用户名: 密码: 验证码:
渐进结构优化方法的改进策略及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术的发展对结构的性能提出了越来越高的要求,建立合理的方法去设计结构的构型,尤其是依赖计算机与数值技术设计出超越人类工程经验的更新更好的结构构型是结构设计领域倍受关注的问题。结构拓扑构形选择的恰当与否,决定了产品设计的主要性能,因而,在复杂结构的选型和轻量化设计中,拓扑优化比后续的形状和尺寸优化更有价值。
     本文主要针对目前拓扑优化的重要方法之一的渐进结构优化方法,通过对其进行改进以提高其合理性、通用性以及工程实际应用的能力。将改进的渐进结构优化方法应用于最小柔顺性优化和热传导结构拓扑优化,在热传导结构优化中不仅考虑了散热问题,还考虑了研究较少的隔热问题。
     1.以传热结构的性能为目标,针对工程结构设计中对于传热性能越来越高的要求,基于渐进结构优化方法,建立了以热传递势容耗散为目标函数的优化模型,分别针对结构的最佳散热性能与最佳隔热性能,给出了问题的提法和求解方法。给出了多种荷载与边界条件工况下二维方形板的拓扑设计,并对比优化前后结构的温度分布,证明经过ESO优化后结构的传热性能可以获得极大的提升。
     2.传统BESO方法中,随着在高效单元附近添加含有材料的新单元,需要进行网格重新剖分。这给BESO方法的程序实现和实际应用带来了困难;而且传统的BESO方法需要依赖经验给出一个初始设计,而不同的初始设计可能会得到不同的优化结果。本文提出固定网格的BESO方法,并应用于热传导结构拓扑优化设计。在设计初始时,只需给定设计域而不需要依赖经验给出初始设计。在初始的设计域上,所有的单元都是不含材料的孔洞单元,基于仿生的理念,结构逐步生长,不断提高性能,最终得到优化设计。在整个优化过程中,不需要进行网格重剖分,易于程序实现以及工程应用。
     3.常规的进化方法通过逐渐删除低效材料(通常称为ESO方法)或逐渐在高效区域添加材料(称为AESO方法)两种策略实现结构构型的进化。AESO的基本思想是在结构的高效单元上逐渐添加材料,从而获得优化设计。本文(第四章)分析了基于敏度的AESO方法的特点,通过算例发现了该方法寻优能力的不足,说明了引起这项不足的主要原因是敏度所描述的是设计变量变化非常小时目标函数的增量,而在进化算法当中,当单元密度从O(或一非常小的数)直接变化到1时,由于敏度并非恒定不变,因此其对目标函数增量的描述是不准确的。尤其在采用添加材料的AESO算法时,当结构中低密度单元较多,荷载传输路径不够清晰的时候,这种情况更为明显。针对AESO算法的缺陷,我们提出了渐进密度AESO方法并应用于连续体热传导优化问题,可以有效地缩小敏度计算误差,从而使得AESO方法和BESO方法中的AESO过程更加稳定可靠。
     4.本文分析了ESO方法应用于一些优化问题求解失效的原因,提出有效的改进策略。指出,在以目标函数对设计变量的敏度作为进化准则的ESO优化中,敏度分析过程存在较大的误差从而可能导致ESO方法不能获得合理的优化结果。尤其在网格划分并不十分细密的情况下,敏度计算误差的影响更为明显。文中引入了奇异单元的概念,将各单元按照一定准则去分成奇异单元和常规单元,对常规单元采用传统的梯度方法求敏度,对于奇异单元采用差分法计算目标函数对奇异单元的精确敏度,以提高结构中各单元敏度的计算精度,从而保证了优化的合理性。给出了能够在网格较为稀疏的情况下仍可保证优化设计的合理性、可行性及高效性的改进的ESO方法的实现算法。通过算例说明该改进算法在保持ESO方法的原有优点的同时,拥有更高的稳定性和可靠性,使得ESO方法在工程实际中的应用更加便利。
     5.在传统渐进结构优化算法(ESO)及含惩罚的变密度法(SIMP)的基础上,建立了将二者相结合的基于SIMP插值模型的渐进结构优化算法。该方法通过缩小传统ESO算法中的进化步长,从而缩小了由于进化步长过大而导致的敏度评估误差,对于密度处于0—1之间的单元,采用SIMP模型构建本构关系。同时,通过合理设置惩罚函数及进化率,可以有效的控制灰色单元的数量,从而保证了拓扑结果清晰,拥有良好的可制造性。并针对荷载与拓扑相关的优化问题,给出了问题的提法与分析过程,对于外部荷载与自重类的拓扑相关荷载耦合作用下的结构优化能够取得比传统ESO方法更加良好的结果,同时保证了较高的计算效率和良好的通用性。
The quest for performance of structure has been intensified in recent years due to the rapid development of science and technology.Especially the methods to obtain new design beyond engineering experiences are explored by researchers in the structural optimization fields.The topology of structures determines the main performance of structures,so in the configuration design and lightweight design of complex structures,topology optimization is more valuable than shape and size optimization.
