用户名: 密码: 验证码:
基于分岔理论的电动助力转向系统控制策略及其对汽车操纵稳定性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速公路的发展,汽车行驶速度越来越快,人们对汽车整体性能的要求也不断在提高,而转向系统对汽车整车行驶性能(如操纵稳定性、行驶平顺性等)有举足轻重的影响。作为直接影响汽车安全性能的重要部件之一,电动助力转向(EPS)系统在国内已从理论研究探索阶段逐步走向产品化阶段,本文依托江苏省“六大人才高峰”资助项目:轿车电动助力转向系统研究与开发,以EPS系统为研究对象,以现代非线性动力学分岔和混沌为理论基础,借助现代计算机技术,构建了装备EPS系统的整车操纵稳定性协同仿真虚拟试验框架,围绕着装备EPS系统的汽车非线性动力学、EPS系统的控制策略及其对整车操纵稳定性的影响等展开深入的理论分析和试验研究,具体研究内容如下:
     首先考虑EPS系统干摩擦仿真模型以及魔术轮胎公式,建立驾驶员——装备EPS系统汽车闭环系统非线性操纵动力学模型,在此基础上运用现代非线性动力学理论对该模型在自治情况下进行非线性动力学特性分析和数值仿真,指出了分岔速度对闭环系统非线性运动稳定性的影响规律,分析了整车参数对闭环系统Hopf分岔速度的影响,着重研究了EPS系统参数对闭环系统Hopf分岔速度的影响。
     其次从EPS系统控制的基本目标和常见的EPS系统控制策略入手,给出了直流电动机电流闭环PI控制的设计方法,并在此基础上应用混合灵敏度方法设计出了鲁棒H_∞控制器。通过仿真结果分析表明基于PI电流环的混合灵敏度鲁棒H_∞控制器能在较宽频带范围内增强地面低频信号、削弱高频信号和抑制转矩传感器的噪声,所设计的控制器有较强鲁棒性,助力跟踪能力和抗干扰能力,能有效改善车辆的转向回正特性,提供给驾驶员较为满意的路感,提高车辆的转向操纵性能。
     第三、通过采用EPS系统电磁离合器PWM节能控制策略,即随着转向盘转矩的变化来实时改变通过电磁离合器的电流,从而改变电磁离合器所传递的转矩。由于通过电磁离合器的电流减小,其发热量也减小,可以适当减小电磁离合器线圈的铜线直径,减轻重量,降低成本。经过台架试验验证所提出的控制策略的合理性,节能效果明显,能满足使用的要求,还达到环保的目的。在研究了现有电磁离合器结构基础上,提出了一种啮合套式电磁离合器的结构方案,提高电磁离合器的响应速度,改善EPS系统的转向特性,获得国家专利授权。
     第四、利用MATLAB/Simulik建立了考虑驾驶员——汽车闭环非线性操纵动力学模型,在此基础上建立了考虑EPS系统转向运动数学模型,并使用该模型对装备EPS系统整车操纵稳定性进行了仿真研究,讨论了EPS系统对整车操纵稳定性的影响,通过仿真分析出EPS系统的结构参数,如助力机构减速比、转矩传感器扭杆刚度、助力增益等,以及EPS系统采用不同的控制策略对整车操纵稳定性能的影响。
     最后以某型号轿车为例,在ADAMS/Car组装成装备EPS系统整车虚拟样机模型,并与MATLAB/Simulink构建装备EPS系统整车协同仿真虚拟试验,实现了机电一体化的联合仿真。通过几个典型工况的操纵稳定性虚拟试验仿真与实车道路试验结果对比表明,装备混合灵敏度鲁棒H_∞控制器的EPS系统能有效改善汽车操纵稳定性,同时表明所构建虚拟试验平台能较真实反映实车试验。
     本文研究方法和结论对国内研发具有自主知识产权的EPS系统具体设计工作,解决EPS系统与汽车操纵稳定性匹配等问题具有指导作用和参考价值,有利于加快其产业化步伐。
With the high development of the expressway, the speed of modern vehicles is becoming faster and faster. The people's demand on the whole performance of vehicle is also becoming higher and higher. The steering system is effecting on the ride performance of vehicle more and more, such as handling and stability, ride comfort etc. Nowadays, as a most important safety system in the vehicle, EPS system technology has the trend of putting into production. The work is supported in part by grants from the project "Study and Development on the Electric Power Steering System of automobile" sponsored by Jiangsu Province Six Kinds Talents Summit for providing financial support. This thesis focuses on the EPS system as investigated subject by using computer technique based on nonlinear dynamic theory foundation. The virtual co-simulation frame of vehicle equipped with EPS system handling and stability performance test is established. And research work is carried out to the vehicle of nonlinear dynamic equipped with EPS system, the control strategy of EPS system and its influences on vehicle both in theories and in experiments. The principal contents are as following:
     First, it has been established that driver-vehicle equipped with EPS system closed loop nonlinear handling dynamics simulation model by considering dry-friction simulink model of EPS system and Magic Formula of tire, which has been carried out on nonlinear dynamic characteristic analysis and numerical simulation under autonomous case. The influencing laws of bifurcation vehicle speed on motion stability of closed loop nonlinear system are on discussed. The influence of parameters of the automobile on bifurcation vehicle speed is also being studied. The influence of parameters of the EPS system on bifurcation vehicle speed is investigated on in details.
