hebrard E, et al. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. The Plant Journal,2006,47(3): 417-426.
    4. Amit KR, Satya PK, Santosh KG, et al. Functional complementation of rice blast resistance gene Pi-kh(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Journal of Plant Biochemistry and Biotechnology,2011,20(1):55-65.
    5. Atul S,Vikas KS, Singh SP, et al. Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants,2012,2012:pls029.
    6. Li L, Li HW, Dong HB, et al. Transmission by Laodelphax striatellus Fallen of Rice black-streaked dwarf virus from frozen infected rice leaves to healthy plants of rice and maize. Journal of Phytopathology,2011,159 (1):1-5.
    7. Ndjiondjop MN, Albar L, Fargette D, et al. The genetic basis of high resistance to rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant disease,1999,83(10): 931-935
    8. Boccardo G, Milne RG. Enhancement of the immunogenicity of the maize rough dwarf virus outer shell with the cross-linking reagent dithiobis (succinimidyl) propionate. Journal of virological methods,1981,3(2):109-113.
    9. Bryan GG, Wu KS, Farrall L, et al. A single amino acid difference distinguishes resistance and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell,2000,12:2033-2046.
    10. Clark MF, Adams A. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of general virology,1977,34(3):475-483.
    11. Conti M, Lovisolo O. Tubular structures associated with Maize Rough Dwarf Virus particles in crude extracts:electron microscopy study. Journal of general virology,1971,13(1):173-176.
    12. Enomoto Y, Yoshikawa T, Ihira M, et al. Rapid diagnosis of herpes simplex virus infection by a loop-mediated isothermal amplification method. Journal of Clinical Microbiology,2005,43(2): 951-955.
    13. Fauquet C. Virus taxonomy:classification and nomenclature of viruses:eighth report of the International Committee on the Taxonomy of Viruses. Academic Press,2005:534-542.
    14. Fukuta S, Iida T, Mizukami Y, et al. Detection of Japanese yam mosaic virus by RT-LAMP. Archives of Virology,2003,148:1713-1720
    15. Hatta T, Francki R. Morphology of Fiji disease virus. Virology,1977,76(2):797-807.
    16. Hatta T, Francki RIB. Similarity in the Structure of Cytoplasmic Polyhedrosis Virus, Leaf hopper A Virus and Fiji Disease Virus Particles. Intervirology,1982,18(4):203-208.
    17. Hayano-Saito Y, Tsuji T, Fuji K, et al. Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analysis with molecular markers. Theoretical and Applied Genetics,1998,96(8):1044-1049.
    18. Hayano-Saito Y, Saito K, Nakamura S, et al. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theoretical and Applied Genetics,2000,101(1/2):59-63.
    19. Hollings M, Lelliott RA. Preservation of plant viruses by freeze drying. PI Path,1960,9: 63-66.
    20. Hollings M, Stone M. The long term survival of some plant viruses preserved by yophilization. Ann Appl Boil,1970,65:411-418.
    21. Isogai M, Uyeda I, Lee B. Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. Journal of general virology,1998,79(6):1487-1494.
    22. Jansen RW, Siegl G, Lemon SM. Molecular epidemiology of human hepatitis A virus defined by an antigen-capture polymerase chain reaction method. Proceedings of the National Academy of Sciences,1990,87(8):2867-2871.
    23. Khush GS, Virmani. Breeding rice for disease resistance, progress in plant breeding. Butterworths, United Kingdom,1985(1):240-279.
    24. Kwak D, Kang KH, Jeon YH, et al. Transfer of virus resistance into Japonica rice by wide hybridization. Treat of Crop Res,2007(8):105-115.
    25. Le D T, Netsu O, Uehara-Ichiki T, et al. Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. Journal of Virological Methods,2010,170(1-2):90-93.
    26. Li L, Li HW, Dong HB, et al. Transmission by Laodelphax striatellus Fallen of Rice black-streaked dwarf virus from Frozen Infected Rice Leaves to Healthy Plants of Rice and Maize. Journal of Phytopathology,2010,159(1):1-5.
    27. Maeda H, Nemoto H, Yagi T, et al. QTL analysis for rice stripe disease resistance using recombinant inbred lines (RILs) derived from crossing between Milyang and Akihikari. In:China Association of Agricultural Science Societies, China National Rice Research Institute, China National Hybrid Rice Research and Development Center, China Foundation Society for Agricultural Science and Education (eds). Prospects of rice genetics and breeding for the 21st century-Paper collection of international rice genetics and breeing symposium. Beijing:China Agricultural Science Technology Press,1999,53-57.
    28. Maeda H, Takeshi Sugisawa, Hiroshi Nemoto, et al. QTL analysis for rice stripe resistance in the Japanese upland rice kanto72. Breeding science.2004,54:19-26.
