用户名: 密码: 验证码:
Tim-3调控单核/巨噬细胞和NK细胞参与动脉粥样硬化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠心病是发达国家首位致死性病因,在我国的发病率和致死率也逐年升高。动脉粥样硬化(Atherosclerosis, AS)占冠状动脉性心脏病的绝大多数(95%-99%),而动脉粥样硬化不稳定斑块的破裂、血小板的聚集及血栓形成造成的冠状动脉急性狭窄和闭塞是导致急性冠状动脉综合征(acute coronary syndrome,ACS)的重要原因。目前研究认为动脉粥样硬化是一种多病因的慢性炎症性疾病,局部和全身的炎症免疫反应在动脉粥样硬化发生发展过程中起着重要作用,固有免疫和适应性免疫共同参与调节动脉粥样硬化病变。动脉粥样硬化斑块中存在着多种免疫细胞,其中以巨噬细胞和T细胞最为常见,此外还有少量的树突状细胞(Dentritic cell, DC)、自然杀伤细胞(natural killer cell, NK cell)和肥大细胞(mast cell)等,偶有B淋巴细胞。
     动脉粥样硬化的发生是多因素共同作用的结果,目前已发现的动脉粥样硬化危险性因素很多,但相关针对治疗及控制效果均不理想,降脂和抗炎治疗是目前最主要的治疗措施。越来越多的证据显示免疫反应参与动脉粥样硬化发展的各个环节。免疫缺陷小鼠与正常小鼠相比,动脉粥样硬化的严重程度减轻约70%;而血清胆固醇水平没有改变。因此炎症免疫调节机制成为目前研究的热点,对该机制的研究将为动脉粥样硬化的治疗开辟新的道路。
     T细胞免疫球蛋白粘蛋白分子3(T cell immunoglobulin-and mucin-domain-containing molecule-3, Tim-3)是2002年发现的新型免疫调节分子,选择性表达在分化终末期的Th1细胞上。Tim-3与其配体galectin-9结合后负向调控Th1细胞功能,并诱导Th细胞凋亡,介导免疫耐受的形成。大量研究报道Tim-3通过调节适应性免疫反应在多种炎症性疾病中发挥重要作用。进一步研究发现Tim-3在多种固有免疫细胞,包括NK细胞、巨噬细胞和树突状细胞上均有表达,但Tim-3在固有免疫中的作用机制目前尚不清楚。近来研究报道Tim-3能够影响巨噬细胞和树突状细胞的功能,且在柯萨奇病毒感染诱导的心肌炎中发挥重要作用,这些信息提示Tim-3可能参与动脉粥样硬化的发生发展。
     本课题利用临床研究、体外细胞实验和动物实验研究Tim-3在动脉粥样硬化中的表达和功能,为进一步深入阐明动脉粥样硬化免疫调节机制和Tim-3在固有免疫中的作用提供实验依据,并为动脉粥样硬化的抗炎治疗提供新的靶点。
     第一部分Tim-3在动脉粥样硬化中的表达
     多种免疫细胞参与动脉粥样硬化发生,而Tim-3在固有免疫和适应性免疫细胞上均有表达。为了证实Tim-3在动脉粥样硬化中的作用,我们首先检测了其在人类和小鼠动脉粥样硬化病变个体中的表达。
     1.ApoE-/-小鼠体内各脏器及主动脉斑块中Tim-3表达显著高于对照鼠
     ApoE基因敲除小鼠(apolipoprotein E gene knockout, ApoE-/-)是动脉粥样硬化易感动物模型。为研究Tim-3在斑块内的表达情况,我们收集14周龄高脂饲养6周的ApoE-/-小鼠及其背景小鼠C57BL/6小鼠的新鲜脏器,抽提RNA,RT-PCR检测Tim-3表达。结果显示免疫细胞含量丰富的小鼠脾脏中Tim-3表达最高,并且ApoE-/-小鼠的多种脏器,包括心脏、肝脏、脾脏和主动脉中Tim-3mRNA的表达水平都较C57小鼠高。
     为了研究斑块中免疫细胞Tim-3的表达情况,取高脂饲养的ApoE-/-小鼠主动脉,冰冻切片后进行免疫组化染色,结果显示动脉粥样硬化早期斑块中的细胞几乎全部呈现阳性染色,Tim-3在早期斑块中的表达非常丰富。大量研究证实动脉粥样硬化早期斑块成分几乎只有巨噬细胞和T细胞,提示斑块中的免疫细胞高表达Tim-3。
     2.AS患者外周血单核细胞、NK细胞中Tim-3表达较健康志愿者显著升高,且与多种致病因素相关
     本研究收集经冠脉造影确诊存在冠脉粥样硬化的AS患者97例,其中稳定性心绞痛(stable angina pectoris, SAP)患者15例,不稳定型心绞痛患者(unstable angina pectoris, UAP)82例,健康志愿者51例为对照,不稳定心绞痛患者组含24例心肌梗死myocardial infarction, MI)患者。流式细胞术检测Tim-3在各淋巴细胞亚群中的表达。结果显示,Tim-3在外周血CD4+和CD8+T细胞上低水平表达,而在单核细胞和NK细胞上高水平表达。且冠心病患者单核和NK细胞上Tim-3表达水平显著高于健康志愿者(单核细胞,p<0.0001;NK细胞,p=0.0005),但冠心病患者CD4+和CD8+T细胞上Tim-3的表达同健康志愿者无显著性差异。
     动脉粥样硬化的发生是多因素共同作用的结果,临床资料分析结果显示单核细胞上Tim-3表达水平同多种致病因素呈现良好的相关性,包括甘油三酯(p=0.0320)和收缩压(p=0.0016)等,NK细胞上Tim-3表达水平也同甘油三酯(p=0.0121)和胆固醇(p=0.0220)正相关。
     2.动脉粥样硬化患者Tim-3表达与炎症水平密切相关
     ELISA检测结果显示AS患者血清学炎症指标包括肿瘤坏死因子α(tumer necrosis factor-α, TNF-α)和C-反应蛋白(C-reactive protein, CRP)较健康对照显著升高(CRP,p=0.0237;TNF-α=0.0235)。统计学分析发现单核细胞和NK细胞上Tim-3的表达水平与TNF-α及CRP正相关,提示Tim-3与AS病人体内炎症水平相关。与此相符,分析显示炎症水平较高的患者其单核细胞和NK细胞上Tim-3表达水平也相应较高,说明Tim-3同动脉粥样硬化患者炎症水平密切相关,可能参与动脉粥样硬化患者炎症过程。
     以上研究结果提示,Tim-3参与动脉粥样硬化病变,可能主要通过调控NK细胞和巨噬细胞发挥作用。
     第二部分Tim-3对单核/巨噬细胞的调控及其在动脉粥样硬化中作用
     单核/巨噬细胞是AS的重要效应细胞。单核细胞迁移至血管内膜以及单核细胞源性巨噬细胞摄取氧化低密度脂蛋白是动脉粥样硬化的关键性起始因素。临床研究显示AS患者外周血单核细胞Tim-3表达显著升高,且与多种致病因素相关,强烈提示单核/巨噬细胞表达的Tim-3参与AS发生。有研究显示Tim-3组成性表达于单核/巨噬细胞,促进巨噬细胞炎性反应。然而Tim-3是否参与AS发生中单核/巨噬细胞介导的炎症反应,Tim-3影响单核/巨噬细胞的哪种效应,目前尚未见报道。为了研究Tim-3对动脉粥样硬化单核/巨噬细胞的调控作用,本研究利用小鼠单核/巨噬细胞系RAW264.7和AS患者外周血单核细胞进行了一系列体外研究。
     1. LPS/ox-LDL活化的鼠单核/巨噬细胞系RAW264.7中Tim-3表达显著升高
     炎症介质脂多糖(lipopolysaccharide, LPS)可以有效活化巨噬细胞,而氧化低密度脂蛋白(oxidized-low density lipoprotein, ox-LDL)是介导巨噬细胞泡沫化的重要致动脉粥样硬化因子。免疫组化和实时定量PCR结果显示,LPS和ox-LDL刺激都能够显著上调小鼠单核/巨噬细胞系RAW264.7中Tim-3的表达,而LPS诱导效果较ox-LDL更为强烈,约为ox-LDL诱导效果的两倍。
     2.Tim-3对单核/巨噬细胞功能的调控作用
     外周血中的单核细胞释放一氧化氮(nitric oxide, NO)参与血管舒张和重构等,在动脉粥样硬化中起到积极的保护作用。但斑块中单核细胞来源的巨噬细胞吞噬斑块中的脂质成为荷脂细胞后,释放大量促炎因子TNF-α、IL-1和IL-6等介导斑块局部的炎症反应,促进斑块形成和破裂。为了研究Tim-3对单核/巨噬细胞功能的调节作用,本研究利用Tim-3表达质粒pc-DN A3-mouse-Tim-3,脂质体瞬式转染RAW264.7细胞,构建了Tim-3过表达细胞模型;同时利用Tim-3阻断型抗体预处理单核/巨噬细胞,阻断Tim-3通路,从正反两方面研究Tim-3对LPS/ox-LDL介导的单核/巨噬细胞分泌细胞因子分泌功能和NO功能的影响。
     2.1 Tim-3促进单核/巨噬细胞分泌TNF-α, IL-1β和IL-6等促炎因子
     巨噬细胞吞噬ox-LDL后活化并分泌各种促炎因子是AS发生的重要机制,因此,我们首先研究Tim-3对单核/巨噬细胞分泌TNF-α, IL-1β和IL-6的影响。ELISA和RT-PCR结果显示,阻断Tim-3明显抑制LPS或ox-LDL诱导的RAW264.7中TNF-α的产生,而Tim-3过表达则促进了TNF-a产生。实时定量RT-PCR结果显示Tim-3对RAW264.7细胞分泌白细胞介素-1β(interleukin-1β,IL-1β)和IL-6有相似的调控作用。
     为进一步研究Tim-3对AS发生中单核/巨噬细胞分泌炎性细胞因子的调控,本研究收集了4例AS患者外周血,磁珠分选AS患者外周血CD14+单核细胞,用Tim-3融合蛋白体外阻断Tim-3的表达后给予LPS或ox-LDL刺激,收集上清ELISA检测了TNF-α水平。结果显示,同细胞系结果一致,Tim-3阻断后LPS或ox-LDL诱导的单核细胞TNF-α的分泌呈现降低趋势。
     以上结果显示,Tim-3可以促进LPS/ox-LDL介导的单核/巨噬细胞分泌炎性细胞因子能力。
     2.2Tim-3抑制巨噬细胞NO分泌功能
     外周血单核/巨噬细胞受到各种刺激,合成诱生性一氧化氮合成酶(inducible nitric oxide synase, iNOS),分泌NO,参与血管舒张和重塑,是动脉粥样硬化的有效保护因子。本研究利用Griess法检测29例AS患者和16例健康志愿者血清NO水平。结果显示,AS患者血清NO与正常对照没有统计学差异,但是AS患者血清NO水平离散系数是健康志愿者的两倍,提示动脉粥样硬化患者体内NO水平可能处于不平衡状态。进一步分析发现单核细胞Tim-3表达水平同血清NO水平负相关。于是我们在RAW264.7细胞中阻断或过表达Tim-3后检测上清中NO的水平,同时RT-PCR检测细胞iNOS mRNA水平。结果显示,Tim-3过表达明显抑制RAW264.7中iNOS mRNA表达及NO分泌;而阻断Tim-3可以有效逆转上述结果。
     为了验证上述实验结果,收集AS患者外周血,磁珠分选获得CD14+单核细胞,用Tim-3融合蛋白体外阻断Tim-3的表达后,收集上清检测NO的水平。结果显示,同细胞系结果一致,Tim-3阻断后LPS或ox-LDL诱导的单核细胞NO的分泌呈现升高趋势。
     上述结果提示,Tim-3的确能够有效抑制LPS/ox-LDL诱导的单核/巨噬细胞NO的分泌。
     3.Tim-3调控单核/巨噬细胞的信号通路
     为了研究Tim-3调控单核/巨噬细胞功能的分子机制,本研究利用阻断性抗体阻断Tim-3信号后,western blot检测LPS刺激的RAW264.7细胞中NF-κB(nuclear factor-kappa B)通路和MAPK (Mitogen-activated protein kinase)通路中的关键分子。3.1 Tim-3阻断抑制NF-κB通路的活化
     LPS刺激经Tim-3阻断性抗体预处理的RAW264.7细胞后,分别在0、15、30min收集细胞,Western blot检测I-κB/NF-κB通路信号分子表达。结果显示LPS刺激15min和30min时,Tim-3阻断组NF-κB p65磷酸化较同型对照组明显减少,而LPS刺激15min时可以检测到I-κB的增加。可见Tim-3信号的阻断抑制了I-κB/NF-κB通路的活化。
     3.2Tim-3阻断促进MAPK通路的活化
     Tim-3阻断型抗体预处理后LPS刺激RAW264.7细胞,于相应时间点收集细胞,Western blot检测MAPK通路关键信号分子表达。结果显示:在5min、15min和30min时间点,Tim-3阻断组(aT3:anti-Tim-3)磷酸化的P38和磷酸化的c-JunN-terminal kinase (JNK)较同型对照组(IgG)增强,尤以磷酸化的P38更为显著,而磷酸化的ERK(extracellular regulatedprotein kinases))没有明显变化,可见Tim-3信号的阻断抑制了JNK通路和P38通路的活化。
     综合上述结果,当单核/巨噬细胞受到炎症介质或动脉粥样硬化致病因素刺激活化后Tim-3表达升高,上调的Tim-3能够促进单核/巨噬细胞促炎因子(如TNF-α、IL-1β和IL-6)的分泌而抑制保护性因子NO的分泌,因此初步推测,AS患者单核/巨噬细胞Tim-3表达的上调可能促进动脉粥样硬化的发生发展。