     This paper focused focuses on the improved approaches and application of evolutionary structural optimization.The frustrated reason of traditional ESO method in some stiffness optimal topology design problems is analyzed and an improved ESO method is proposed.The improved ESO method is also applied in compliance optimization and thermal optimization. Not only the thermal dissipation problem but also the thermal insulation problem is considered.
     1.The thermal topology optimization method is proposed based on ESO by choosing the heat resistance as the design object,and element relative densities as design variables.To obtain the best performance of thermal dissipation and thermal insulation,the topology optimization results of a 2D square plate under different work conditions are presented.By this method,the heat performance of structures can be improved greatly.
     2.A Bi-Directional Evolutionary Structural Optimization(BESO) method for topology optimization of heat conduction structures is presented.In BESO method the elements are allowed to be added as well as removed.To improve the heat performance of structure,the additive criterion and rejection criterion are proposed respectively.With the limit volume of the high conductive material,the optimal layout of structure with high efficiency of heat dissipation and uniform temperature distribution can be obtained by BESO procedure.During the procedure of optimization,the re-mesh is avoided,which makes the BESO method more efficient,
     3.A new version of the additive evolutionary structural optimization(AESO) procedure based on sensitivity analysis for topology optimization of continuum structures is proposed. Illustrative examples have proved that the one-step AESO algorithm based on sensitivity analysis can't obtain good optimal results in the optimization of some continuum structures. The reason is pointed out as:the relationship of objective function and design variables can not be described accurately when the design variables are changed significantly(For example, from 0 to 1).And a new version of so called progressive AESO algorithm based on sensitivity analysis is proposed and is demonstrated by illustrative examples of topology optimization of heat conduction problems.The strategy of adding material in the bi-directional ESO algorithm based on sensitivity analysis is provided.
     4.The reason of failure of traditional ESO method in some topology design of structure stiffness problems is analyzed and an improved ESO method is proposed.The reason of failure of traditional ESO method in some cases is that sensitivity analysis is inaccurate.In traditional ESO method,the sensitivity of objective function(the difference between the objective function values at material densities of element being 1 and 0) is approximated as the derivative of the objective function with respect to the material density at the density being 1.This approximation may lead to large errors in sensitivity calculation in the case that the derivative of the objective function varies significantly with the change of material density of element from 1 to 0.Due to the large computational cost to improve the accuracy of the sensitivity analysis by the global difference method,a concept of singular element is introduced and a new improved ESO method is proposed.In this method,all the elements are divided into singular and ordinary elements based on the sensitivity of objective function.The sensitivities of objective function with respect to the densities of singular elements are calculated by the difference method.Numerical examples demonstrate the efficiency and validity of the method.
     5.The improved ESO method based on SIMP is presented,which is combination of ESO and SIMP.The step length of evolution is reduced so that the accuracy of sensitivity analysis can be improved.The SIMP method is employed to describe the relationship between the relative density and the stiffness of grey elements.With logical parameter the numbers of grey dements can be controlled,so the topology can be clearer and easier to manufacture. Topology optimization of continuum structures considering self-weight is carried out by this method,and more optimal results are obtained than those by traditional ESO method.
引文
1.李芳,凌道盛.平面应力问题的结构拓扑优化.浙江工业大学学报2000(03):39-42.
    2.Qian L-X.New insight into an ancient stone arch bridge--The Zhao-Zhou Bridge of 1400 years old.International Journal of Mechanical Sciences 1987;29(12):831-843.
    3.郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述.机械设计2007(08):1-6.