    29. McCouch SR, Kochert G, Yu ZH, et al. Molecular mapping of rice chromosomes. Theor Appl Genet,1988,76(6):815-829.
    30. Milne RG, Conti M, Lisa V. Partial purification, structure and infectivity of complete maize rough dwarf virus particles. Virology,1973,53(1):130-141.
    31. Milne RG, Boccardo G, Dal B, et al. Association of maize rough dwarf virus with Mal de Rio Cuarto in Argentina. Phytopathology,1983,73(9):1290-1292.
    32. Ndjiondjop MN, Albar L, Fargette D, et al. The genetic basis of high resistance to Rice yellow mottle virus (RYMV) in cultivars of two cultivated rice species. Plant Disease,1999,83: 931-935.
    33. Nemoto H, Ishika K, Shimura E. The resistances to rice stripe virus and small brown planthopper in rice variety IR50. Breeding Science,1994,44:13-18.
    34. Noda H, Ishikawa K, Hibino H, et al. A reovirus in the brown planthopper, Nilaparvata lugens. Journal of General Virology,1991,72(Part 10):2425-2430.
    35. Noda H, Nakashima N. Non-pathogenic reoviruses of leafhoppers and planthoppers. Virology, 1995,6:109-116.
    36. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research,2000,28(12):e63.
    37. Ordon F, Habekuss A, Kastirr U, et al. Virus resistance in cereals:sources of resistance, genetics and breeding. J Phytopathology,2009,157:535-545.
    38. Pasquini G, Simeone A, Conte L, et al. Detection of plum pox virus in apricot seeds. Acta virologica,1998,42(4):260-262.
    39. Sebastian LS, Ikeda R, Huang N, et al. Genetic mapping of resistance to rice tungro spherical virus (RTSV) and green leafhopper (GLH) in ARC11554. Rice Genetics III Proceedings of the Third International Rice Genetics Symposium,1996,86(1):25-30.
    40. Shikata E, Kitagawa Y. Rice black-streaked dwarf virus:its properties, morphology and intracellular localization. Virology,1977,77:826-842.
    41. Shimizu T, Nakazono-Nagaoka E, Akita F, et al. Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Research,2011,160(1-2):400-403.
    42. Takahashi Y, Omura T, Shohara K, et al. Rapid and simplified ELISA for routine field inspection of rice stripe virus. Annals of the Phytopathological Society of Japan,1987,53(2):254-257.
    43. Wang HD, Chen JP, Wang AG, et al. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathology, 2009,58:815-825.
    44. Wang Q, Yang J, Zhou GH, et al. The Complete Genome Sequence of Two Isolates of Southern rice black-streaked dwarf virus, a New Member of the Genus Fijivirus. Journal of Phytopathology, 2010,158(11-12):733-737.
    45. Wang ZH, Fang SG, Zhang ZY, et al. Development of an ID-ELISA for the detection of Rice black-streaked dwarf virus in plants. Journal of virological methods,2006,134(1-2):61-65.
    46. Wang ZX, Yano M, Yomanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine rich repeat class of plant disease resistance genes. The Plant Journal,1999,19:55-64.
    47. Washio O, Ezuka A, Sakurai Y, et al. Studies on the breeding of rice varieties resistant to stripe disease. I. Varietal difference in resistance to stripe disease. Japan Journal of Breeding,1967, 17(1):91-98.
    48. Washio O, Ezuka A, Toriyama K, et al. Studies on the breeding of rice varieties resistant to stripe disease III. Genetic studies on resistance to stripe disease in foreign varieties. Japan J Breed,1968, 18:167-172.
    49. Yoshii M, Shimizu T, Yamazaki M, et al. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. The Plant Journal,2009,57(4):615-625.
    50. Zhang HM, Lei JL, Chen JP, et al. A dwarf disease on rice, wheat and maize from Zhejiang and Hebei is caused by rice black-streaked dwarf virus. Virologica Sinica,2001,16(3):246-251.
    51. Zhang HM, Yang J, Chen JP, et al. A black-streaked dwarf disease on rice in China is caused by a novel Fijivirus. Archives of Virology,2008,153(10):1893-1898.
    52. Zhang SX, Li L, Wang XF, et al.Transmission of Rice stripe virus acquired from frozen infected leaves by the small brown planthopper(Laodelphax striatellus Fallen). J Virol Methods, 2007,146:359-362.
    53. Zhao K, Liu Y, Wang XF. Reverse transcription loop-mediated isothermal amplification of DNA for detection of Barley yellow dwarf viruses in China. Journal of Virological Methods,2010, 169(1):211-214.
    54. Zheng TQ, Yang J, Zhong WG, et al. Novel loci for field resistance to black-streaked dwarf and stripe viruses identified in a set of reciprocal introgression lines of rice (Oryza sativa L.). Molecular Breeding,2012,29(4):925-938.