     第三部分Tim-3对NK细胞的调控及其在动脉粥样硬化中作用
     动物实验及临床检测证明NK细胞存在于斑块形成的各个时期,提示NK细胞在AS发生中的作用。多篇文献报道在AS患者外周血中NK细胞的活性和数量显著下降,然而其机制尚未阐明。已有研究发现Tim-3与其配体结合可以介导Thl细胞凋亡,抑制Th1应答,同时文献证实,Tim-3组成性高表达于NK细胞,但Tim-3对NK功能的影响迄今尚未见报道。本课题第一部分临床研究发现,AS患者外周血NK细胞Tim-3表达显著升高。为了研究Tim-3对NK细胞的调控作用,本部分利用人NK92细胞系和纯化的人外周血NK细胞,体外研究Tim-3过表达或Tim-3阻断对NK细胞活性和数量的影响。
     1.Tim-3抑制NK细胞活性
     冠心病患病危险度与病原感染相关,而且存在多重感染是冠心病患者发生心肌梗死的独立危险因素。NK细胞是人体第一道防线,在对病原体,尤其是病毒的防御中起到重要作用。NK主要通过细胞毒作用和分泌细胞因子参与免疫反应。同时多篇文献报道动脉粥样硬化中NK细胞介导的杀伤导致血管细胞损伤,可能促进了斑块的形成。因此NK细胞的杀伤功能对动脉粥样硬化起到多重影响。本研究用Tim-3融合蛋白阻断NK92细胞Tim-3信号通路后,以肝癌细胞系HepG2和乙肝病毒感染的肝癌细胞系HepG2.2.15为靶细胞,分别按效靶比1:1,5:1,25:1共孵育,4小时后CCK-8检测杀伤效率,研究Tim-3对NK杀伤功能的调控作用。结果显示在效靶比5:1和25:1组,Tim-3阻断后显著上调NK细胞对靶细胞的杀伤活性,同时ELISA检测显示Tim-3阻断后NK92细胞干扰素-γ(interferon-γ,IFN-γ)分泌增加。说明NK细胞上表达上调的Tim-3可能抑制其杀伤活性和细胞因子的分泌。
     2.Tim-3对NK细胞数量的调节
     2.1 AS患者NK细胞表达的Tim-3与外周循环NK细胞数量负相关
     流式检测结果证明AS患者外周血中NK细胞数量较健康志愿者显著下降,(p=0.0016),与文献报道一致,并且炎症水平较高的UAP患者NK细胞Tim-3表达水平较SAP患者有降低趋势(p=0.0580)。相关性分析发现在AS患者NK细胞的数量同该细胞Tim-3的表达水平负相关(r=-0.6424,p<0.0001),提示Tim-3可能是动脉粥样硬化患者外周血NK细胞缺失的原因。AS患者NK细胞数量减少可能是NK增殖功能抑制或凋亡敏感度增加所致。
     2.2 Tim-3抑制NK细胞增殖
     本研究首先利用过表达实验研究Tim-3对NK92细胞增殖的影响。Tim-3表达质粒pcDN A3-human-Tim-3及其对照质粒pcDNA3转染NK92细胞48小时后,苔盼蓝染色法显示两组细胞活细胞比率没有显著差异(p=0.7310),但Tim-3过表达组细胞数较对照组降低了约30%(p=0.0002),进一步细胞周期分析结果显示过表达组细胞G1期细胞比例显著升高,说明Tim-3过表达引起细胞G1期阻滞。上述结果提示,Tim-3在体外可以有效抑制NK92细胞的增殖。
     2.3 Tim-3促进多种因素诱导的NK细胞凋亡
     AS患者外周血中的多种因素,如氧化应激和多种细胞因子影响NK细胞的存活。文献报道NK细胞对氧化的脂质,如ox-LDL诱导的凋亡非常敏感。本研究利用Tim-3融合蛋白阻断NK92细胞Tim-3信号通路后,流式检测ox-LDL诱导的凋亡。结果显示Tim-3阻断能够有效减少ox-LDL诱导的NK92细胞的凋亡。(p=0.0078)
     本研究第一部分临床研究证实AS患者血清TNF-α显著升高,且血清TNF-α水平同NK细胞Tim-3表达水平正相关。进一步的分析发现血清TNF-α水平同NK细胞数量负相关(pearson r=-0.3383,p=0.0230)已有研究证实,TNF-α在NK细胞凋亡中发挥着重要的作用。为研究Tim-3是否参与TNF-α介导的NK细胞凋亡,本研究利用Tim-3融合蛋白阻断NK92细胞Tim-3信号通路后,流式检测TNF-α诱导的凋亡。结果显示Tim-3阻断显著延缓了细胞的死亡(p<0.0001)。用磁珠分选纯化的新鲜外周血NK细胞重复上述实验,结果显示Tim-3阻断能够减少TNF-α诱导的AS患者NK细胞的凋亡(p=0.0165),但对健康志愿者的NK细胞没有明显影响(p=0.5958)。提示,Tim-3可能通过影响检测TNF-α介导的NK凋亡而调控动脉粥样硬化病人体内NK数目。
     2.4 AS患者外周血PBMC中galectin-9的表达同NK细胞的数量和NK细胞上Tim-3的表达都没有相关性
     Tim-3同其配体glalectin-9的结合能够诱导Th1细胞的凋亡,为了研究galectin-9在Tim-3对NK细胞凋亡的调节中是否发挥作用,本研究收集21例AS患者和22例健康志愿者外周血PBMC, RT-PCR检测galectin-9 mRNA的表达。结果显示galectin-9在AS患者PBMC中的表达同健康志愿者没有统计学差异(p=0.7339)。进一步的分析显示PBMC中galectin-9的表达同NK细胞的数量(p=0.0746)和NK细胞上Tim-3的表达(p=0.2591)都没有相关性。
     综合上述结果,体外研究证实Tim-3能够上调NK细胞杀伤活性,并通过抑制NK细胞增殖和促进NK细胞凋亡两个途径导致NK细胞数量的减少,这可能是AS患者外周循环中NK细胞活性降低和数量减少的重要机制。但是NK细胞在动脉粥样硬化中的作用目前还不明确,多篇文献认为NK细胞对病原体感染的清除对动脉粥样硬化起到保护性作用,但也有研究报道NK细胞介导的杀伤导致血管细胞损伤,同时NK细胞在不同的动物模型中对动脉粥样硬化的影响结论不同,因此NK细胞在动脉粥样硬化中的作用尚需进一步研究。
     第四部分Tim-3对ApoE-/-小鼠斑块形成影响的体内研究
     临床标本检测结果显示Tim-3在AS患者单核细胞和NK细胞上表达上调,体外细胞功能研究证实Tim-3能够促进单核/巨噬细胞介导的炎症反应并抑制其NO的分泌,同时Tim-3对NK细胞也具有重要的调节作用。为了验证Tim-3表达上调及其对细胞功能的调节在体内对动脉粥样硬化发生发展的影响,我们利用ApoE-/-小鼠,抑制其体内Tim-3的表达后,观察了主动脉斑块的形成情况。
     1. lentivirus-shRNA-Tim-3有效抑制Tim-3基因的表达
     我们首先在体外用lentivirus-shRNA-Tim-3及其对照病毒lentivirus-shRNA-Tim-3分别感染RAW264.7细胞,实时定量结果显示lentivirus-shRNA-Tim-3感染组RAW264.7细胞Tim-3表达水平较对照病毒感染细胞下调约70%(p<0.0001)。Western Blot检测结果显示lentivirus-shRNA-Tim-3病毒感染能够显著抑制RAW264.7细胞Tim-3蛋白水平的表达。然后我们进一步检测了病毒在体内的抑制效果。我们选取了8-10周龄,体重在18~22g的雄性ApoE-/-小鼠,高脂饲养两周后将lentivirus-shRNA-Tim-3及其对照病毒lentivirus-shRNA-Tim-3分别尾静脉注射ApoE-/-小鼠。高脂饲养8周后处死小鼠,取材检测分析。RT-PCR结果显示尾静脉注射lentivirus-shRNA-Tim-3病毒的ApoE-/-小鼠各脏器包括心脏、脾脏和肝脏内Tim-3表达较注射对照病毒的小鼠均显著抑制。
     2.Tim-3基因沉默显著减少动脉粥样硬化斑块形成
     上述小鼠在注射慢病毒后0周、4周和8周称重,并在处死前取血清。小鼠体重数据显示各时间点两组小鼠体重无统计学差异,同时血清学检测显示两组小鼠TG也无统计学差异。分离主动脉,油红O染色显示lentivirus-shRNA-Tim-3组小鼠斑块形成较对照病毒组小鼠显著减少。上述结果证实,Tim-3基因沉默在不明显影响小鼠生理状态的情况下能显著减少动脉粥样硬化病变,提示Tim-3作为动脉粥样硬化治疗靶点的重要价值。
     综上所述,本研究首次证实Tim-3在AS患者外周血单核/巨噬细胞和NK细胞上表达上调,并通过基因转染和抗体阻断技术,进一步研究了Tim-3对单核/巨噬细胞和NK细胞的调控作用,发现,Tim-3不仅促进单核/巨噬细胞释放促炎因子、抑制保护性NO产生,并且参与AS患者体内NK细胞丢失,体内实验证实,抑制Tim-3表达,可以显著减少E-/-小鼠体内斑块形成。这些研究结果为了解动脉粥样硬化发病机制以及阐明Tim-3在固有免疫中的作用奠定了良好的基础,为动脉粥样硬化的治疗提供了良好的靶点。
Atherosclerosis with its clinical manifestations such as coronary artery disease (CAD), is an underlying cause of myocardial infarction (MI), stroke, and other cardiovascular diseases and has become the leading cause of death worldwide. Emerging evidences support the concept that atherosclerosis is a chronic inflammatory disease, in which innate and adaptive immunity operate together to influence lesion progress. Lymphocytes and monocytes are well known major immune cells responsible for atherosclerosis development. Besides these major cells, there are also many other immune cells, such as dentrtic cells (DCs), Natural killer (NK) cells and mast cells, which are becoming increasingly important in understanding the complexity of this disease process. However, sufficient knowledge to identify the molecules involved in atherosclerosis and develop targeted immunomodulatory strategies has not yet been obtained.
     T cell immunoglobulin-and mucin-domain-containing molecule-3 (Tim-3), originally identified as a Th1-specific cell surface molecule, has received much attention as negative regulator of Th1 mediated immune response. Engagement with its ligand galectin-9, Tim-3 induces Th1 cells apoptosis and regulates Th1/Th17 cytokine profiles which involve in various inflammatory diseases. Increased body of data have shown that Tim-3 also express abundantly on innate immune cells such as NK cells, macrophages and DCs. However, the effects of Tim-3 on innate immunity remain controversial. The precise roles and exact mechanisms of Tim-3 on innate immunity needs further study. Concerning the critical roles of Tim-3 on T cells and macrophage, the two major cells in atherogenesis, it is reasonable to suppose that Tim-3 may involve in atherosclerosis.