    4.Michell GM.The limits of economy of materials in frame structures.Philosophical Magzinc,Series 61904;8(47):589-597.
    5.Cox HL.The design of structures of least weight[M].Oxford:Pergamon;1965.
    6.Hegeminer GA,Prager W.On Michell trusses.International Journal of Mechanical Sciences 1969;11(2):209-215.
    7.Hemp WS.Optimum structure.Oxford:Clarendon Press;1973.
    8.Hemp WS.Michell framework for uniform load between fixed supports.Engineering Optimization 1974;1(1):61- 69.
    9.Hemp WS.Michell framework for a force in any definite direction at the mid-point between two supports.Engineering Optimization 1976;2(3):183-187.
    10.Rozvany GIN.Some shortcomings in Michell's truss theory.Structural and Multidisciplinary Optimization 1996;12(4):244-250.
    11.Rozvany GIN,Birker T.Generalized Michell Structures-Exact Least-Weight Truss Layouts for Combined Stress and Displacement Constraints.1.General-Theory for Plane Trusses.Structural Optimization 1995;9(3-4):178-188.
    12.Rozvany GIN,Gollub W,Zhou M.Exact Michell layouts for various combinations of line supports.2.Structural Optimization 1997;14(2-3):138-149.
    13.周克民,胡云昌.利用有限元构造MicheH桁架的一种方法.力学学报2002(06):935-940.
    14.Dorn WS,Gomory RE,Greenberg HJ.Automatic design of optimal structures.Jde Mechaniquc 1964;3(I):25-52.
    15.Zhou M,Rozvany GIN.On the validity of ESO type methods in topology optimization.Structural and Multidisciplinary Optimization 2001;21(1):80-83.
    16.Bcndsφe MP,Bcn-Tal A,Zowe J.Optimization methods for truss geometry and topology design.Structural and Multidisciplinary Optimization 1994;7(3):141-159.
    17.Zhu JH,Zhang WH,Qiu KP.Bi-directional evolutionary topology optimization using element replaceable method.Computational Mechanics 2007;40(1):97-109.
    18.孙焕纯,柴山,王跃方.离散变量结构优化设计.大连:大连理工大学出版社;1995.
    19.孙焕纯,柴山,王跃方.离散变量结构优化设计的发展、现状及展望.力学与实践1997(04):7-11.
    20.谭中富,孙焕纯.多工况作用下空间桁架结构拓扑优化的修正单纯形方法.力学学报1994(01):90-98.
    21.王跃方,孙焕纯.多工况多约束下离散变量桁架结构的拓扑优化设计.力学学报1995(03):365-369.
    22.王跃方,孙焕纯,黄丽华.离散变量结构拓扑优化设计研究.固体力学学报1998(01):59-63.
    23.柴山,石连栓,孙焕纯.包含两类变量的离散变量桁架结构拓扑优化设计.力学学报1999(05):574-584.
    24.Ringertz U.A branch and bound.algorithm for topology optimization of truss structures.Engineering Optimization 1986;10(2):111-124.
    25.Grierson DE,Pak WH.Optimal sizing,geometrical and topological design using a genetic algorithm.Structural and Multidisciplinary Optimization 1993;6(3):151-159.
    26.许素强,夏人伟.桁架结构拓扑优化与遗传算法.计算力学学报1994(04):436-446.
    27.May SA,Bailing RJ.A filtered simulated annealing strategy for discrete optimization of 3D steel frameworks.Structural Optimization 1992;4(2):142-148.
    28.蔡文学,程耿东.桁架结构拓扑优化设计的模拟退火算法.华南理工大学学报(自然科学版)1998(09):78-84.
    29.Duan BY,Templeman AB,Chen JJ.Entropy-based method for topological optimization of truss structures.Computers & Structures 2000;75(5):539-550.
    30.Svanberg K.METHOD OF MOVING ASYMPTOTES-A NEW METHOD FOR STRUCTURAL OPTIMIZATION.International Journal for Numerical Methods in Engineering 1987;24(2):359-373.
    31.陈建军,曹一波,段宝岩.基于可靠性的桁架结构拓扑优化设计.力学学报1998(03):21-28.
    32.隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性.工程力学2005(S1):107-118.
    33.周克民,李俊峰,李霞.结构拓扑优化研究方法综述.力学进展2005(01):69-76.