     Secondly, based on the basic target and familiar control strategy of EPS system, design methods of the classical PI controlling the current loop of the electromotor are researched and robust H_∞controller of EPS system by H_∞mixed sensitivity is put forward. The simulation results indicate that H_∞mixed sensitivity controller with PI current loop can improve the capability of low frequency noise enhancement and high frequency enervation in wide frequency band, and attenuate noise of torque sensor. The designed control system for EPS system exhibits good robust performances in assist tracking and anti-disturbance, greatly enhances the returnability, driver's steering feel, handling characteristic.
     Thirdly, the energy-saving method is proposed with PWM control mode for electromagnetic clutch of EPS system, which controls the current of the electromagnetic clutch's coil along with the torque from steering wheel, so that the torque transmitted can be changed as required. Quantity of heat drops because of the current of the electromagnetic clutch's coil diminishing and accordingly reducing the diameter of coil, the weight, the cost. Bench-test results show the proposed method can work well, and at the same time, it can save greatly energy, satisfy the use of requirements, and prevent the pollution of the environment. The configuration schemes about mesh sleeve of electromagnetic clutch based on existing structure have been formed, and the patent has been authorized.
     Fourthly, driver-vehicle closed loop nonlinear handling dynamics simulation model has been established using MATLAB/Simulik, based on the mathematics model of steering movement of EPS system. The simulation of handling and stability for the vehicle equipped with EPS system is studied. The influence of the structure parameters and control methods of EPS system on handling and stability of the automobile are discussed, such as reduction ratio, twisting bar stiffness of the torque sensor, assist gain and so on.
     Finally, taking a type of car as an example, the virtual prototype model of the vehicle equipped with EPS system under the environment of ADAMS/Car is assembled, and the controller models of EPS system are set up by using MATLAB/Simulink. The handling and stability of whole vehicle is analyzed based on the co-simulation method with ADAMS/Car and MATLAB/Simulink. The real experiments of handling and stability (such as the steering maneuverability test, the steering returnability, the pylon course slalom test, and so on) are carried out. Compared with the virtual experiment, the result shows that EPS system with robust H_∞mixed sensitivity has a good effect on the handling and stability test. Therefore, the virtual experiment can reflect real experiment.
     The research methods and study results are useful to develop EPS system with independent intellectual property, settle the match relation with EPS system and handling and stability of whole vehicle for guidance purpose and reference merit, and facilitate the development of EPS system in our country.
引文
[1]张洪欣.汽车设计[M](第2版).北京:机械工业出版社,1999.
    [2]何仁,李强.汽车线控转向技术的现状与发展趋势[J].交通运输工程学报,2005,5(2):68-72.
    [3]江苏省汽车工程重点实验室.轿车电动助力转向系统研究与开发技术报告[R].镇江:江苏大学汽车与交通工程学院,2004.
    [4]季学武,陈奎元.动力转向系统的发展与节能[J].世界汽车,1999(10):7-10.
    [5]冯樱,肖生发,李春茂.电子控制式电动助力转向系统的控制[J].汽车研究与开发,2001(6):34-36,50.
    [6]林逸,施国标,邹常丰,等.电动助力转向系统转向性能的客观评价[J].农业机械学报,2003,3(4):4-7.