     In this study, we showed evidence that Tim-3 is upregulated on monocytes and NK cells in AS patients, then studied its roles in the regulation of monocytes/macrophages and NK cells, and verified the effect of Tim-3 on plaque formation in ApoE knockout (apolipoprotein E gene knockout, ApoE-/-) mice. Our work thus provides new insights into mechanism of innate immune regulation by Tim-3 in atherogenesis and also justified the possibility that Tim-3 could serve as a potential target for drug design.
     PART I The Expression of Tim-3 in Atherosclerosis
     Tim-3 expressed on both adaptive and innate immune cells which were involved in atherosclerosis. In order to evaluate the involvement of Tim-3 in atherogenesis, we first detected the expression of Tim-3 in AS patients and ApoE-/- mice.
     1. Tim-3 expression is upregulated in organs and aorta plaques from ApoE-/-mouse
     We next examined Tim-3 expression in organs and plaques from 14-weeks-old ApoE-/- mice and C57BL/6 mice, which were fed with high diet for 6 weeks. RT-PCR showed higher expression of Tim-3 mRNA in spleens, which contain abundant immune cells. Augment expression was detected in organs of ApoE-/- mice, including heart, liver, spleen and aorta, compared to C57 mice.
     Tim-3 positive staining was detected in aorta plaques of early stage by immunohistochemistry. It is reported that plaque of early stage purely contains macrophages and T cells. Our results showed that the cells in plaque of early stage were almost all positively stained, suggesting immune cells in plaques expressed Tim-3.
     2. Tim-3 expression is upregulated on monocytes and NK cells from AS patients and correlated with many etiological and aggravating elements of atherogenesis
     Blood samples from 97 AS patients, including 24 stable angina pectoris (SAP) patients and 73 unstable angina pectoris patients, which are angiographically documented atherosclerosis, and 51 healthy subjects were collected. There were 24 myocardial infarction patients in the UAP group. Flow cytometry analysis showed that Tim-3 expression was high on CD14+ monocytes and CD16/56+ NK cells, but low on both CD4+ and CD8+ T cells in human PBMCs. Further analysis showed significantly higher expression of Tim-3 on monocytes or NK cells from atherosclerotic patients than that of healthy controls. (Monocytes, p<0.0001; NK cells,p=0.0005) No significant differences of Tim-3 expression were observed on either CD4+ or CD8+ T cells between the two groups.
     Atherosclerosis is a multifactor, highly complex disease, in which many etiological and aggravating elements operate together to influence lesion progress. Analysis showed Tim-3 expression on monocytes was correlated well with triglyceride (TG,p=0.0320) and systolic pressure (p=0.0016), while Tim-3 expression on NK cells was positively correlated with TG (p=0.0121) and cholesterol (Cho,p=0.0220)
     2. The correlation of Tim-3 with inflammation in atherosclerosis
     Enzyme-linked immunosorbent assay (ELISA) detection showed serum level of C-reactive protein (CRP) and tumor necrosis factor (TNF)-α, the two inflammatory markers, were much higher in AS patients, compared to healthy subjects. (CRP, p= 0.0237; TNF-a, p=0.0235) And Tim-3 is positively correlated with both of them. Further more, Tim-3 expression is higher in patients with more severe inflammation. These results confirmed that Tim-3 positively correlated with inflammatory severity in AS patients.
     All above results indicated that Tim-3 is involved in atherogenesis through regulating monocytes/macrophages and NK cells.
     PART II The Regulation of Tim-3 on Monocyts/Macrophages in Atherosclerosis
     Monocytes/macrophages is one of the most important effector cells in atherogenesis. Recruitment of monocytes from peripheral blood to the intima of the vessel wall is a primordial event in atherogenesis. The results in Part I showed Tim-3 expression was upregulated on monocytes from AS patients and correlated with not only etiological and aggravating elements but also inflammatory severity, strongly supporting the idea that Tim-3 is involved in atherosclerosis. Constitutive expression of Tim-3 was already found on monocytes/macrophages, but the influence of Tim-3 on monocytes/macrophage is still not clear. To reveal the role of Tim-3 on monocytes/macrophages functions, we carried on a series of assay in vitro using the mouse monocytes/macrophages cell line RAW264.7 and purifed peripheral blood monocytes from atherosclerosis patients.
     1. LPS/ox-LDL induces augment expression of Tim-3 in mouse monocytes/macrophages cell line RAW264.7
     Lipopolysaccharide (LPS) is recognized as a strong inflammatory inducer, and oxidized low density lipoprotein (ox-LDL) is a etiological and aggravating element of atherosclerosis. Immunocytochemical staining and real-time PCR both showed upregulation of Tim-3 expression on RAW264.7 induced by either LPS or ox-LDL. LPS treatment induced higher expression of Tim-3, approximately twice as much as ox-LDL.
     2. The regulation of Tim-3 on cell functions in RAW264.7 cells
     Peripheral monocytes secrets nitric oxide (NO), a critically important protective signaling molecule of atherosclerosis which clearly has a critical role in the maintenance and repair of the vasculature. After migrating into the vessel wall, monocyte-derived macrophages are turned into fat-loaded macrophages by taking up modified, oxidized or acetylated LDL, residing in the vessel wall and furthering the local inflammatory response by secretion of proinflammatory cytokines, such as TNF-α, interleukin (IL)-1βand IL-6. To further demonstrate the view that whether Tim-3 regulates NO production and proinflammation cytokines secretion in monocytes/macrophages, anti-mouse Tim-3 antibody/Tim-3-Fc (blocking/neutralizing) incubation or pcDNA3-Tim-3 plasmid DNA transfection were introduced in cultured RAW264.7 cells or purified peripheral monocytes before stimulation with LPS or ox-LDL. Supernant were collected for ELISA and Griess assays and cells were used for RNA extraction and RT-PCR analysis.
     2.1 Tim-3 promotes secretion of proinflammatory cytokines in monocytes/macrophages
     ELISA and RT-PCR showed that compared to isotype controls, pretreatment of blocking anti-Tim-3 led to decrease of TNF-a production in RAW264.7 cells with or without LPS or ox-LDL treatment. Consistently, a increase was detected in pcDNA3-Tim-3-transfected RAW264.7 cells. Real-time PCR showed the similar effect of Tim-3 on production of IL-1βand IL-6.
     To further confirm the results in human cells, monocytes were freshly purified from PBMCs of atherosclerosis patients by positive selection using CD14+ microbeads. Cells were blocked using human Tim-3-Fc fusion proteins and then stimulated with LPS or ox-LDL. ELISA. Results showed that Tim-3 blocking decreased TNF-αsecretion, consisting with the results in RAW264.7 cells.
     These results indicate that induced by LPS or ox-LDL, Tim-3 promotes monocytes/macrophages mediated inflammation.
     2.2 Tim-3 inhibits NO secretion in monocytes/macrophages
     Results of colorimetric assay using Griess reagent showed plasma NO levels had no significant differences between 29 AS patients and 16 healthy subject, but NO level in AS patients had increased coefficient of variance (AS vs NOR,1.41 vs 0.74), indicating an imbalance of NO in AS patients. Further more, NO level in AS patients was positively correlated with Tim-3 expression on monocytes. An increase in NO production was detected in anti-Tim-3-treated RAW264.7 cells induced by either LPS or ox-LDL, compared to controls. Consistently, a decrease was detected in pcDNA3-Tim-3-transfected RAW264.7 cells. When induced nitric oxide synthase (iNOS) was analyzed by RT-PCR, similar results were got.
     To further confirm the results on human cells, monocytes were freshly purified from PBMCs of atherosclerosis patients by positive selection using CD14+ microbeads. Cells were blocked using human Tim-3-Fc fusion proteins and then stimulated with LPS or ox-LDL. The supernatant were collected for NO detection. Results showed that Tim-3 blocking increased NO secretion, consisting with the results in RAW264.7 cells.
     These results indicate that induced by LPS or ox-LDL, Tim-3 inhibits NO secretion in monocytes/macrophages.
     3. The signaling pathway in Tim-3-mediated monocytes/macrophages regulation
     To study the signaling pathways in Tim-3-mediated monocytes/macrophages regulation, Tim-3 blocking antibody pretreated RAW264.7 were stimulated with LPS and western blot was used to detect expression of critical molecules in I-κB/NF-κB pathway and MAPK(Mitogen-activated protein kinase) pathway, the two classical pathways involved in cytokine and NO secretion.
     3.1 Tim-3 blockade inhibits I-κB/NF-κB pathway.
     Tim-3 blockade RAW264.7 cell were stimulated with LPS, and cells were collected at indicated time points. Western Blot showed enhanced phosphorylation of NF-κB p65 at 15min and 30min time points, and degradation of I-κB at 15min time piont in Tim-3 blockade group, compared to the control group, suggesting Tim-3 blockade inhibited I-κB/NF-κB pathway.
     3.2 Tim-3 blockade inhibits MAPK pathway.
     Tim-3 blockade RAW264.7 cell were stimulated with LPS, and cells were collected at indicated time points. Western Blot showed enhanced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular regulatedprotein kinase (ERK) at 5min,15min and 30min time points in Tim-3 blockade group, compared to the control group, suggesting Tim-3 blockade inhibited MAPK pathway.
     Taken together, Tim-3 expression on monocytes were upregulated by etiological factor of atherosclerosis or mediators of inflammation. The upregulated Tim-3 in turn promotes the production of proinflammatory cytokines and inhibits NO secretion of monocytes. Thus, the increased Tim-3 expression on monocytes from AS patients might promotes atherogenesis.
     PARTⅢThe Regulation of Tim-3 on NK Cells in Atherosclerosis
     Natural killer cells have been found in every stages of plaques development, and has been shown to be reduced with a concomitant loss in function in CAD. However, the mechanisms remain unclear. It is reported that Tim-3 induced Thl cell apoptosis by binding with its ligand galectin-9, indicating the mechanism of Tim-3 in cell loss. Since NK cells were recently found to be one of the major cellular sources of Tim-3, we here investigated the expression of Tim-3 on NK cells and assessed its possible roles in NK cells in AS.
     1. Tim-3 inhibits NK cell activity
     Pathogen infection is related to the risk of AS, and has become the independent risk factor of myocardial infarction. As the first line of the body, NK cells play important roles in defense against pathogens, especially virus, and display their functions by mediating cytotoxicity as well as augmenting immune responses as a result of cytokines production. However, many studies reported NK mediated cytotoxicity damaged vessel cells, and promotes atherogenesis. Thus, the effects of NK mediated cytotoxicity on atherogenesis are multiple. In order to analyze the role of Tim-3 on NK cytotoxicity, Tim-3-Fc fusion proteins were involved in cytotoxic assay in which NK92 cells as effectors and hepatic cell line HepG2 or hepatitis B virus infected HepG2.2.15 as targets. Cell Counting Kit-8 (CCK-8) assay showed that pre-incubation with Tim-3-Fc fusion proteins resulted in an increase in NK92 cytotoxicity and ELISA showed augment production of interferon(IFN)-y, suggesting that Tim-3 could suppress NK-cell functions.
     2. The regulation of Tim-3 on NK cell loss
     2.1 Tim-3 expression is negatively correlated with peripheral NK cell quantity
     Consisting to previous reports, our flow cytometry analysis showed reduced NK cell number in patients with AS compared with healthy controls, (p=0.0016) and significant reverse correlation between Tim-3 expression with NK cell number was found in all AS patients (r=-0.6424,p<0.0001).
     2.2 Tim-3 inhibits NK cell proliferation
     To verify the correlation between NK cell quantity and Tim-3 expression, we first detected the effect of Tim-3 on NK cell proliferation. We preformed Tim-3 overexpression in cultured NK92 cells by transfecting pcDNA3-human-Tim-3. Results showed Tim-3 overexpression decreased NK92 cell number significantly (p=0.0002), while the percentage of viable cells had no difference between the two group(p=0.7310). Cell cycle analysis revealed the accumulation in G1 phase. These results demonstrated that Tim-3 inhibited NK cells proliferation in vitro.