    34.段宝岩,叶尚辉.考虑性态约束时多工况桁架结构拓扑优化设计.力学学报1992(01):59-70.
    35.Dobbs NW,Felton.IP.Optimization of tress geometry.ASCE,JStructDiv 1969;95(ST10):2105-2118.
    36.Ringertz U.On topology optimization of trusses.Engineering Optimization 1985;9:209-218.
    37.Sved G,Ginos Z.Structural optimization under multiple loadings.IntJMeehSci 1968;10(10):803-805.
    38.Sheu CY,Sehmit LA.Minimum weight design of elastic redundant trusses under multiple static loading conditions.AIAA Journal,1972;10(2):155-162.
    39.Kirsch U.On singular topologies in optimum structural design.Structural and Multidisciplinary Optimization 1990;2(3):133-142.
    40.Cheng G,Zhang D.Topological optimization of plane elastic continuum with stress constraints.Dalian Ligong Daxue Xuebao/Joumal of Dalian University of Technology 1995;35(1):1-9.
    41.Gengdong C,Zheng J.Numerical performance of two formulations of truss topology optimization.Acta Mechanica Siniea 1994;10(4):326-335.
    42.Cheng G.Some aspects of truss topology optimization.Structural and Multidisciplinary Optimization 1995;10(3):173-179.
    43.Cheng GD,Guo X.A note on star shape feasible domain in structural topology optimization[1995,p 21-25.
    44.Cheng GD,Guo X.epsilon-relaxed approach in structural topology optimization.Structural Optimization 1997;13(4):258-266.
    45.Guo X,Cheng GD.A new approach for the solution of singular optimum in structural topology optimization.Aeta Meehaniea Siniea 1997;13(2):171-178.
    46.程耿东.关于桁架结构拓扑优化中的奇异最优解.大连理工大学学报2000(04):379-383.
    47.程耿东,郭旭.考虑局部稳定性约束的桁架拓扑优化设计.大连理工大学学报1995(06):770-775.
    48.Suzuki K,Kikuehi N.Shape and topology optimization by a homogenization method.American Society of Mechanical Engineers,Applied Mechanics Division,AMD;Dallas,TX,USA;1990;Publ by ASME,New York,NY,USA.p 15-30.(American Society of Mechanical Engineers,Applied Mechanics Division,AMD).
    49.Chang KT,OlhoffN.INVESTIGATION CONCERNING OPTIMAL DESIGN OF SOLID ELASTIC PLATES..International Journal of Solids and Structures 1981;17(3):305-323.
    50.Cheng K-T,Olhoff N.REGULARIZED FORMULATION FOR OPTIMAL DESIGN OF AXISYMMETRIC PLATES.International Journal of Solids and Structures 1982;18(2):153-169.
    51.Olhoff N,Bendsoe MP,Rasmussen J.On CAD-integrated structural topology and design optimization.Computer Methods in Applied Mechanics and Engineering 1991;89(1-3):259-279.
    52.Hassani B,Hinton E.Review of homogenization and topology optimization Ⅰ-homogenization theory for media with periodic strueture.Computers and Structures 1998;69(6):707-717.
    53.Hassani B,Hinton E.Review of homogenization and topology optimization Ⅲ-topology optimization using optimality criteria.Computers and Structures 1998;69(6):739-756.
    54.Hassani B,Hinton E.A review of homogenization and topology optimization Ⅲ-Topology optimization using optimality criteria.Computers and Structures 1998;69(6):739-756.
    55.Bulman S,Sienz J,Hinton E.Comparisons between algorithms for structural topology optimization using a series of benchmark studies.Computers and Structures 2001;79(12):1203-1218.
    56.Yang RJ,Chuang CH.Optimal topology design using linear programming.Computers and Structures 1994;52(2):265-275.
    57.Sigmund O.A 99 line topology optimization code written in matlab.Struetural and Multidisciplinary Optimization 2001;21(2):120-127.
    58.刘书田,贾海朋,王德伦.狭长结构拓扑优化.计算力学学报2004(06):653-657.
    59.Tenek LH,Hagiwara I.Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization.Computer Methods in Applied Mechanics and Engineering 1994;115(1-2):111-124.
    60.程耿东,张东旭.受应力约束的平面弹性体的拓扑优化.大连理工大学学报1995(01):1-9.
    61.王健,程耿东.具有应力和厚度约束的平面弹性体结构拓扑优化设计.机械科学与技术2002(05):741-744.