    [7]Ken Rogers,William Kimberley.Turning Steering to Electric[J].Automotive Engineer,2000,108(2):39-41.
    [8]Badawy A.,Bolourchi F.,Gaut S.E'STEER System Redefines Steering Technology[J].Automotive Engineering,1997,105(9):15-18.
    [9]Naim G.An electric challenge to hydraulic steering.http://www.manufacturing.net/dn/index.asp?layout=artide&articleId=CA118949&stt=001&text =epas.
    [10]Shigeki S.Electric Power Steering Device[P].日本专利:JP58133957,1983-08-09.
    [11]Shiga.Electric Power Steering System[P].美国专利:4437531,1984-03-20.
    [12]能登康雄,杉浦登,大内秀之.电动式动力转向装置[P].中国专利:86101092,1986-09-24.
    [13]Rau J.L.,Callahan W.L.,Miller L.L.Electronically Controlled Steering Systems for Line Haul Vehicles[C].SAE Paper No.872270,1987.
    [14]Nakayama T.,Suda E.The Present and Future of Electric Power Steering[J].International Journal of Vehicle Design,1994,15(3,4,5):243-254.
    [15]Arcidiacono G.,Capitani R.Guidelines for Defining a Design Standard for an Electrical Steering System[J].Journal of Engineering Design,2002,13(4):305-319.
    [16]Okamoto K.Recent Technical Trends in Automobiles and NSK's Innovations and Developments Relating to Automotive Components[J].NSK TECHNICAL JOURNAL Motion and Control,1997(2):1-12.
    [17]季学武,陈奎元.车用光电式转矩传感器[P].中国专利:01264328.9,2002-08-14.
    [18]季学武,陈奎元.一种车用光电式转矩传感器[P].中国专利:02116308.1,2002-09-18.
    [19]季学武,陈奎元.电动转向系统的发展及其关键技术分析[A].汽车转向专业论文集(四)[C].中国汽车工程学会转向委员会,中国汽车工业协会转向器委员会,全国汽车行业经济技术信息 网转向专业网.2003.1-6.
    [20]黄李琴,季学武,陈奎元.汽车电动助力转向控制系统的初步研究[J].汽车技术,2003,(6):3-6.
    [21]季学武,张德新,陈奎元.电动助力转向系统直流伺服技术的研究[J].农业机械学报,2004,35(5):5-8.
    [22]林逸,施国标,邹常丰,等.电动助力转向系统转向性能的客观评价[J].农业机械学报,2003,34(4):4-7.
    [23]Shi Guobiao,Lin Yi,Zhang Xin.Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering[C].SAE Paler No.2004-01-1107,2004.
    [24]王其东,杨孝剑,陈无畏,等.电动助力转向系统的建模及控制[J].农业机械学报,2004,35(5):1-4,24.
    [25]王启瑞,陈无畏,黄森仁,等.汽车电动助力转向系统的I-L控制研究[J].汽车工程,2004,26(5):609-612.
    [26]陈无畏,王启瑞.电动助力转向系统的模糊自调整PD控制[J].江苏大学学报(自然科学版),2004,25(2):112-115.
    [27]陈无畏,王妍,王启瑞,等.汽车电动助力转向系统的自适应LQG控制[J].机械工程学报,2005,41(12):167-172.
    [28]邱明,杨家军,刘照,等.基于H_∞鲁棒控制原理的电动助力转向系统研究[J].华中科技大学学报(自然科学版),2002,32(12):71-73.
    [29]刘照,杨家军,廖道训.基于混合灵敏度方法的电动助力转向系统控制[J].中国机械工程,2003,14(10):874-876.
    [30]刘照,杨家军,廖道训.基于动态分析的电动助力转向系统设计与研究[J].华中科技大学学报(自然科学版),2001,29(12):24-26.
    [31]叶耿,杨家军,刘照.汽车电动式动力转向系统转向路感研究[J].华中科技大学学报(自然科学版),2002,30(2):24-26.
    Z.Liu,J.Yang,D.Liao.The Optimization of Electric Power Assisted Steering to Improve Vehicle Steering Performance[C].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2003,217(8):639-646(8).
    [32]刘照,杨家军,廖道训.电动转向系统中两种辅助转向传动机构方案的分析与比较[J].机械科学与技术,2003,20(6):954-956.
    [33]刘照,杨家军,廖道训.车速对汽车转向力矩的影响分析[J].中国机械工程,2005,16(8):748-715.