     2.3 Tim-3 promotes NK apoptosis
     There are many factors influencing the survival of NK cells in AS, among which oxidative stress is particular important. Oxidation of circulating lipids is an important source of oxidative stress. Previous study reported that the susceptibility of NK cells to ox-LDL contribute to the reduced NK cell activity in AS. To verify whether Tim-3 is involved in ox-LDL induced NK cell loss in AS, we blocked Tim-3 pathway with human Tim-3-Fc in NK92 cells treated with ox-LDL. Results showed Tim-3 blockade lead to significant inhibition of ox-LDL-mediated cell apoptosis, (p=0.0078) suggesting Tim-3 might participate in oxidative stress-mediated NK cell loss in AS.
     Besides ox-LDL, TNF-αis one of cytokines produced by NK cells which plays important role in induction of NK cell apoptosis. Consistent with previous report, our ELISA results showed increased serum TNF-αin patients with AS. Further analysis showed serum TNF-αnegatively correlated with peripheral NK cell percentage (pearson r=-0.3383,p=0.0230). Blocking Tim-3 with human Tim-3-Fc fusion proteins effectively delayed TNF-αinduced NK92 cell death (p<0.0001). Peripheral NK cells from fresh blood was isolated, and used for the same assay. Results showed Tim-3 blockade decreased TNF-a induced apoptosis of NK cell from AS patients(p=0.0165), but not from healthy subjects(p=0.5958).
     2.4 Galectin-9 expression of PBMC from AS patients has no correlation with either NK cell quantity or Tim-3 expression on NK cell.
     PBMCs were isolated from 21 AS patients and 22 healthy subjects. PT-PCR results showed galectin-9 expression had no significant differences between AS patients and healthy subjects. Further analysis showed no correlation with either NK cell quantity or Tim-3 expression on NK cell.
     Taken together, our data indicated Tim-3 might involve in atherogenesis by inhibiting cytotoxic activity and decreasing cell number through regulating proliferation and apoptosis in NK cells. However, the exact role of NK cells in atherogenesis is still controversial. The studies in different animal models led to different conclusions about depletion of NK cells activity and plaque formation. Thus what's the role NK cell played in atherosclerosis needs further study.
     PARTⅣEffect of Tim-3 on Plaque Formation in ApoE-/- mice
     To verify the effect of Tim-3 on plaque formation in vivo, we inhibited Tim-3 expression in ApoE-/- mice and observed the plaque formation in the aorta.
     1. lentivirus-shRNA-Tim-3 effectively knockdown Tim-3 expression
     RAW264.7 cells were infected with lentivirus-shRNA-Tim-3, lentivirus-shRNA-NS as control. RT-PCR and western blot showed that Tim-3 expression in lentivirus-shRNA-Tim-3 infected cells was decrease approximately 70%, compared to control cells. We next proved the effect in vivo.8-10 weeks old, 18-22g male ApoE-/- mice were fed with high diet for two weeks before injected with lentivirus-shRNA-Tim-3 or lentivirus-shRNA-NS through tail vein. After high fat diet for two months, mice were sacrificed and dissected. RT-PCR showed Tim-3 expression in organs, including heart, spleen and liver, from the ApoE-/- mice injected with lentivirus-shRNA-Tim-3 was much lower than that of control mice.
     2. Tim-3 gene knockdown decreased plaque formation
     These above mice were weighted up at different time points and serum was acquired before sacrificed. The weight and serum TG in the two groups had no statistical difference. We further analyzed aorta plaque formation. Aortas were obtained and stained with Oil red O. Significant decrease of lesion was detected in aorta from lentivirus-shRNA-Tim-3 mice, compared to lentivirus-shRNA-NS mice. These results demonstrated that Tim-3 alleviated atherogenesis while didn't influence body weight and serum lipid level.
     In summary, this study firstly revealed Tim-3 was upregulated in monocytes and NK cells in AS patients. The augment expression of Tim-3 is positively correlated with inflammation severity in dieases. Blocking assay and overexpression assay showed that Tim-3 promotes proinflamatory cytokines production and inhibits NO production in monocytes/macrophages which are benefit to plague formation. Tim-3 expressed on NK cells suppress NK proliferation and enhance ox-LDL/TNF-a mediated NK apoptosis. Knockdown of Tim-3 in vivo decrease plaque formation in ApoE-/-mice. Our work contributed to the mechanism of immune regulation in atherogenesis and confirmed the idea that Tim-3 could serve as a potential target for drug design for atherosclerosis.
引文
1. Libby P. Inflammation in atherosclerosis[J]. Nature.2002,420(6917):868-74.
    2. Murray CJ, Lopez AD. Global mortality, disability and the contribution of risk factors:Global Burden of Disease Study[J]. Lancet.1997,349(9063):1436-42.
    3. Libby P. Molecular bases of the acute coronary syndromes[J]. Circulation.1995, 91:2844-50.
    4. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes[J]. Circulation.2001,104:365-72.
    5. Badimon L, Vilahur G, Padro T. Lipoproteins, platelets and atherothrombosis[J].Rev Esp Cardiol.2009;62:1161-78.
    6. Ross R. Atherosclerosis-an inflammatory disease[J]. NEngl J Med.1999, 340(2):115-26.
    7. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med.2005,352(16):1685-95.
    8. Libby P. Inflammation in atherosclerosis[J]. Nature.2002,420(6917):868-74.
    9. Tedgui A, Mallat Z. Cytokines in atherosclerosis:pathogenic and regulatory pathways[J]. Physiol Rev.2006,86(2):515-81
    10. Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis[J]. Science.1991, 251(4995):788-91.
    11. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium[J]. Arterioscler Thromb.1993, 13(2):197-204.
    12. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis[J]. J Clin Invest.2001,107(10):1255-62.
    13. Johnson RC, Chapman SM, Dong ZM, Ordovas JM, Mayadas TN, Herz J, Hynes RO, Schaefer EJ, Wagner DD. Absence of P-selectin delays fatty streak formation in mice[J]. J Clin Invest.1997,99(5):1037-43.
    14. Lessner SM, Prado HL, Waller EK, and Galis ZS. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model[J]. Am J Pathol 2002; 160:2145-2155.
    15. Schwartz CJ, Sprague EA, Kelley JL, Valente AJ, and Suenram CA. Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus). An ultrastructural study:implications in atherogenesis[J]. Virchows Arch A Pathol Anat Histopathol.1985,405:175-91.
    16. Rosenfeld ME. Leukocyte recruitment into developing atherosclerotic lesions:the complex interaction between multiple molecules keeps getting more complex[J]. Arterioscler Thromb Vasc Biol.2002,22:361-363.
    17. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis:a report from the Committeeon Vascular Lesions of the Council on Arteriosclerosis, American Heart Association[J]. Circulation.1994,89:2462-78.
    18. Stemme S, Holm J, Hansson GK. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1 [J]. Arterioscler Thromb.1992,12(2):206-211.
    19. Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque[J]. Am JPathol.1989,135(1):169-175.
    20. Hosono M, de Boer OJ, van der Wal AC, van der Loos CM, Teeling P, Piek JJ, Ueda M, Becker AE. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction[J]. Atherosclerosis.2003,168(1):73-80.
    21. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines[J]. Atherosclerosis.1999,145(1):33-43.
    22. Roselaar SE, Kakkanathu PX, Daugherty A.Lymphocyte populations in atherosclerotic lesions of apoE -/- and LDL receptor -/- mice. Decreasing density with disease progression[J]. Arterioscler Thromb Vasc Biol.1996,16(8):1013-8.
    23. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein[J]. Proc Natl Acad Sci U S A.1995,92(9):3893-3897.
    24. Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65[J]. J Clin Invest.1993,91(6):2693-2702.
    25. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H. Human 60-kDa heat-shock protein:a danger signal to the innate immune system[J]. J Immunol.1999, 162(6):3212-9.
    26. Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+T cells reactive to modified low-density lipoprotein aggravates atherosclerosis[J]. Arterioscler Thromb Vasc Biol.2006,26(4):864-870.
    27. Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse[J]. Proc Natl Acad Sci USA.1997,94(9):4642-6.
    28. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins[J]. Nature.1990, 344(6263):254-7.
    29. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis[J]. Am JPathol.1992,140(2):301-16
    30. Huber SA, Sakkinen P, David C, Newell MK, Tracy RP. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia[J]. Circulation.2001,29;103(21):2610-6.
    31. Hansson GK, Libby P. The immune response in atherosclerosis:a double-edged sword[J]. Nat Rev Immunol.2006,6(7):508-519.
    32. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions:a possible pathway for plaque activation[J]. Circulation.2002,105(10):1158-61
    33. Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis[J]. Proc Natl Acad Sci U S A.2004,101(15):5634-5639.
    34. Cheng C, Tempel D, van Haperen R, de Boer HC, Segers D, Huisman M, van Zonneveld AJ, Leenen PJ, van der Steen A, Serruys PW, de Crom R, Krams R. Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines[J].J Clin Invest.2007,117(3):616-26.
    35. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human
    vascular endothelial cells, smooth muscle cells, and macrophages:implications for atherogenesis[J].J Exp Med.2002,195(2):245-57.
    36. Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P. Evidence for increased collagenolysis by interstitial collagenases-1 and-3 in vulnerable human atheromatous plaques[J]. Circulation.1999, 99(19):2503-9
    37. Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, Kilbride M, Breitbart RE, Chun M, Schonbeck U. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma:a novel collagenolytic pathway suggested by transcriptional profiling[J]. Circulation.2001,104(16):1899-904.
    38. Deguchi JO, Aikawa E, Libby P, Vachon JR, Inada M, Krane SM, Whittaker P, Aikawa M. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques[J]. Circulation.2005,112(17)2708-15.
    39. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques[J]. J Clin Invest.1994,94(6):2493-503.
    40. Lijnen HR, Van Hoef B, Lupu F, Moons L, Carmeliet P, Collen D. Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes[J]. Arterioscler Thromb Vasc Biol.1998,18(7):1035-45.
    41. Menshikov M, Elizarova E, Plakida K, Timofeeva A, Khaspekov G, Beabealashvilli R, Bobik A, Tkachuk V. Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis[J]. Biochem J.2002,367(Pt 3):833-9.
    42. Bobryshev YV, Lord RS. Identification of natural killer cells in human atherosclerotic plaque[J]. Atherosclerosis.2005,180(2):423-7.
    43. Jonasson L, Backteman K, Ernerudh J. Loss of natural killer cell activity in patients with coronary artery disease[J]. Atherosclerosis.2005,183(2):316-321.
    44. Li W, Lidebjer C, Yuan XM, Szymanowski A, Backteman K, Ernerudh J, Leanderson P, Nilsson L, Swahn E, Jonasson L. NK cell apoptosis in coronary artery disease Relation to oxidative stress[J]. Atherosclerosis.2008,199(1):65-72.
    45. McIntosh HD. Risk factors for cardiovascular disease and death:a clinical perspective[J]. J Am Coll Cardiol.1989,14(1):24-30.
    46. Schneiderman N, Chesney MA, Krantz DS. Biobehavioral aspects of cardiovascular disease:progress and prospects[J]. Health Psychol.1989, 8(6):649-76.
    47. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice[J]. Circulation.2000,102(24):2919-22.
    48. van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES.Mycophenolate mofetil (MMF):firing at the atherosclerotic plaque from different angles? [J] Cardiovasc Res.2006,69(2):341-7.
    49. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK. Thl-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature.2002;415:536-41.
    50. Kuchroo VK, Umetsu DT, Dekruyff RH, Freeman GJ. The Tim gene family: emerging roles in immunity and disease[J]. Nat Rev Immunol.2003;3:454-62.
    51. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, Manlongat N, Bender O, Kamradt T, Kuchroo VK, Gutierrez-Ramos JC, Coyle AJ, Strom TB. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance[J]. Nat Immunol. 2003;4:1093-101.
    52. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J]. Nat Immunol.2003;4:1102-10.
    53. Geng H, Zhang GM, Li D, Zhang H, Yuan Y, Zhu HG, Xiao H, Han LF, Feng ZH. Soluble form of T cell Ig mucin 3 is an inhibitory molecule in T cell-mediated immune response[J]. J. Immunol.2006;76:1411-1420.