    62.周克民,胡云昌.利用变厚度单元进行平面连续体的拓扑优化.天津城市建设学院学报2001(01):33-35.
    63.周克民,胡云昌.用可退化有限单元进行平面连续体拓扑优化.应用力学学报2002(01):124-126+142.
    64.周克民,胡云昌.结合拓扑分析进行平面连续体拓扑优化.天津大学学报(自然科学与工程技术版)2001(03):340-345.
    65.Mlejnek HP,Sehirrmacher R.Engineer's approach to optimal material distribution and shape finding.Computer Methods in Applied Mechanics and Engineering 1993;106(1-2):1-26.
    66.Rozvany GIN,Bendsoe MP,Kirsch U.Layout optimization of structures.Applied Mechanics Review 1995;48(2):41-118.
    67.Rietz A.Sufficiency of a finite exponent in SIMP(power law) methods.Structural and Multidisciplinary Optimization 2001;21(2):159-163.
    68.朱继宏,张卫红,田军et al.基于连续密度变量的结构支撑布局优化设计.机械科学与技术2004(09):1113-1116.
    69.Stolpe M,Svanberg K.An alternative interpolation scheme for minimum compliance topology optimization.Structural and Multidisciplinary Optimization 2001;22(2):116-124.
    70.Bendsoe MP,Sokolowski J.Shape Sensitivity Analysis of Optimal Compliance Functionals.Mechanics of Structures and Machines 1995;23(1):35-58.
    71.Yang RJ.Topology optimization of vehicle structures.Proceedings of the Conference on Optimization in Industry;Palm Coast,FL,USA;1997;ASME,Fairfield,NJ,USA.p 233-242.(Proceedings of the Conference on Optimization in Industry).
    72.王健,程耿东.应力约束下薄板结构的拓扑优化.固体力学学报1997(04):37-42.
    73.袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计.中国科学技术大学学报2001(06):63-68.
    74.Xie YM,Steven GP.Evolutionary Structrual optimization.Berlin:Springer-Verlag;1997.
    75.Baumgartner A,Harzhcin L,Mattheck C.SKO soft kill option:the biological way to find an optimum structure topology.International Journal of Fatigue 1992;14(6):387-393.
    76.Hinton E,Sienz J.Fully stressed topological design of structures using an evolutionary procedure.Engineering Computations(Swansea,Wales) 1995;12(3):229-244.
    77.Chu DN,Xie YM,Hira Aet al.Evolutionary structural optimization for problems with stiffness constraints.Finite Elements in Analysis and Design 1996;21(4):239-251.
    78.Das R,Jones R,Xie YM.Design of structures for optimal static strength using ESO.Engineering Failure Analysis 2005;12(1):61-80.
    79.Li Q,Steven GP,Xie YM.Displacement minimization of thermoelastic structures by evolutionary thickness design.Computer Methods in Applied Mechanics and Engineering 1999;179(3-4):361-378.
    80.Li Q,Steven GP,Xie YM.Evolutionary structural optimization for stress minimization problems by discrete thickness design.Computers & Structures 2000;78(6):769-780.
    81.Li W,Li Q,Steven GPet al.An evolutionary shape optimization for elastic contact problems subject to multiple load cases.Computer Methods in Applied Mechanics and Engineering 2005;194(30-33):3394-3415.
    82.Manickarajah D,Xie YM,Steven GP.An evolutionary method for optimization of plate buckling resistance.Finite Elements in Analysis and Design 1998;29(3-4):205-230.
    83.Nha CD,Xie YM,Steven GP.An evolutionary structural optimization method for sizing problems with discrete design variables.Computers & Structures 1998;68(4):419-431.
    84.Nha Chu D,Xie YM,Hira Aet al.On various aspects of evolutionary structural optimization for problems with stiffness constraints.Finite Elements in Analysis and Design 1997;24(4):197-212.
    85.Rong JH,Xie YM,Yang XY.An improved method for evolutionary structural optimisation against buckling.Computers & Structures 2001;79(3):253-263.
    86.Rong JH,Xie YM,Yang XYet al.Topology optimization of structures under dynamic response constraints.Journal of Sound and Vibration 2000;234(2):177-189.
    87.Xie YM,Steven GP.A simple evolutionary procedure for structural optimization.Computers &Structures 1993;49(5):885-896.