    [34]杨树,唐新蓬.汽车电动助力转向系转向盘力特性的初步研究[J].汽车科技,2003,(3):19-21.
    [35]唐新蓬,杨树.电动助力转向系对汽车角输入响应影响的仿真[J].汽车工程,2004,26(3):314-318.
    [36]尚喆,许镇琳,王豪,等.基于神经网络的电动转向系统助力特性研究[J].汽车工程,2004,26(3):319-321.
    [37]王豪,许镇琳,尚喆,等.电动转向系统特性分析[J],汽车科技,2003,(3):16-18.
    [38]Xu Zhenlin,Wang Hao,Shang Zhe,et al.Study on Characteristic of Electric Power Assist Steering System[J].Transactions of Tianjin University,2003,9(3):211-213.
    [39]王豪,许镇琳,尚喆,等.电动转向系统助力特性研究[J],公路交通科技,2003,20(6):143-146.
    [40]吴文江,杜彦良,季学武,等.电动转向系统稳定性能与抗干扰性能的研究[J].振动工程学报,2004,17(2):196-200.
    [41]吴文江,杜彦良,季学武,等.增强电动转向系统助力跟踪性能的H_∞控制[J].汽车工程,2004,26(4):465-467,475.
    [42]吴文江,杜彦良,季学武,等.汽车电动转向控制系统抗干扰策略的仿真[J].汽车工程,2003,25(4):364-366.
    [43]吴文江,温立志,杜彦良.基于DSP的汽车电动转向控制系统研究[J].石家庄铁道学院学报,2003,17(1):67-71.
    [44]徐建平,何仁,苗立东,等.电动助力转向系统回正控制算法研究[J].汽车工程,2004,26(5):557-559,541.
    [45]罗石,商高高.电控助力转向系统电动机驱动电路设计方案的研究[J].江苏大学学报(自然科学版),2004,25(6):488-491.
    [46]何仁,徐勇刚,苗立东,等.电动助力转向系统中电磁离合器的节能[J].江苏大学学报(自然科学版),2005,26(4):303-307.
    [47]何仁,苗立东,商高高,等.电动助力转向系统无功损耗的探讨[J].汽车工程,2005,27(1):80-82.
    [48]何仁,苗立东,叶红弟.汽车电动助力转向装置的安全性探讨[J].中国安全科学学报,2004,14(10):69-72.
    [49]何仁,徐建平.电动助力转向系统稳定性分析[J].江苏大学学报(自然科学版),2004,25(4):294-297.
    [50]李强.轿车用电动助力转向系统研究与开发,第九届“挑战杯”全国大学生课外学术科技作品说明书,2006.
    [51]何仁,李强,郭孔辉.LOG理论的电动助力转向系统最优控制.[J]农业机械学报,2007,38(2):17-21.
    [52]Bohdan I.Pryjmak.Simulation of Electric Power Steering Armature Inertia Effects on Vehicle System Handling Response Using Bond Graph Technology[C].SAE Paper No.851639,1985.
    [53]Shimizu Y.,Kawai T.Development of Electric Power Steering[C].SAE Paper No.910014,1994.
    [54]Adams EJ.Power Steering Road Feel[C].SAE Paper No.830998,1983.
    [55]Kurishige M.,Kifuku T.,Inoue N.,et al.A Control Strategy to Reduce Steering Torque for Stationary Vehicles Equipped with EPS[C].SAE Paper No.1999-01-0403,1999.
    [56]Kurishige M.,Wada S.,Kifuku T.,et al.A New EPS Control Strategy to Improve Steering Wheel Retumability[C].SAE Paper No.2000-01-0815,2000.
    [57]Kurishige M.,Fukusumi K.,Inoue N.,et al.A New Electric Current Control Strategy for EPS Motors[C].SAE Paper No.2001-01-0484,2001.
    [58]Zaremba A.T.,Davis R.I.Dynamic Analysis and Stability of a Power Assist Steering System[C].Proceedings of the American Control Conference,Seattle,Washington,1995(6):4253-4257.
    [59]Zaremba A.T.,Liubakka M.K.,Stuntz R.M.Vibration Control Based on Dynamic Compensation in an Electric Power Steering System[C].Control of Oscillations and Chaos,Proceedings 19971st International Conference,St Petersburg.1997(13):453-456.