    54. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol.2005;6:1245-1252.
    55. Oikawa, T., Y. Kamimura, H. Akiba, H. Yagita, K. Okumura, H. Takahashi, M. Zeniya, H. Tajiri, and M. Azuma. Preferential involvement of Tim-3 in the regulation of hepatic CD8+ T cells in murine acute graft-versus-host disease[J].J. Immunol.2006;177:4281-4287.
    56. Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA, Hafler DA, Kuchroo VK, Olsson T, Piehl F, Wallstrom E. T cell Ig-and mucin-domain-containing molecule-3 (Tim-3) and Tim-1 molecules are differentially expressed on human Thl and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis[J]. J Immunol.2004; 172:7169-76.
    57. Noguchi E, Nakayama M, Kamioka K, Ichikawa K, Shibasaki M, Arinami T. Insertion/Deletion coding polymorphisms in hHAVcr-1 are not associated with atopic asthma in the Japanese population[J]. Genes Immun.2003;4:170-3.
    58. Koguchi K, Anderson DE, Yang L, O'Connor KC, Kuchroo VK, Hafler DA. Dysregulated T cell expression of TIM3 in multiple sclerosis[J]. J Exp Med. 2006;203:1413-1418.
    59. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science.2007;318:1141-1143.
    60. Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, Cihakova D, Silbergeld EK, Rose NR, Fairweather D. Cutting edge:T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity[J]. J Immunol.2006;176:6411-5.
    61. Zhao J, Lei Z, Liu Y, Li B, Zhang L, Fang H, Song C, Wang X, Zhang GM, Feng ZH, Huang B. Human pregnancy up-regulates Tim-3 in innate immune cells for systemic immunity[J]. J Immunol.2009; 182:6618-24
    62. Haidari M, Javadi E, Sadeghi B, Hajilooi M, Ghanbili J. Evaluation of C-reactive protein, a sensitive marker of inflammation, as a risk factor for stable coronary artery disease[J]. Clin Biochem.2001,34(4):309-15.
    63. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients[J]. J Am Coll Cardiol.2006,47(8 Suppl):C19-31.
    64. Mullenix PS, Steele SR, Martin MJ, Starnes BW, Andersen CA.C-reactive protein level and traditional vascular risk factors in the prediction of carotid stenosis[J]. Arch Surg.2007,142(11):1066-71.
    65. Kinlay S, Egido J. Inflammatory biomarkers in stable atherosclerosis[J]. Am J Cardiol.2006,98(11A):2P-8P.
    66. Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis:a comprehensive review of studies in mice[J]. Cardiovasc Res.2008,79(3):360-76.
    67. Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis[J]. CircRes.2002,23;91(4):281-91.
    68. Gokce M, Erdol C, Orem C, Tekelioglu Y, Durmus I, Kasap H. Inflammation and immune system response against unstable angina and its relationship with coronary angiographic findings[J]. Jpn Heart J.2002;43:593-605
    69. Tousoulis D, Antoniades C, Bosinakou E, Kotsopoulou M, Tsoufis C, Marinou K, Charakida M, Stefanadi E, Vavuranakis M, Latsios G, Stefanadis C. Differences in inflammatory and thrombotic markers between unstable angina and acute myocardial infarction[J].Int J Cardiol.2007; 115:203-7.
    70. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis[J]. Science.1996, 272(5258):60-6.
    71. Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA, Cihakova D, Barrett MA, Rose NR, Fairweather D.Cutting edge:cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease[J]. J Immunol. 2007,178(11):6710-4.
    72. Meyers JH, Sabatos CA, Chakravarti S, Kuchroo VK.The TIM gene family regulates autoimmune and allergic diseases[J]. Trends Mol Med.2005, 11(8):362-9.
    73. Anderson HV, Pasceri V, Willerson JT. C-reactive protein:linking inflammation to cardiovascular complications[J]. Circulation.2001,28;104(9):974-5.
    74. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F; Centers for Disease Control and Prevention; American Heart Association.Markers of inflammation and cardiovascular disease: application to clinical and public health practice:A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association[J]. Circulation.2003,28;107(3):499-511.
    75. Ridker PM, Stampfer MJ, Rifai N.Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease[J]. JAMA.2001,16;285(19):2481-5.
    76. Osiecki H. The role of chronic inflammation in cardiovascular disease and its
    regulation by nutrients[J]. Altern Med Rev.2004;9:32-53.
    77. Egashira K. Clinical importance of endothelial function in arteriosclerosis and ischemic heart disease[J]. Circ J 2002;66:529-533.
    78. Kvasnicka T. NO (nitric oxide) and its significance in regulation of vascular homeostasis[J]. Vnitr Lek 2003;49:291-296.
    79. Vallance P. Nitric oxide[J]. Biologist (London) 2001;48:153-158.
    80. Vallance P, Collier J, MonASa S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man[J]. Lancet 1989;2:997-1000.
    81. Koller A. Signaling pathways of mechanotransduction in arteriolar endothelium and smooth muscle cells in hypertension[J]. Microcirculation 2002;9:277-294.
    82. Annuk M, Zilmer M, Fellstrom B. Endotheliumdependent vasodilation and oxidative stress in chronic renal failure:impact on cardiovascular disease[J]. Kidney Int Suppl 2003;84:S50-S53.
    83. Cooke JP. Does ADMA cause endothelial dysfunction? [J] Arterioscler Thromb Vasc Biol 2000;20:2032-2037
    84. Tabet F, Rye KA. High-density lipoproteins, inflammation and oxidative stress[J]. Clin Sci (Lond).2009,116(2):87-98.
    85. Yaqoob P. Fatty acids as gatekeepers of immune cell regulation[J]. Trends Immunol.2003,24(12):639-45.
    86. Ishigaki Y, Oka Y, Katagiri H. Circulating oxidized LDL:a biomarker and a pathogenic factor[J]. Curr Opin Lipidol.2009,20(5):363-9.
    87. Ida H, Robertson MJ, Voss S, Ritz J, Anderson P. CD94 ligation induces apoptosis in a subset of IL-2-stimulated NK cells[J]. J Immunol.1997, 159(5):2154-60.
    88. Hillyard DZ, Nutt CD, Thomson J, McDonald KJ, Wan RK, Cameron AJ, Mark PB, Jardine AG Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation[J]. Atherosclerosis.2007,191(2):319-25.
    89. Purasiri P, McKechnie A, Heys SD, Eremin O. Modulation in vitro of human natural cytotoxicity, lymphocyte proliferative response to mitogens and cytokine production by essential fatty acids[J]. Immunology.1997,92(2):166-72.
    90. Zeyda M, Staffler G, Horejsi V, Waldhausl W, Stulnig TM. LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids[J]. JBiol Chem.2002,277(32):28418-23.
    91. Shibatomi K, Ida H, Yamasaki S, Nakashima T, Origuchi T, Kawakami A, Migita K, Kawabe Y, Tsujihata M, Anderson P, Eguchi K. A novel role for interleukin-18 in human natural killer cell death:high serum levels and low natural killer cell numbers in patients with systemic autoimmune diseases[J]. Arthritis Rheum.2001, 44(4):884-892.
    92. Ross ME, Caligiuri MA. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response[J]. Blood. 1997,89(3):910-8.
    93. Millonig G, Malcom GT, Wick G. Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study[J]. Atherosclerosis.2002,160(2):441-448.
    94. Greaves DR, Hakkinen T, Lucas AD, Liddiard K, Jones E, Quinn CM, Senaratne J, Green FR, Tyson K, Boyle J, Shanahan C, Weissberg PL, Gordon S, Yla-Hertualla S.Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus-and activation-regulated chemokine, are expressed in human atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol. 2001,21(6):923-9.
    95. Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis[J]. J Clin Invest.2003,111(8): 1118-20.
    96. Wuttge DM, Eriksson P, Sirsjo A, Hansson GK, Stemme S. Expression of interleukin-15 inmouse and human atherosclerotic lesions[J]. Am J Pathol.2001, 159(2):417-23.
    97. Robertson AK, Hansson GK. T Cells in Atherogenesis:For Better or For Worse? [J] Arterioscler. Thromb. Vasc. Biol.2006,26(11);2421-32;
    98. Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells[J]. Annu Rev Immunol.2004,22:405-429.
    99. Johansson S, Berg L, Hall H, Hoglund P. NK cells:elusive players in autoimmunity[J]. Trends Immunol.2005,26(11):613-8
    100.Fasth AE, Bjorkstrom NK, Anthoni M, Malmberg KJ, Malmstrom V. Activating NK-cell receptors co-stimulate CD4(+)CD28(-) T cells in patients with rheumatoid arthritis[J]. Eur J Immunol.2010,40(2):378-87.
    101.Yang D, Wang H, Ni B, He Y, Li J, Tang Y, Fu X, Wang Q, Xu G, Li K, Yang Z, Wu Y. Mutual activation of CD4+ T cells and monocytes mediated by NKG2D-MIC interaction requires IFN-gamma production in systemic lupus
    erythematosus[J]. Mol Immunol.2009,46(7):1432-42.
    102.Zhang AL, Colmenero P, Purath U, Teixeira de Matos C, Hueber W, Klareskog L, Tarner IH, Engleman EG, Soderstrom K. Natural killer cells trigger differentiation of monocytes into dendritic cells[J]. Blood.2007,110(7):2484-93.
    103.Getz GS. Do natural killer cells participate in a killer vascular disease? [J]Arterioscler Thromb Vasc Biol.2002,22(8):1251-3.
    104.Linton MF, Major AS, Fazio S. Proatherogenic role for NK cells revealed[J]. Arterioscler Thromb Vasc Biol.2004,24(6):992-4.
    105.Whitman SC, Rateri DL, Szilvassy SJ, Yokoyama W, Daugherty A. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice[J]. Arterioscler Thromb Vasc Biol.2004,24(6):1049-54.
    106.Ramsamy TA, Rogers L, Hasu M, Siddiqui MM, Huynh T, Tam NL. Natural killer cell deficiency impairs early-stage lesion development in apolipoprotein E null mice[J]. Arterioscler Thromb Vasc Biol.2005,25:E-82.
    107.Schiller NK, Boisvert WA, Curtiss LK. Inflammation in atherosclerosis:lesion formation in LDL receptor-deficient mice with perforin and Lyst(beige) mutations[J]. Arterioscler Thromb Vasc Biol.2002,22(8):1341-6.
    108.Zhu J, Nieto FJ, Home BD, Anderson JL, Muhlestein JB, Epstein SE. Prospective study of pathogen burden and risk of myocardial infarction or death[J]. Circulation.2001,103(1):45-51.
    109.Wang Y, Meng J, Wang X, Liu S, Shu Q, Gao L, Ju Y, Zhang L, Sun W, Ma C.Expression of human TIM-1 and TIM-3 on lymphocytes from systemic lupus erythematosus patients. Scand J Immunol.2008 Jan;67(1):63-70.
    110.Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF, Ostrowski MA. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection[J]. JExp Med.2008, 24;205(12):2763-79.
    111. Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, Liu Y, Zhu F, Zhang L, Sun W, Liang X, Gao L, Ma C. T cell immunoglobulin and mucin-domain-containing molecule-3 (Tim-3) Mediates Natural Killer Cell Suppression in Chronic Hepatitis B[J]. JHepatol.2010,52(3):322-9.
    112.Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P.Blood diffusion and Thl-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells[J]. Blood.2009, 26;113(9):1957-66.
    1. Ross R. Atherosclerosis-an inflammatory disease[J]. N Engl J Med.1999, 340(2):115-26.
    2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease[J]. N Engl J Med.2005,352(16):1685-95.
    3. Libby P. Inflammation in atherosclerosis[J]. Nature.2002,420(6917):868-74.
    4. Tedgui A, Mallat Z. Cytokines in atherosclerosis:pathogenic and regulatory pathways[J]. Physiol Rev.2006,86(2):515-81.
    5. Davies MJ. The pathophysiology of acute coronary syndromes[J]. Heart.2000, 83(3):361-6.
    6. Reiner Z, Tedeschi-Reiner E. [New information on the pathophysiology of atherosclerosis] [J]Lijec Vjesn.2001,123(1-2):26-31.