    88.罗志凡,卢耀祖,荣见华et al.基于一种新的应力准则的渐进结构优化方法.同济大学学报(自然科学版)2005(03):19-27.
    89.荣见华,姜节胜,胡德文et al.基于应力及其灵敏度的结构拓扑渐进优化方法.力学学报2003(05):584-591.
    90.荣见华,姜节胜,颜东煌et al.基于人工材料的结构拓扑渐进优化设计.工程力学2004(05):64-71.
    91.宿新东,管迪华.利用双向渐进结构优化法对结构固有振型的优化.机械强度2004(05):542-546.
    92.Tanskanen P.The evolutionary structural optimization method:theoretical aspects.Computer Methods in Applied Mechanics and Engineering 2002;191(47-48):5485-5498.
    93.隋允康,任旭春,龙连春et al.基于ICM方法的刚架拓扑优化.计算力学学报2003(03):286-289.
    94.江允正,曲淑英,初明进.连续体结构拓扑优化.计算力学学报2003(02):146-149+154.
    95.黄荣杰,杜太生,宋天霞et al.杆、梁结构离散变量拓扑优化设计.华中科技大学学报(自然科学版)2003(09):39-42.
    96.Haber RB,Jog CS,Bendsoe MP.New approach to variable-topology shape design using a constraint on perimeter.Structural Optimization 1996;11(1):1-12.
    97.Jog CS,Haber RB.Stability of finite element models for distributed-parameter optimization and topology design.Computer Methods in Applied Mechanics and Engineering 1996;130(3-4):203-226.
    98.Eschenaner HA,Schumacher A.Bubble-method:a special strategy for finding best possible initial designs.American Society of Mechanical Engineers,Design Engineering Division(Publication) DE;Albuquerque,NM,USA;1993;Publ by ASME,New York,NY,USA.p 437-443.(American Society of Mechanical Engineers,Design Engineering Division(Publication) DE).
    99.Beckers M,Fleury C.Primal-dual approach in truss topology optimization.Computers and Structures 1997;64(1-4):77-88.
    100.Rozvany GIN,Zhou M,Birker T.Generalized shape optimization without homogenization.Structural and Multidisciplinary Optimization 1992;4(3):250-252.
    101.Maute K,Ramm E.Adaptive topology optimization.Structural Optimization 1995;10(2):100-112.
    102.郭旭,赵康.基于拓扑描述函数的连续体结构拓扑优化方法.力学学报2004(05):520-526.
    103.Wang MY,Wang X,Guo D.A level set method for structural topology optimization.Computer Methods in Applied Mechanics and Engineering 2003;192(1-2):227-246.
    104.Wang X,Wang MY,Guo D.Structural shape and topology optimization in a level-set-based framework of region representation.Structural and Mulddisciplinary Optimization 2004;27(1-2):1-19.
    105.Diaz A,Sigmund O.Checkerboard patterns in layout optimization.Structural Optimization 1995;10(1):40-45.
    106.Pctersson J,Sigmund O.Slope constrained topology optimization.International Journal for Numerical Methods in Engineering 1998;41(8):1417-1434.
    107.Yang XY,Xie YM,Liu JSet al.Perimeter control in the bidirectional evolutionary optimization method.Structural and Multidisciplinary Optimization 2003;24(6):430-440.
    108.Querin OM,Young V,Steven GPet al.Computational efficiency and validation of hi-directional evolutionary structural optimisation.Computer Methods in Applied Mechanics and Engineering 2000;189(2):559-573.
    109.Pedersen NL.Topology optimization of laminated plates with prestress.Computers and Structures 2002;80(7-8):559-570.
    110.Li Q,Steven GP,Querin OMet al.Stress based optimization of torsional shafts using an evolutionary procedure.International Journal of Solids and Structures 2001;38(32-33):5661-5677.
    111.Sig,nund O,Petersson J.Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards,mesh-dependencies and local minima.Structural Optimization 1998;16(1):68-75.
    112.Bourdin B.Filters in topology optimization.International Journal for Numerical Methods in Engineering 2001;50(9):2143-2158.
    113.Borrvall T,Petersson J.Topology optimization using regularized intermediate density control.Computer Methods in Applied Mechanics and Engineering 2001;190(37-38):4911-4928.