    [60]Zaremba A.T.,Liubakka M.K.,Stuntz R.M.Control and Steering Feel Issues in the Design of an Electric Power Steering System[C].Proceedings of the American Control Conference,Philadelphia,Pennsylvania,USA.1998:36-40.
    [61]Sugitani N.,Fujuwara Y.,Uchida K.,et al.Electric Power Steering with H-infinity Control Designed to Obtain Road Information[C].Proceedings of the American Control Conference,Albuquerque,New Mexico,1997:2935-2939.
    [62]Badawy A.,Zuraski J.,Bolourchi E,et al.Modeling and Analysis of an Electric Power Steering System[C].SAE Paper No.1999-01-0399,1999.
    [63]Ji-Hoon Kim,Jae-Bok Song.Control Logic for an Electric Power Steering System Using Assist Motor[J].Mechatronics,2002,(12):447-459.
    [64]Chabaan R.C.H-infinity Control Design and Gain Scheduling of Electrical Power Assist Steering Systems to Improve System Robustness and Stability[D].Detroit:Wayne State University,2000.
    [65]Chabaan R.C.,Wang L.Y.Torque Estimation in Electrical Power Assist Systems[C].Proceedings of AVEC 2000,5th Int'l Symposium on Advanced Vehicle Control,Ann Arbor,Michigan,2000,22-24.
    [66]Chabaan R.C.,Wang L.Y.Control of Electrical Power Assist Systems:H_∞ Design,Torque Estimation and Structural Stability[J].JSAE Review,2001,22:435-444.
    [67]Chabaan R.C.,Wang L.Y.Vehicle Electric Power Assist Steering System and Method Using Angle Based Torque Estimation[P].United States Patent:6293366,2001.09.25.
    [68]Chabaan R.C.,Wang L.Y.Vehicle Electric Power Assist Steering System and Method Using Velocity Based Torque Estimation[P].United States Patent:6425454,2002.07.30.
    [69]Manu Parmar and John Y.Hung.Modeling and Sensorless Optimal Controller Design for an Electric Power Assist Steering System[J].28th Annual Conference of IEEE Industrial Electronics Society,Sevilla,SPAIN.2002(3):1784-1789.
    [70]Satake T.,Kurishige M.,Inoue N.,et al.Evaluation of EPS Control Strategy Using Driving Simulator for EPS[C].SAE Paper No.2003-01-0582,2003.
    [71]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [72]Dixon J.C.Tyres,Suspension and Handling[M].Cambridge:Cambridge University Press,first edition,1991.
    [73]Olley M.Independent Wheel Suspension~Its Whys and Wherefores[C].SAE Paper No.340080, 1934.
    [74]Evans R.D.Properties of Tires Affecting Riding,Steering and Handling[C].SAE Paper No.350082,1935.
    [75]Milliken W.F.,Whitcomb D.W.General Introduction to a Programme of Dynamic Research[C].Proceedings of the Automobile Division,the Institution of Mechanical Engineers,London,1956,1957:287-309.
    [76]Segel L.Theoretical Prediction and Experimental Substantiation of the Response of the Automobile to Steering Control[C].Proceedings of the Automobile Division,the Institution of Mechanical Engineers,London,1956,1957:310~330.
    [77]Colse W.,Muzzey C.A Device for Measuring Mechanical Characteristics of Tyres on the Road [J].The Insitution of Mechanical Engineers,Automobile Division,London,1956-57:331-347.
    [78]Fonda A.G.Tyre Tests and Interpretation of Experimental Data[C].Proceedings of the Automobile Division,the Institution of Mechanical Engineers,London,1956,1957:348-366.
    [79]Guo K.H.,Guan H.Modeling of Driver/Vehicle Directional Control System[J].Vehicle System Dynamics,1993,22(3/4):141-184.
    [80]郭孔辉.长春汽车研究所近年来对汽车操纵稳定性的研究[J].汽车工程,1985,7(1):17-22.
    [81]余志生.汽车理论[M].第2版.北京:机械工业出版社,1991.
    [82]苗立东.节能型电动助力转向系统的减振研究[D].镇江:江苏大学,2005.
    [83]J.Baxter.Analysis of Stiffness and Feel for a Power-Assisted Rack and Pinion Steering Gear[C].SAE Paper No.880706,1988.