    7. Willeit J, Kiechl S. Biology of arterial atheroma[J]. Cerebrovasc Dis.2000,10 Suppl 5:1-8.
    8. Libby P. The interface of atherosclerosis and thrombosis:basic mechanisms[J]. Vasc Med.1998,3(3):225-9
    9. Lessner SM, Prado HL, Waller EK, Galis ZS. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model[J]. Am JPathol.2002,160(6):2145-55.
    10. Schwartz CJ, Sprague EA, Kelley JL, Valente AJ, Suenram CA. Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus). An ultrastructural study:implications in atherogenesis[J]. Virchows Arch A Pathol Anat Histopathol.1985,405(2):175-91.
    11. Rosenfeld ME.Leukocyte recruitment into developing atherosclerotic lesions:the complex interaction between multiple molecules keeps getting more complex[J]. Arterioscler Thromb Vasc Biol.2002,22(3):361-3.
    12. Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ. Atherosclerosis:basic mechanisms. Oxidation, inflammation, and genetics[J]. Circulation.1995,91(9):2488-96.
    13. Chisolm GM 3rd, Hazen SL, Fox PL, Cathcart MK.The oxidation of lipoproteins by monocytes-macrophages[J]. Biochemical and biological mechanisms. J Biol Chem.1999,274(37):25959-62.
    14. Steinberg D.Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis[J]. Circulation.1997,95(4):1062-71.
    15. Witztum JL, Steinberg D.Role of oxidized low density lipoprotein in atherogenesis[J]. J Clin Invest.1991,88(6):1785-92.
    16. Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice[J]. Am J Pathol.1996,149(2):359-66.
    17. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice[J]. Circulation.2000,102(24):2919-22.
    18. Davies MJ. Pathophysiology of acute coronary syndromes[J]. Heart.2000, 83(4):361.366.
    19. Hansson GK. Immune mechanisms in atherosclerosis[J]. Arterioscler Thromb Vasc Biol.2001,21(12):1876-90.
    20. Parums DV, Brown DL, Mitchinson MJ. Serum antibodies to oxidized low-density lipoprotein and ceroid in chronic periaortitis[J]. Arch Pathol Lab Med.1990,114(4):383-7.
    21. Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witztum JL. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum[J]. Arterioscler Thromb.1994, 14(4):605-16.
    22. Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis[J]. Arterioscler Thromb Vasc Biol.2001,21(1):108-14.
    23. Nicoletti A, Paulsson G, Caligiuri G, Zhou X, Hansson GK. Induction of neonatal tolerance to oxidized lipoprotein reduces atherosclerosis in ApoE knockout mice[J]. Mol Med.2000,6(4):283-90.
    24. Fredrikson GN, Soderberg I, Lindholm M, Dimayuga P, Chyu KY, Shah PK, Nilsson J.Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol.2003,23(5):879-84.
    25. Kiessling R, Gronberg A, Ivanyi J, Soderstrom K, Ferm M, Kleinau S, Nilsson E, Klareskog L. Role of hsp60 during autoimmune and bacterial inflammation[J]. Immunol Rev.1991,121:91-111.
    26. Wick G, Schett G, Amberger A, Kleindienst R, Xu Q. Is atherosclerosis an immunologically mediated disease? [J] Immunol Today.1995,16(1):27-33.
    27. Berberian PA, Myers W, Tytell M, Challa V, Bond MG. Immunohistochemical localization of heat shock protein-70 in normal-appearing and atherosclerotic specimens of human arteries[J]. Am J Pathol.1990,136(l):71-80.
    28. Frostegard J, Kjellman B, Gidlund M, Andersson B, Jindal S, Kiessling R. Induction of heat shock protein in monocytic cells by oxidized low density lipoprotein[J]. Atherosclerosis.1996,121():93-103.
    29. Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G, Kaufmann SH, Wick G. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65[J]. Arterioscler Thromb.1992, 12(7):789-99.
    30. George J, Shoenfeld Y, Afek A, Gilburd B, Keren P, Shaish A, Kopolovic J, Wick G, Harats D. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65[J]. Arterioscler Thromb Vasc Biol. 1999,19(3):505-10.
    31. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H. Human 60-kDa heat-shock protein:a danger signal to the innate immune system[J]. J Immunol.1999, 162(6):3212-9.
    32. Yang K, Li D, Luo M, Hu Y. Generation of HSP60-specific regulatory T cell and effect on atherosclerosis[J]. Cell Immunol.2006,243(2):90-5.
    33. Ausiello CM, Fedele G, Palazzo R, Spensieri F, Ciervo A, Cassone A.60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper type 1 immune response through IL-12/IL-23 production in monocyte-derived dendritic cells[J]. Microbes Infect.2006,8(3):714-20.
    34. Zhu J, Nieto FJ, Home BD, Anderson JL, Muhlestein JB, Epstein SE. Prospective study of pathogen burden and risk of myocardial infarction or death[J]. Circulation.2001,103(1):45-51.
    35. Kol A, Santini M.Infectious agents and atherosclerosis:current perspectives and unsolved issues[J]. Ital Heart J.2004,5(5):350-7.
    36. Dengler TJ, Raftery MJ, Werle M, Zimmermann R, Schonrich G. Cytomegalovirus infection of vascular cells induces expression of pro-inflammatory adhesion molecules by paracrine action of secreted interleukin-1beta[J]. Transplantation.2000,69(6):1160-8.
    37. Moazed TC, Kuo C, Grayston JT, Campbell LA. Murine models of Chlamydia pneumoniae infection and atherosclerosis[J]. JInfect Dis.1997,175(4):883-90.
    38. Mayr M, Kiechl S, Mendall MA, Willeit J, Wick G, Xu Q. Increased risk of atherosclerosis is confined to CagA-positive Helicobacter pylori strains: prospective results from the Bruneck study[J]. Stroke.2003, (3):610-5.
    39. Pietroiusti A, Diomedi M, Silvestrini M, Cupini LM, Luzzi I, Gomez-Miguel MJ, Bergamaschi A, Magrini A, Carrabs T, Vellini M, Galante A. Cytotoxin-associated gene-A-positive Helicobacter pylori strains are associated with atherosclerotic stroke[J]. Circulation.2002,30;106(5):580-4.
    40. Zhang S, Guo Y, Ma Y, Teng Y.Cytotoxin-associated gene-A-seropositive virulent strains of Helicobacter pylori and atherosclerotic diseases:a systematic review[J]. Chin Med J(Engl).2008,20;121(10):946-51.
    41. George J, Afek A, Gilburd B, Blank M, Levy Y, Aron-Maor A, Levkovitz H, Shaish A, Goldberg I, Kopolovic J, Harats D, Shoenfeld Y. Induction of early atherosclerosis in LDL-receptor-deficient mice immunized with beta2-glycoprotein I[J]. Circulation.1998,15;98(11):1108-15.
    42. Afek A, George J, Shoenfeld Y, Gilburd B, Levy Y, Shaish A, Keren P, Janackovic Z, Goldberg I, Kopolovic J, Harats D. Enhancement of atherosclerosis in beta-2-glycoprotein I-immunized apolipoprotein E-deficient mice[J]. Pathobiology.1999,67(1):19-25.
    43. George J, Harats D, Gilburd B, Afek A, Shaish A, Kopolovic J, Shoenfeld Y. Adoptive transfer of beta(2)-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice[J]. Circulation.2000, 10;102(15):1822-7.
    44. Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK. Expression of class Ⅱ transplantation antigen on vascular smooth muscle cells in human atherosclerosis[J].J Clin Invest.1985,76(1):125-131.
    45. Stemme S, Holm J, Hansson GK. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1[J]. Arterioscler Thromb.1992,12(2):206-211.
    46. Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque[J]. Am JPathol.1989,135(1):169-175.
    47. Hosono M, de Boer OJ, van der Wal AC, van der Loos CM, Teeling P, Piek JJ, Ueda M, Becker AE. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction[J]. Atherosclerosis.2003,168(1):73-80.
    48. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines[J]. Atherosclerosis.1999,145(1):33-43.
    49. Roselaar SE, Kakkanathu PX, Daugherty A.Lymphocyte populations in atherosclerotic lesions of apoE-/-and LDL receptor-/-mice. Decreasing density with disease progression[J]. Arterioscler Thromb Vasc Biol.1996,16(8):1013-8.
    50. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein[J]. Proc Natl Acad Sci U S A.1995,92(9):3893-3897.
    51. Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65[J]. J Clin Invest.1993,91(6):2693-2702.
    52. George J, Afek A, Gilburd B, Shoenfeld Y, Harats D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice[J]. J Am Coll Cardiol. 2001,38(3):900-905.
    53. Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+T cells reactive to modified low-density lipoprotein aggravates atherosclerosis[J]. Arterioscler Thromb Vasc Biol.2006,26(4):864-870.
    54. Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse[J]. Proc Natl Acad Sci USA.1997,94(9):4642-6.
    55. Huber SA, Sakkinen P, David C, Newell MK, Tracy RP. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia[J]. Circulation.2001,29;103(21):2610-6.
    56. Khallou-Laschet J, Caligiuri G, Groyer E, Tupin E, Gaston AT, Poirier B, Kronenberg M, Cohen JL, Klatzmann D, Kaveri SV, Nicoletti A. The proatherogenic role of T cells requires cell division and is dependent on the stage of the disease[J]. Arterioscler Thromb Vasc Biol.2006,26(2):353-8.
    57. Elhage R, Gourdy P, Brouchet L, Jawien J, Fouque MJ, Fievet C, Huc X, Barreira Y, Couloumiers JC, Arnal JF, Bayard F. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice[J]. Am J Pathol.2004,165(6):2013-8.
    58. Ludewig B, Freigang S, Jaggi M, Kurrer MO, Pei YC, Vlk L, Odermatt B, Zinkernagel RM, Hengartner H. Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model[J]. Proc Natl Acad Sci U S A.2000,97(23):12752-57.
    59. Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P.Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol.1997, 17(10):2200-8.
    60. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J].1986. J Immunol.2005,175(1):5-14.
    61. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines[J]. Atherosclerosis.1999,145(1):33-43.
    62. Laurat E, Poirier B, Tupin E, Caligiuri G, Hansson GK, Bariety J, Nicoletti A.In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis
    in apolipoprotein E-knockout mice[J]. Circulation.2001,104(2):197-202.
    63. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A.Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability[J]. Circulation.2001,104(14):1598-603.
    64. Uyemura K, Demer LL, Castle SC, Jullien D, Berliner JA, Gately MK, Warrier RR, Pham N, Fogelman AM, Modlin RL.Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis[J]. J Clin Invest.1996,97(9):2130-8.
    65. Lee TS, Yen HC, Pan CC, Chau LY. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice[J]. Arterioscler Thromb Vasc Biol.1999,19(3):734-42.
    66. Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice[J]. J Clin Invest.1997, 99(11):2752-61.
    67. Whitman SC, Ravisankar P, Elam H, Daugherty A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/- mice[J]. Am J Pathol.2000, 157(6):1819-24.
    68. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U.Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for atherogenesis[J]. J Exp Med.2002,195(2):245-57.
    69. Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E deficient mice[J]. Am JPathol. 2003,163(3):1117-25.
    70. Tenger C, Sundborger A, Jawien J, Zhou X.IL-18 accelerates atherosclerosis accompanied by elevation of IFN-gamma and CXCL16 expression independently of T cells[J]. Arterioscler Thromb Vasc Biol.2005,25(4):791-6.
    71. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma[J]. Circ Res.2002,90(2):E34-8.
    72. Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice[J]. Arterioscler Thromb Vasc Biol.2004,24(11):2137-42.
    73. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M.Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice[J]. Atherosclerosis.2005, 180(1):11-7. Epub 2005 Jan 20.
    74. Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis[J]. Science.1991, 251(4995):788-91.
    75. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium[J]. Arterioscler Thromb.1993, 13(2):197-204.
    76. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis[J]. J Clin Invest.2001,107(10):1255-62.
    77. Johnson RC, Chapman SM, Dong ZM, Ordovas JM, Mayadas TN, Herz J, Hynes RO, Schaefer EJ, Wagner DD. Absence of P-selectin delays fatty streak formation in mice[J].J Clin Invest.1997,99(5):1037-43.
    78. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ.Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice[J]. Mol Cell.1998,2(2):275-81.
    79. Boring L, Gosling J, Cleary M, Charo IF.Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis[J]. Nature. 1998,394(6696):894-7.