    55. Zhou GH, Wen JJ, Cai DJ, et al. Southern rice black-streaked dwarf virus:A new proposed Fijivirus species in the family Reoviridae. Chinese science bulletin,2008,53(23):3677-3685.
    56. Zhou T, Wang Y, Fan YJ, et al. First report of rice black-streaked dwarf virus infecting barley in jiangsu, China Journal of Plant Pathology,2010,92(S4):118.
    57. Zhou T, Nelson SC, Hu JS, et al. Inheritance and mechanism of resistance to rice stripe disease in Zhendao 88, a Chinese rice cultivar. Journal of Phytopathology,2011,159(3):159-164.
    58.陈洁,吴丽娟,周彤,等.江苏省主栽水稻品种对条纹叶枯病与灰飞虱的抗性评价.南京农业大学学报,2010,33(4):105-108.
    59.陈声祥,洪健,吕永平,等.RBSDV在玉米叶脉细胞内的侵染状态与灰飞虱传毒活力的关系.中国病毒学,2004,19(2):153-157.
    60.陈声祥,张巧艳.我国水稻黑条矮缩病和玉米粗缩病研究进展.植物保护学报,2005,32(1):97-103.
    61.丁秀兰,江玲,刘世家,等.利用重组自交系群体检测水稻条纹叶枯病抗性基因.遗传学报,2004,31(3):287-292.
    62.丁秀兰,江玲,张迎信,等.利用回交重组自交群体检测水稻条纹叶枯病抗性位点.作物学报,2005,31(8):1041-1046.
    63.段灿星.水稻抗灰飞虱QTL分析.中国农业科学院博士学位论文,2008.
    64.段灿星,程治军,雷才林,等.利用Mudgo/武育粳3号F2群体分析水稻抗灰飞虱QTL.作物学报,2009,35(3):388-394.
    65.龚祖埙,沈菊英,陈巽祯,等.我国禾谷类病毒病的病原问题—Ⅷ.玉米粗缩病病原的研究.生物化学与生物物理学报,1981,13(1):55-59.
    66.高瑞珍.两种水稻黑条矮缩病毒在我国的分布及其遗传多样性.扬州大学硕士学位论文,2011.
    67.何国民,陈权志,林义钱.不同品种杂交水稻对黑条矮缩病抗(耐)病性研究.中国植保导刊,2005,25(5):14-15.
    68.季英华,任春梅,程兆榜,等.江苏省近年来新发生的一种水稻矮缩病害病原初步鉴定.江苏农业学报,2009,25(6):1263-1267.
    69.季英华,高瑞珍,张野,等.一种快速同步检测水稻黑条矮缩病毒和南方水稻黑条矮缩病毒的方法.中国水稻科学,2011,25(1):91-94.
    70.李爱宏,戴正元,季红娟,等.不同基因型水稻种质对黑条矮缩病抗性的初步分析.扬州大学学报(农业与生命科学版),2008,29(03):18-22.
    71.李爱宏,潘存红,戴正元,等.以标记辅助选择改良江苏主栽粳稻品种“淮稻5号”黑条矮缩病抗性.作物学报,2012,38(10):1775-1781.
    72.李红伟.利用RNAi技术创建无标记基因的抗病毒转基因水稻.中国农业科学院博士学位论文,2011.
    73.李健,陈沁,熊炜,等.口蹄疫病毒RT-LAMP检测方法的建立.病毒学报,2009,25(2):137-142.
    74.李照会,郭兴启,叶保华,郭延奎.感染玉米粗缩病毒后玉米植株的超微结构病变研究.中国农业科学,2002,35(3):264-266.
    75.廖璇刚,吴惠玲,祝增荣.不同水稻品种对黑条矮缩病发生的影响.植物保护,1999,25(6):15-17.
    76.林凌伟,汪恩国,关梅萍,等.水稻品种(组合)对黑条矮缩病的抗性表现.杂交水稻,1999(14):41-42.
    77.吕永平,雷娟利,金登迪,等.水稻黑条矮缩病毒的RT-PCR检测.浙江农业学报,2002,14(2):117-119.
    78.欧阳元龙,吴建祥,熊如意,等.水稻黑条矮缩病病毒外壳蛋白基因S10的原核表达、多克隆抗体制备及应用.中国水稻科学,2010,24(1):25-30.
    79.潘存红,李爱宏,陈宗祥,等.水稻黑条矮缩病抗性QTL分析.作物学报,2009,35(12):2213-2217.
    80.钱秀红,周雪平.斑点免疫测定法在植物病毒研究中的应用及技术要点.生物技术,1994,4(4):39-41.
    81.饶雪琴,李华平.转基因番木瓜研究进展.中国生物工程杂志,2004,24(6):38-42.