    [84]宋贵勇,张洪欣.常规转向系统的路感特性及其改善途径[J].上海汽车,2000(5):17-23.
    [85]Anthony J.Champagne.Correlation of Electric Power Steering Vibration to Subjective Ratings[C].SAE paper No.2000-01-0176,2000.
    [86]廖抒华.动力转向系统特性及其对汽车操纵稳定性影响的试验与仿真研究[D].长春:吉林大学,2000.
    [87]Y.G.Liao,H.I.Du.Cosimulation of Multibody-based Vehicle Dynamics and Electric Power Steering Control SystemiC].Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2001,215(3):141-151.
    [88]尚颖.伞兵突击车悬架转向系统对操纵稳定性影响的研究[D].北京:北京理工大学,2000.
    [89]杨树.电动助力转向系统与汽车操纵稳定性的仿真研究[D].武汉:华中科技大学,2003.
    [90]秦民,林逸,闵海涛,等.非线性闭环汽车系统直线行驶稳定性分析[J].汽车工程,2002,24(6):520-523,519.
    [91]Legouis T.,Lanebilee A.,Bourassa P.,et al.Characterization of Dynamic Vehicle Stability Using Two Models of the Human Pilot Behavior[J].Vehicle System dynamics,1986(15):1-18.
    [92]Mcruer D.T.,Krendel E.S.Mathematical Models of Human Pilot Behavior[J].Advisory Group on Aerospace Research and Development,AGARDograph,No.188,1974.
    [93]徐建平.电动助力转向系统研究与分析[D].镇江:江苏大学,2004.
    [94]郭孔辉.汽车操纵性能的闭环动力学仿真评价与控制[R].福特——中国研究与发展基金资助项目研究报告,长春:吉林大学,1997.
    [95]何仁,徐建平.电动助力转向系统的稳定性分析[J].江苏大学学报(自然科学版),2004,25(4):294-297.
    [96]申荣卫,施国标,林逸,等.电动助力转向系统稳定性分析与研究[J].汽车技术,2006(4):9-12.
    [97]左丽,李夏青,吴文江.电动助力转向系统的稳定性分析[J].北京汽车,2006(3):20-23.
    [98]廖晓听.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.
    [99]刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1995.
    [100]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [101]吴文江.基于H_∞控制理论的汽车电动助力转向控制系统研究[D].北京:北京理工大学,2004.
    [102]魏元东.汽车电动助力转向系统(EPS)研究[D].合肥:合肥工业大学,2004.
    [103]吴锋,杨志家,姚栋伟,等.电动助力转向系统控制策略的研究[J].汽车工程,2006,28(7):676-680.
    [104]孟涛.改善电动助力转向系统动态性能的控制策略[J].机械与电子,2006,(6):10-13.
    [105]徐洪泽,谢暄.汽车电动助力转向系统的控制策略研究[J].机械与电子,2005,(5):56-58.
    [106]秦继荣,沈安俊.现代直流伺服控制技术及其系统设计[M].北京:机械工业出版社,2000.
    [107]Kifuku T.,Wada S.An Electric Power Steering System[J].Mitsubishi Electric ADVANCE,1997(3):20-23.
    [108]Roy McCann,Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System[C].SAE 2000 World Congress Detroit,Michigan.SAE paper No.2000-01-0817.
    [109]申铁龙.H_∞控制理论及应用[M].北京:清华大学出版社,1996.
    [110]Doye J.,Glover K.,Khargonekar P.,et al.State-space Solution to Standard H2 and H_∞ Control Problem[J].IEEE Transaction on Automatic Control,1989,34(8):831-847.
    [111]Boyd S.,Ghaoui L.E.,Feron E.,et al.Linear Matrix Inequalities in Systems and Control Theory[M].Philadelphia:SIAM,1994.
    [112]Gahinet P.,Apkarian P.A Linear Matrix Inequality Approach to H_∞ Control[C].Int.J.of Robust and Nonlinear Control,1994,4(5):421.448.
    [113]Chilali M.,Gahinet P.H_∞ Design with Pole Placement Constrains:An LMI Approach[J].IEEE Transaction on Automatic Control,1996,41(3):358-367.
    [114]Zhou K.,Khargonekar P.An Algebraic Rieeati Equation Approach to H_∞ Optimization[J].System and Control Letters,1988,11(2):85-91.