    80. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA.A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice[J]. J Clin Invest.1998, 101(2):353-63.
    81. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions[J]. Nature. 1999,398(6729):718-23.
    82. Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis[J]. J Clin Invest.2003, 111(3):333-40.
    83. Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ, Debre P, Tedgui A, Murphy PM, Mallat Z. Decreased atherosclerotic lesion formation in
    CX3CR1/apolipoprotein E double knockout mice[J]. Circulation.2003, 107(7):1009-16.
    84. Cheng C, Tempel D, van Haperen R, de Boer HC, Segers D, Huisman M, van Zonneveld AJ, Leenen PJ, van der Steen A, Serruys PW, de Crom R, Krams R. Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines[J]. J Clin Invest.2007,117(3):616-26.
    85. Amorino GP, Hoover RL.Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production[J]. Am JPathol.1998, 152(1):199-207.
    86. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins[J]. Nature.1990, 344(6263):254-7.
    87. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis[J]. Am JPathol.1992,140(2):301-16
    88. Hansson GK, Libby P. The immune response in atherosclerosis:a double-edged sword[J]. Nat Rev Immunol.2006,6(7):508-519.
    89. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. Expression of toll-like receptors in human atherosclerotic lesions:a possible pathway for plaque activation[J]. Circulation.2002,105(10):1158-61
    90. Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M. Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis[J]. Proc Natl Acad Sci U S A.2004,101(15):5634-5639.
    91. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA. Cutting edge:heat shock protein (HSP) 60 activates the innate immune response:CD 14 is an essential receptor for HSP60 activation of mononuclear cells[J]. J Immunol.2000, 164(1):13-7
    92. Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J, Kaul S, Arditi M. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL[J]. Circulation.2001,104(25):3103-3108.
    93. Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL. Minimally modified LDL binds to CD 14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells[J]. JBiol Chem.2003, 278(3):1561-1568.
    94. Bjorkbacka H, Kunjathoor W, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways[J]. Nat Med.2004,10(4):416-421.
    95. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E[J]. Proc Natl Acad Sci U S A.2004,101 (29):10679-84.
    96. Kawakami A, Osaka M, Aikawa M, Uematsu S, Akira S, Libby P, Shimokado K, Sacks FM, Yoshida M. Toll-like receptor 2 mediates apolipoprotein CⅢ-induced monocyte activation[J]. Circ Res.2008,103(12):140-9.
    97. Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2[J]. J Clin Invest.2005,115(11):3149-56.
    98. Tobias PS, Curtiss LK. TLR2 in murine atherosclerosis[J]. Semin Immunopathol. 2008,30(1):23-7.
    99. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for atherogenesis[J].J Exp Med.2002,195(2):245-57.
    100.ChoudhuryRP, Lee JM, Greaves DR. Mechanisms of disease: Macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis[J]. Nat Clin Pract Cardiovasc Med.2005,2(6):309-315.
    101.Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques:Role of extracellular lipid, macrophage, and smooth muscle cell content[J]. Br Heart J.1993,69(5):377-81.
    102.Amento EP, Ehsani N, Palmer H, Libby P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells[J]. Arterioscler Thromb.1991,11(5):1223-30
    103.Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P. Evidence for increased collagenolysis by interstitial collagenases-1 and-3 in vulnerable human atheromatous plaques[J]. Circulation.1999,
    99(19):2503-9
    104.Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, Kilbride M, Breitbart RE, Chun M, Schonbeck U. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma:a novel collagenolytic pathway suggested by transcriptional profiling[J]. Circulation.2001,104(16):1899-904.
    105.Deguchi JO, Aikawa E, Libby P, Vachon JR, Inada M, Krane SM, Whittaker P, Aikawa M. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques[J]. Circulation.2005,112(17)2708-15.
    106.Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques[J]. J Clin Invest.1994,94(6):2493-503.
    107.Fukumoto Y, Deguchi JO, Libby P, Rabkin-Aikawa E, Sakata Y, Chin MT, Hill CC, Lawler PR, Varo N, Schoen FJ, Krane SM, Aikawa M. Genetically determined resistance to collagenase action augments interstitial collagen accumulation in atherosclerotic plaques[J]. Circulation.2004,110(14):1953-9.
    108.Lijnen HR, Van Hoef B, Lupu F, Moons L, Carmeliet P, Collen D. Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes[J]. Arterioscler Thromb Vasc Biol.1998,18(7):1035-45.
    109.Menshikov M, Elizarova E, Plakida K, Timofeeva A, Khaspekov G, Beabealashvilli R, Bobik A, Tkachuk V. Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis[J]. Biochem J.2002,367(Pt 3):833-9.
    110.Libby P, Theroux P. Pathophysiology of coronary artery disease[J]. Circulation. 2005, 111(25):3481-8.
    111.Davies MJ. Pathophysiology of acute coronary syndromes[J]. Heart.2000, 83(4):361-6
    112.Llodra J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques[J]. Proc Natl Acad Sci USA.2004,101(32):11779-84.
    113.Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells[J]. Annu Rev Immunol.2004,22:405-429.
    114.Millonig G, Malcom GT, Wick G. Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study[J]. Atherosclerosis.2002,160(2):441-448.
    115.Bobryshev YV, Lord RS. Identification of natural killer cells in human atherosclerotic plaque[J]. Atherosclerosis.2005,180(2):423-7.
    116.Greaves DR, Hakkinen T, Lucas AD, Liddiard K, Jones E, Quinn CM, Senaratne J, Green FR, Tyson K, Boyle J, Shanahan C, Weissberg PL, Gordon S, Yla-Hertualla S.Linked chromosome 16q13 chemokines, macrophage-derived chemokine, fractalkine, and thymus-and activation-regulated chemokine, are expressed in human atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol. 2001,21(6):923-9.
    117.Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis[J]. J Clin Invest.2003,111(8): 1118-20.
    118.Wuttge DM, Eriksson P, Sirsjo A, Hansson GK, Stemme S. Expression of interleukin-15 inmouse and human atherosclerotic lesions[J]. Am J Pathol.2001, 159(2):417-23.
    119.Robertson AK, Hansson GK. T Cells in Atherogenesis:For Better or For Worse? [J] Arterioscler. Thromb. Vasc. Biol.2006,26(11);2421-32;
    120. Johansson S, Berg L, Hall H, Hoglund P. NK cells:elusive players in autoimmunity[J]. Trends Immunol.2005,26(11):613-8
    121.Fasth AE, Bjorkstrom NK, Anthoni M, Malmberg KJ, Malmstrom V. Activating NK-cell receptors co-stimulate CD4(+)CD28(-) T cells in patients with rheumatoid arthritis[J]. Eur J Immunol.2010,40(2):378-87.
    122.Yang D, Wang H, Ni B, He Y, Li J, Tang Y, Fu X, Wang Q, Xu G, Li K, Yang Z, Wu Y. Mutual activation of CD4+ T cells and monocytes mediated by NKG2D-MIC interaction requires IFN-gamma production in systemic lupus erythematosus[J]. Mol Immunol.2009,46(7):1432-42.
    123.Zhang AL, Colmenero P, Purath U, Teixeira de Matos C, Hueber W, Klareskog L, Tamer IH, Engleman EG, Soderstrom K. Natural killer cells trigger differentiation of monocytes into dendritic cells[J]. Blood.2007,110(7):2484-93.
    124.Jonasson L, Backteman K, Ernerudh J. Loss of natural killer cell activity in patients with coronary artery disease[J]. Atherosclerosis.2005,183(2):316-321.
    125.Li W, Lidebjer C, Yuan XM, Szymanowski A, Backteman K, Ernerudh J,
    Leanderson P, Nilsson L, Swahn E, Jonasson L. NK cell apoptosis in coronary artery disease Relation to oxidative stress[J]. Atherosclerosis.2008,199(1):65-72.
    126.Tabet F, Rye KA. High-density lipoproteins, inflammation and oxidative stress[J]. Clin Sci (Lond).2009,116(2):87-98.
    127.Yaqoob P. Fatty acids as gatekeepers of immune cell regulation[J]. Trends Immunol.2003,24(12):639-45.
    128.Ishigaki Y, Oka Y, Katagiri H. Circulating oxidized LDL:a biomarker and a pathogenic factor[J]. Curr Opin Lipidol.2009,20(5):363-9.
    129.Ida H, Robertson MJ, Voss S, Ritz J, Anderson P. CD94 ligation induces apoptosis in a subset of IL-2-stimulated NK cells[J]. J Immunol.1997, 159(5):2154-60.
    130.Hillyard DZ, Nutt CD, Thomson J, McDonald KJ, Wan RK, Cameron AJ, Mark PB, Jardine AG Statins inhibit NK cell cytotoxicity by membrane raft depletion rather than inhibition of isoprenylation[J]. Atherosclerosis.2007,191 (2):319-25.
    131.Purasiri P, McKechnie A, Heys SD, Eremin O. Modulation in vitro of human natural cytotoxicity, lymphocyte proliferative response to mitogens and cytokine production by essential fatty acids[J]. Immunology.1997,92(2):166-72.
    132.Zeyda M, Staffler G, Horejsi V, Waldhausl W, Stulnig TM. LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids[J]. J Biol Chem.2002,277(32):28418-23.
    133.Shibatomi K, Ida H, Yamasaki S, Nakashima T, Origuchi T, Kawakami A, Migita K, Kawabe Y, Tsujihata M, Anderson P, Eguchi K. A novel role for interleukin-18 in human natural killer cell death:high serum levels and low natural killer cell numbers in patients with systemic autoimmune diseases[J]. Arthritis Rheum.2001, 44(4):884-892.
    134.Ross ME, Caligiuri MA. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response[J]. Blood. 1997,89(3):910-8.
    135.Whitman SC, Rated DL, Szilvassy SJ, Yokoyama W, Daugherty A. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice[J]. Arterioscler Thromb Vasc Biol.2004,24(6):1049-54.
    136.Ramsamy TA, Rogers L, Hasu M, Siddiqui MM, Huynh T, Tam NL. Natural killer cell deficiency impairs early-stage lesion development in apolipoprotein E null mice[J]. Arterioscler Thromb Vasc Biol. 2005,25:E-82.
    137.Schiller NK, Boisvert WA, Curtiss LK. Inflammation in atherosclerosis:lesion formation in LDL receptor-deficient mice with perforin and Lyst(beige) mutations[J]. Arterioscler Thromb Vasc Biol.2002,22(8):1341-6.
    138.Getz GS. Do natural killer cells participate in a killer vascular disease? [J] Arterioscler Thromb Vasc Biol.2002,22(8):1251-3.
    139.Linton MF, Major AS, Fazio S. Proatherogenic role for NK cells revealed[J]. Arterioscler Thromb Vasc Biol.2004,24(6):992-4.
    140.Afek A, Harats D, Roth A, Keren G, George J.Evidence for the involvement of T cell costimulation through the B-7/CD28 pathway in atherosclerotic plaques from apolipoprotein E knockout mice[J]. Exp Mol Pathol.2004 Jun;76(3):219-23.
    141.van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES. Mycophenolate mofetil (MMF):firing at the atherosclerotic plaque from different angles? [J] Cardiovasc Res.2006,69(2):341-7.
    142.Haidari M, Javadi E, Sadeghi B, Hajilooi M, Ghanbili J. Evaluation of C-reactive protein, a sensitive marker of inflammation, as a risk factor for stable coronary artery disease[J]. Clin Biochem.2001,34(4):309-15.
    143.Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients[J]. J Am Coll Cardiol.2006,47(8 Suppl):C 19-31.
    144.Mullenix PS, Steele SR, Martin MJ, Starnes BW, Andersen CA.C-reactive protein level and traditional vascular risk factors in the prediction of carotid stenosis[J]. Arch Surg.2007,142(11):1066-71.
    145.Yeh ET, Anderson HV, Pasceri V, Willerson JT. C-reactive protein:linking inflammation to cardiovascular complications[J]. Circulation.2001, 28;104(9):974-5.
    146.Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F; Centers for Disease Control and Prevention; American Heart Association.Markers of inflammation and cardiovascular disease: application to clinical and public health practice:A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association[J]. Circulation.2003,28;107(3):499-511.
    147.Ridker PM, Stampfer MJ, Rifai N.Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and
    standard cholesterol screening as predictors of peripheral arterial disease[J]. JAMA.2001,16;285(19):2481-5.