    82.阮义理,陈声祥,林瑞芬,等.水稻黑条矮缩病的研究.浙江农业科学,1984,(4):185-192.
    83.萨仁高娃其,其木格,吴岩.胶体金免疫电镜技术及其应用.内蒙古医学院学报,2007,29(5):373-377.
    84.孙黛珍.水稻条纹叶枯病抗性的遗传分析和基因定位.南京农业大学博士学位论文,2006.
    85.孙黛珍,江玲,张迎信,等.8个水稻品种的条纹叶枯病抗性特征.中国水稻科学,2006,20(2):219-222.
    86.孙黛珍,江玲,张迎信,等.水稻抗条纹叶枯病数量性状座位分析.中国水稻科学,2007,21(1):95-98.
    87.孙黛珍,江玲,刘世家,等.水稻条纹病毒和介体灰飞虱抗性的QTL分析.作物学报,2006,32(06):805-810.
    88.孙明法,万林生,任仲玲,等.江苏省不同生育类型水稻品种对黑条矮缩病的抗感差异性.江苏农业科学,2010,(6):173-176.
    89.王宝祥,江玲,陈亮明,等.水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位.作物学报,2010,36(8):1258-1264.
    90.王朝辉,周益军,范永坚,等.从单头灰飞虱中检测水稻黑条矮缩病毒简单快速的方法.上海交通大学学报(农业科学版),2002,20(4):340-343.
    91.王朝辉,周益军,范永坚,等.应用RT-PCR,斑点杂交法和SDS-PAGE检测水稻黑条矮缩病毒.南京农业大学学报,2001,24(4):24-28.
    92.鑫婷,侯绍华,贾红,等.猪呼吸与繁殖综合症病毒RT-LAMP检测方法的建立.中国农业科学,2010,43(1):185-191.
    93.熊克娟,李天宪,陈绳亮,等.常见植物病毒冷冻干燥方法的改进与效果观察.华中农业大学学报,1999,18(2):151-153.
    94.羊健,张恒木,陈剑平,等.水稻黑条矮缩病毒p8蛋白的原核表达、抗血清制备及其特性.植物保护学报,2007,34(3):252-256.
    95.张恒木,陈剑平,程晔,等.水稻黑条矮缩病毒基因组片段S9的cDNA克隆和全序列分析.生物化学与生物物理学报,2001,33(1):467-471.
    96.张洪波,肖启明,李小娟.酶联免疫吸附反应(ELISA)在烟草病毒病检测中的应用.江西植保,2007,29(4):158-162.
    97.张开玉,熊如意,周益军.灰飞虱体内水稻条纹病毒的检测.植物保护学报,2008,35(5):410-414.
    98.周国辉,温锦君,蔡德江,等.呼肠孤病毒科斐济病毒属一新种:南方水稻黑条矮缩病毒科学通报,2008,53(20):2500-2508
    99.周国辉,张曙光,邹寿发,等.水稻新病害南方水稻黑条矮缩病发生特点及危害趋势分析.植物保护.2010,36(2):144-146.
    100.周益军,刘海建,王贵珍,等.灰飞虱携带的水稻条纹病毒免疫检测.江苏农业科学,2004(1):50-51.
    101.周彤,范永坚,程兆榜,等.水稻抗条纹叶枯病鉴定方法的研究.植物保护,2008,34(6):77-80.
    102.周彤,王磊,程兆榜,等.水稻品种宁317对水稻条纹叶枯病的抗性特征及其遗传.江苏农业学报,2008,24(6):756-761.
    103.周彤,王磊,程兆榜,等.主栽品种镇稻88对水稻条纹叶枯的抗性特征及其遗传研究.中国农业科学,2009,42(1):103-109.
    104.周彤,吴丽娟,于英,等.灰飞虱从冷冻病叶获得水稻黑条矮缩病毒方法的研究初报.中国水稻科学,2010,24(4):425-428.
    105.周彤,范永坚,程兆榜,等.水稻抗条纹叶枯病鉴定方法的研究.植物保护,2008,34(6):77-80.
    106.周彤,范永坚,程兆榜,等.水稻品种条纹叶枯病抗性的研究进展.植物遗传资源学报,2009,10(2):328-333.
    107.周彤,吴丽娟,王英,等.水稻对黑条矮缩病感病生育期研究初报.华北农学报,2010,25(6):128-131.
    108.周彤,王英,吴丽娟,等.水稻品种抗黑条矮缩病人工接种鉴定方法.植物保护学报,2011,38(4):301-305.
    109.周彤,杜琳琳,范永坚,等.水稻黑条矮缩病毒RT-LAMP快速检测方法的建立.中国农业科学,2012,45(7),1285-1292.
    110.朱凤美,肖庆璞,于法明,等.江南稻区新发生的几种稻病.植物保护,1964,2(1):100-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700