    [115]Kharonekar P.P.,Petersen I.R.,Zhuo K.Robust Stabilization of Uncertain Linear Systems:Quadratic Stabilizability and H_∞ Control Theory[J].IEEE Transactions on Automatic Control, 1990,35(3):356-361.
    [116]Hadad W.M.,Bemstein D.S.Robust Stabilization with Positive Real Uncertainty:Beyond the Small Gain Theorem[J].System and Control Letters,1991,17(3):191-208.
    [117]Shim D.Ouadratic Stability and the Positivity Theorem or Circle Theorem[C].Proceedings of the 32nd IEEE Conference on Decision and Control,1994:3218-3219.
    [118]Xie L.,Fu M.,De Souza C.E.H_∞ Control and Ouadratic Stabilization of Systems with Parameter Uncertainty via Output Feedback[J].IEEE Transaction on Automatic Control,1992,37(8):1253-1256.
    [119]Shi G.,Zou Y.,Yang C.An Algebraic Approach to Robust H_∞ Control via State Feedback [J].System and Control Letter,1992,18(2):365-370.
    [120]Gu K.H_∞ Control of Systems under Norm Bounded Uncertainties in all System Matrices [J].IEEE Transaction Automatic Control,1994,39(6):1320-1322.
    [121]Zhou K.,Khargonekar P.P.,Stoustrup J.,et al.Robust Performance of Systems with Structured Uncertainties in State Space[J].Automatica,1995,31(2):249-255.
    [122]Park P.,Kailath T.Guaranteed Level-gamma H {sub infinity} Control in Uncertain Linear Systems via Linear Matrix Inequalities[C].International Journal of Control,1996,65(6):913-924.
    [123]Xie L.,Soh Y.C.Robust Control of Linear Systems with Generalized Positive Real Uncertainty [J].Automatica,1997,33(5):963-967.
    [124]解学书,钟宜生.H_∞控制理论[M].北京:清华大学出版社,1994.
    [125]吴旭东,解学书.H_∞控制中的加权阵选择[J].清华大学学报(自然科学版),1997,37(1):27-30.
    [126]薛定宇.反馈控制系统设计与分析——MATLAB语言应用[M].北京:清华大学出版社,2000.
    [127]赵治国,余卓平,孙泽昌,等.电动助力转向系统H_∞鲁棒控制研究[J].汽车工程,2005,27(6):730-735.
    [128]王遂双.汽车电子控制系统的原理与检修[M].北京:北京理工大学出版社,1998.
    [129]Anon.Vehicle electronics[J].Automotive Engineer,1993,18(1):30-36.
    [130]何仁,李强,苗立东.一种用于电动助力转向装置的啮合套式电磁离合器[P].中国专利,申请号:200520070308.公开日:20060906,公告号:2813991.
    [131]尔桂花,窦曰轩.运动控制系统[M].北京:清华大学出版社,2002.
    [132]陈桂明,张明照,戚红雨,等.应用MATALAB建模与仿真[M].北京:科学出版社,2001.
    [133]郑建荣.虚拟样机技术入门与提高IM].北京:机械工业出版社,2002.
    [134]宋健,张越今.机械系统分析软件ADAMS在汽车列车动力学仿真中的应用[J].汽车工程,1997,19(5):286-290.
    [135]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [136]王克琦,温效朔.基于ADMAS与MATLAB的合作机器人的联合仿真[J].机电产品开发与创 新,2005,18(6):35-37.
    [137]中华人民共和国国家标准,GB/T 12534-1990汽车道路试验方法通则[S].
    [138]中华人民共和国国家标准,GB/T 6323.5-1994汽车操纵稳定性方法转向轻便性试验[S].
    [139]中华人民共和国国家标准,GB/T 6323.4-1994汽车操纵稳定性方法转向回正性能试验[S].
    [140]中华人民共和国国家标准,GB/T 6323.1-1994汽车操纵稳定性方法蛇行试验[S].
    [141]中华人民共和国国家标准,GB/T 6323.6-1994汽车操纵稳定性方法稳态回转试验[S].
    [142]汽车行业标准,QC/T 480-1999汽车操纵稳定性指标限值与评价方法[S].
    [143]浙江吉利汽车有限公司.MR7161AH型吉利轿车操纵稳定性试验报告[R].报告编号:06-WT-ZC-45654,襄樊:国家汽车质量监督检验中心,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700