    114.郭中泽,陈裕泽,张卫红et al.渐进优化法的一种高阶棋盘格式抑制方法.机械设计2006(05):1-4.
    115.贾海朋.结构与柔性机构拓扑优化[博士论文].大连:大连理工大学;2004.
    116.Li Q,Steven GP,Querin OMet al.Shape and topology design for heat conduction by evolutionary structural optimization.International Journal of Heat and Mass Transfer 1999;42(17):3361-3371.
    117.Steven GP,Li Q,Xie YM.Evolutionary topology and shape design for general physical field problems.Computational Mechanics 2000;26(2):129-139.
    118.Steven GP,Li Q,Xie YM.Multicriteria optimization that minimizes maximum stress and maximizes stiffness.Computers & Structures 2002;80(27-30):2433-2448.
    119.Xie YM,Steven GP.Evolutionary structural optimization for dynamic problems.Computers &Structures 1996;58(6):1067-1073.
    120.Li Q,Steven GP,Xie YMet al.Evolutionary topology optimization for temperature reduction of heat conducting fields.International Journal of Heat and Mass Transfer 2004;47(23):5071-5083.
    121.Qucrin OM,Steven GP,Xie YM.Evolutionary structural optimisation using an additive algorithm.Finite Elements in Analysis and Design 2000;34(3-4):291-308.
    122.Huang X,Xie YM,Burry MC.Advantages of bi-directional evolutionary structural optimization (BESO) over evolutionary structural optimization(ESO).Advances in Structural Engineering 2007;10(6):727-737.
    123.荣见华,姜节胜,徐飞鸿et al.一种基于应力的双方向结构拓扑优化算法.计算力学学报2004(03):322-329.
    124.荣见华,谢忆民,姜节胜et al.渐进结构优化设计的现状与进展.长沙交通学院学报2001(03):16-23.
    125.杜海珍,荣见华,傅建林et al.基于应变能的双方向结构渐进优化方法.机械强度 2005(01):72-77.
    126.Yang XY,Xie YM,Steven GP.Evolutionary methods for topology optimisation of continuous structures with design dependent loads.Computers & Structures 2005;83(12-13):956-963.
    127.Ansola R,Canales J,Tarrago JA.An efficient sensitivity computation strategy for the evolutionary structural optimization(ESO) of continuum structures subjected to self-weight loads.Finite Elements in Analysis and Design 2006;42(14-15):1220-1230.
    128.刘毅,金峰.用反向渐进结构优化方法研究洞室支护优化.计算力学学报2006(06):659-662.
    129.刘毅,金峰.双向固定网格渐进结构优化方法.应用力学学报2007(04):526-529+683.
    130.王必军.渐进结构优化方法在结构动力优化中的应用.山西建筑2006(04):88-89.
    131.Huang X,Xie Y.A new look at ESO and BESO optimization methods.Structural and Multidiseiplinary Optimization.
    132.Huang X,Xie YM.Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method.Finite Elements in Analysis and Design 2007;43(14):1039-1049.
    133.梅玉林.结构拓扑优化方法研究——基于特征的结构拓扑优化方法和基于离散变量的结构拓扑优化方法[博士后研究工作报告].大连:大连理工大学;2006.
    134.Meric RA.FINITE ELEMENT AND CONJUGATE GRADIENT METHODS FOR A NONLINEAR OPTIMAL HEAT TRANSFER CONTROL PROBLEM.International Journal for Numerical Methods in Engineering 1979;14(12):1851-1863.
    135.Merit RA.Sensitivity analysis and optimization for joule heating with temperature-dependent eonductivities.Numerical Heat Transfer 1989;16(2):213-229.
    136.Merle RA.BOUNDARY ELEMENTS FOR STATIC OPTIMAL HEATING OF SOLIDS.Journal of Heat Transfer,Transactions ASME 1984;106(4):876-880.
    137.Merle R.A,Kul RH.Differential and integral sensitivity analyses for optimal heating of solids by the BEM.Engineering Analysis with Boundary Elements 1994;13(3):263-271.
    138.Barone MR,Caulk DA.OPTIMAL ARRANGEMENT OF HOLES IN A TWO-DIMENSIONAL HEAT CONDUCTOR BY A SPECIAL BOUNDARY INTEGRAL METHOD.International Journal for Numerical Methods in Engineering 1982;18(5):675-685.
    139.Curtis JP.OPTIMIZATION OF HOMOGENEOUS THERMAL INSULATION LAYERS.International Journal of Solids and Structures 1983;19(9):813-823.
    140.Saigal S,Chandra A.Shape sensitivities and optimal configurations for heat diffusion problems:a BEM approach.Journal of Heat Transfer,Transactions ASME 1991;113(2):287-295.
    141.Dulikravich GS,Martin TJ.Geomerical inverse problems in three dimensional nonlinear steady heat conduction.Engineering Analysis with Boundary Elements 1995;15:161-169.
    142.Nakamura M,Tanaka M,Adaehi Oct al.Optimum design of transient heat conduction fields using boundary element inverse analysis.JSME International Journal,Series A 1995;38(4):480-486.
    143.顾元宪,刘涛,亢战et al.热结构瞬态响应的耦合灵敏度分析方法与优化设计.力学学报2004(01).
    144.Calmidi VV,Mahajan RL.Optirnization for thermal and electrical wiring for a flip-chip package using physical-neural network modeling.IEEE Transactions on Components,Packaging,and Manufacturing Technology Part C:Manufacturing 1998;21(2):111-117.
    145.Park SJ,Kwon TH.Optimization method for steady conduction in special geometry using a boundary clement method.International Journal for Numerical Methods in Engineering 1998;43(6):1109-1126.
    146.Park SJ,Kwon TH.Sensitivity analysis formulation for three-dimensional conduction heat transfer with complex geometries using a boundary elernent method.International Journal for Numerical Methods in Engineering 1996;39(16):2837-2862.
    147.陈飚松.热传导与结构耦合系统的灵敏度分析及优化设计.[博士论文]大连:大连理工大学;2001.
    148.Bejan A.From heat transfer principles to shape and structure in nature:Constructal theory.J Heat Trans-T Asme 2000;122(3):430-449.
    149.Bejan A.Constructal tree-shaped paths for conduction and convection.International Journal of Energy Research 2003;27(4):283-299.
    150.Bejan A.Optimal internal structure of volumes cooled by single-phase forced and natural convection.Journal of Eleclronic Packaging 2003;125(2):200-207.
    151.Bejan A.Theory of Heat-Transfer Irreversible Power-Plants.1.The Optimal Allocation of Heat-Exchange Equipment.International Journal of Heat and Mass Transfer 1995;38(3):433-444.
    152.Bejan A.Constmctal-theory network of conducting paths for cooling a heat generating volume.International Journal of Heat and Mass Transfer 1997;40(4):799-&.
    153.伍文君,陈林根,孙丰瑞.基于构形理论的体点问题.机械工程学报2007(12):55-58.
    154.伍文君,陈林根,孙丰瑞.导热优化的“树网”构造法的改进.中国科学(E辑:信息科学)2006(07):773-781.
    155.周圣兵,陈林根,孙丰瑞.构形理论:广义热力学优化的新方向之一.热科学与技术2004(04):283-292.
    156.周圣兵,陈林根,孙丰瑞.基于构形理论的变断面导热通道体一点导热优化.机械工程学报2008(01):46-50+55.
    157.周圣兵,陈林根,孙丰瑞.基于构形理论的“体-点”导热熵产生最小化.热科学与技术2007(04):294-299.
    158.过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用.科学通报2003(01):21-25.
    159.程新广,孟继安,过增元.导热优化中的最小传递势容耗散与最小熵产.工程热物理学报2005(06):136-138.
    160.Gersborg-Hansen A,Bendsoe MP,Sigmund O.Topology optimization of heat conduction problems using the finite volume method.Structural and Multidisciplinary Optimization 2006;31(4):251-259.
    161.Zhuang C,Xiong Z,Ding H.A level set method for topology optimization of heat conduction problem under multiple load cases.Computer Methods in Applied Mechanics and Engineering 2007;196(4-6):1074-1084.
    162.Bruns TE.Topology optimization of convection-dominated,steady-state heat transfer problems.International Journal of Heat and Mass Transfer 2007;50(15-16):2859-2873.
    163.Shutian L,Yongcun Z.Design of high-conduction paths based on pology optimization.Kunming,China;2006.p 449-454.
    164.Bendsoe MP,Sigmund O.Material interpolation schemes in topology optimization.Archive of Applied Mechanics 1999;69(9-10):635-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700