    148.Kinlay S, Egido J. Inflammatory biomarkers in stable atherosclerosis[J]. Am J Cardiol.2006,98(11A):2P-8P.
    149.Kleemann R, Zadelaar S, Kooistra T.Cytokines and atherosclerosis:a comprehensive review of studies in mice[J]. Cardiovasc Res.2008,79(3):360-76.
    150.Hansson GK, Libby P, Schonbeck U, Yan ZQ.Innate and adaptive immunity in the pathogenesis of atherosclerosis[J]. Circ Res.2002,23;91(4):281-91.
    151.Knowlton AA, Srivatsa U. Heat-shock protein 60 and cardiovascular disease:a paradoxical role[J]. Future Cardiol.2008,4(2):151-61.
    152.Zhu J, Quyyumi AA, Rott D, Csako G, Wu H, Halcox J, Epstein SE.Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease:evidence for an autoimmune component of atherogenesis[J]. Circulation.2001,27;103(8):1071-5.
    153.Lavallee P, Perchaud V, Gautier-Bertrand M, Grabli D, Amarenco P.Association between influenza vaccination and reduced risk of brain infarction[J]. Stroke. 2002,33(2):513-8.
    154.Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK.LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis[J]. Arterioscler Thromb Vasc Biol.2001,21(1):108-14.
    155.Komori T. CETi-1, AVANT[J]. Curt Opin Invesfig Drugs.2004,5(3):334-338.
    156.Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, Thomson AW.Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo[J]. Blood.2003, 101(11):4457-63.
    157.Yang K, Li D, Luo M, Hu Y.Generation of HSP60-specific regulatory T cell and effect on atherosclerosis[J]. Cell Immunol.2006,243(2):90-5.
    158.Li DZ, Ranjit S, Zeng QT, Tian Y, Feng YB, Wang X, Cao LS. Effects of atorvastatin on the function of dendritic cells in patients with unstable angina pectoris[J]. Zhonghua Nei Ke Za Zhi.2004,43(6):429-32.
    159.Correia LC, Sposito AC, Lima JC, Magalhaes LP, Passos LC, Rocha MS, D'Oliveira A, Esteves JP. Anti-inflammatory effect of atorvastatin (80 mg) in unstable angina pectoris and non-Q-wave acute myocardial infarction[J]. Am J Cardiol.2003,92(3):298-301.
    160.Fehr T, Kahlert C, Fierz W, Joller-Jemelka HI, Riesen WF, Rickli H, Wuthrich RP, Ammann P.Statin-induced immunomodulatory effects on human T cells in vivo[J]. Atherosclerosis.2004,175(1):83-90.
    161.Mira E, Leon B, Barber DF, Jimenez-Baranda S, Goya I, Almonacid L, Marquez G, Zaballos A, Martinez-A C, Stein JV, Ardavin C, Manes S.Statins induce regulatory T cell recruitment via a CCL1 dependent pathway[J]. J Immunol.2008, 181(5):3524-34.
    162.Buckland M, Lombardi G. Aspirin and the induction of tolerance by dendritic cells[J]. Handb Exp Pharmacol.2009, (188):197-213.
    163.Svajger U, Vidmar A, Jeras M. Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4[J]. Int Immunopharmacol. 2008,8(7):997-1005.
    164.Hernandez A, Burger M, Blomberg BB, Ross WA, Gaynor JJ, Lindner I, Cirocco R, Mathew JM, Carreno M, Jin Y, Lee KP, Esquenazi V, Miller J. Inhibition of NF-kappa B during human dendritic cell differentiation generates anergy and regulatory T-cell activity for one but not two human leukocyte antigen DR mismatches[J]. Hum Immunol.2007,68(9):715-29.
    1. McIntire JJ, Umetsu SE, Akbari O, Potter M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT, DeKruyff RH. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family[J]. Nat Immunol.2001, 2(12):1109-16.
    2. Umetsu DT, Umetsu SE, Freeman GJ, DeKruyff RH. TIM gene family and their role in atopic diseases[J]. Curr Top Microbiol Immunol.2008,321:201-15.
    3. Hafler DA, Kuchroo V. TIMs:central regulators of immune responses[J]. J Exp Med.2008,205(12):2699-701.
    4. Meyers JH, Sabatos CA, Chakravarti S, Kuchroo VK.The TIM gene family regulates autoimmune and allergic diseases[J]. Trends Mol Med.2005, 11(8):362-9.
    5. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature.2002,31;415(6871):536-41.
    6. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J]. Nat Immunol.2003,4(11):1102-10.
    7. Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ.The TIM gene family: emerging roles in immunity and disease[J]. Nat Rev Immunol.2003,3(6):454-62.
    8. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, Manlongat N, Bender O, Kamradt T, Kuchroo VK, Gutierrez-Ramos JC, Coyle AJ, Strom TB.Tim-3 inhibits T helper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance[J]. Nat Immunol.2003, 4(11):1093-101.
    9. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis[J]. Science.1996, 272(5258):60-6.
    10. Oikawa T, Kamimura Y, Akiba H, Yagita H, Okumura K, Takahashi H, Zeniya M, Tajiri H, Azuma M.Preferential involvement of Tim-3 in the regulation of hepatic CD8+ T cells in murine acute graft-versus-host disease[J]. J Immunol. 2006,177(7):4281-7.
    11. Kageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi N, Shoji H, Nakamura T, Ono T, Hirashima M.Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance[J]. Int J Cancer.2002,20;99(6):809-16.
    12. Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, Cihakova D, Silbergeld EK, Rose NR, Fairweather D.Cutting edge:T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity[J]. J Immunol.2006,176(11):6411-5.
    13. Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA, Cihakova D, Barrett MA, Rose NR, Fairweather D.Cutting edge:cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease[J]. J Immunol. 2007,178(11):6710-4.
    14. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA.Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science.2007,16;318(5853):1141-3.
    15. Khademi M, Illes Z, Gielen AW, Marta M, Takazawa N, Baecher-Allan C, Brundin L, Hannerz J, Martin C, Harris RA, Hafler DA, Kuchroo VK, Olsson T, Piehl F, Wallstrom E.T Cell Ig-and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Thl and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis[J]. J Immunol.2004,172(11):7169-76.
    16. Anderson AC, Lord GM, Dardalhon V, Lee DH, Sabatos-Peyton CA, Glimcher LH, Kuchroo VK. T-bet, a Thl transcription factor regulates the expression of Tim-3[J]. Eur J Immunol.2010,40(3):859-866.
    17. Matsumoto R, Matsumoto H, Seki M, Hata M, Asano Y, Kanegasaki S, Stevens RL, Hirashima M.Human ecalectin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes[J]. J Biol Chem.1998, 273(27):16976-84.
    18. Wada J, Kanwar YS. Identification and Characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin[J]. J Biol Chem.1997, 272(9):6078-86.
    19. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. Apoptosis and interferons:role of interferon-stimulated genes as mediators of apoptosis[J]. Apoptosis.2003,8(3):237-49
    20. Yoshida H, Imaizumi T, Kumagai M, Kimura K, Satoh C, Hanada N, Fujimoto K, Nishi N, Tanji K, Matsumiya T, Mori F, Cui XF, Tamo W, Shibata T, Takanashi S, Okumura K, Nakamura T, Wakabayashi K, Hirashima M, Sato Y, Satoh K. Interleukin-lbeta stimulates galectin-9 expression in human astrocytes[J]. Neuroreport.2001,12(17):3755-8.
    21. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK.The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol.2005,6(12):1245-52.
    22. Kashio Y, Nakamura K, Abedin MJ, Seki M, Nishi N, Yoshida N, Nakamura T, Hirashima M. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway[J]. J Immunol.2003,170(7):3631-6.
    23. Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H, Watanabe K, Niki T, Katoh S, Miyake M, Nagahata S, Hirabayashi J, Kuchroo VK, Yamauchi A, Hirashima M. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions[J]. J Immunol.2008,181(11):7660-9.
    24. Sehrawat S, Suryawanshi A, Hirashima M, Rouse BT.Role of Tim-3/galectin-9 inhibitory interaction in viral-induced immunopathology:shifting the balance toward regulators[J]. J Immunol.2009,182(5):3191-201.
    25. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK.Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J]. Nat Immunol.2003,4(11):1102-10.
    26. Gielen AW, Lobell A, Lidman O, Khademi M, Olsson T, Piehl F.Expression of T cell immunoglobulin-and mucin-domain-containing molecules-1 and-3 (TIM-1 and-3) in the rat nervous and immune systems[J]. JNeuroimmunol.2005, 164(1-2):93-104.
    27. Kuchroo VK, Meyers JH, Umetsu DT, DeKruyff RH.TIM family of genes in immunity and tolerance[J]. Adv Immunol.2006,91:227-49.
    28. Anderson AC, Anderson DE.TIM-3 in autoimmunity[J]. Curr Opin Immunol. 2006,18(6):665-9.57
    29. Degauque N, Mariat C, Kenny J, Sanchez-Fueyo A, Alexopoulos SP, Kuchroo V, Zheng XX, Strom TB. Regulation of T-cell immunity by T-cell immunoglobulin and mucin domain proteins[J]. Transplantation.2007,15;84(1 Suppl):S12-6.
    30. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature.2003, 421(6924):744-8.
    31. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis[J]. J Clin Invest.2006, 116(5):1317-26.
    32. Yang L, Anderson DE, Kuchroo J, Hafler DA. Lack of TIM-3 Immunoregulation in Multiple Sclerosis[J]. J Immunol.2008,180(7):4409-14.
    33. Niwa H, Satoh T, Matsushima Y, Hosoya K, Saeki K, Niki T, Hirashima M, Yokozeki HStable form of galectin-9, a Tim-3 ligand, inhibits contact hypersensitivity and psoriatic reactions:a potent therapeutic tool for Th1-and/or Th17-mediated skin inflammation[J]. Clin Immunol.2009,132(2):184-94.
    34. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, Wong JC, Satkunarajah M, Schweneker M, Chapman JM, Gyenes G, Vali B, Hyrcza MD, Yue FY, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Sports G, Hecht FM, Chun TW, McCune JM, Kaul R, Rini JM, Nixon DF, Ostrowski MA. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection[J]. J Exp Med.2008, 24;205(12):2763-79.
    35. Zhao J, Lei Z, Liu Y, Li B, Zhang L, Fang H, Song C, Wang X, Zhang GM, Feng ZH, Huang B. Human pregnancy up-regulates Tim-3 in innate immune cells for systemic immunity[J]. J Immunol.2009,15;182(10):6618-2.
    36. Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, Yagita H, Okumura K.Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation[J]. Blood.2009,16;113(16):3821-30.
    37. Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, Liu Y, Zhu F, Zhang L, Sun W, Liang X, Gao L, Ma C. T cell immunoglobulin and mucin-domain-containing molecule-3 (Tim-3) Mediates Natural Killer Cell Suppression in Chronic Hepatitis B[J]. J Hepatol.2010,52(3):322-9.
    38. Fukushima A, Sumi T, Fukuda K, Kumagai N, Nishida T, Akiba H, Okumura K, Yagita H, Ueno H.Antibodies to T-cell Ig and mucin domain-containing proteins (Tim)-1 and-3 suppress the induction and progression of murine allergic conjunctivitis[J]. Biochem Biophys Res Commun.2007,353(1):211-6.
    39. Kearley J, McMillan SJ, Lloyd CM.Th2-driven, allergen-induced airway inflammation is reduced after treatment with anti-Tim-3 antibody in vivo[J]. J Exp Med.2007, 11;204(6):1289-94.
    40. Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P.Blood diffusion and Thl-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells[J]. Blood.2009, 26;113(9):1957-66.
    41. Kageshita T, Kashio Y, Yamauchi A, Seki M, Abedin MJ, Nishi N, Shoji H, Nakamura T, Ono T, Hirashima M. Possible role of galectin-9 in cell aggregation and apoptosis of human melanoma cell lines and its clinical significance[J]. Int J Cancer.2002,20;99(6):809-16.
    42. Irie A, Yamauchi A, Kontani K, Kihara M, Liu D, Shirato Y, Seki M, Nishi N, Nakamura T, Yokomise H, Hirashima M.Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer[J]. Clin Cancer Res.2005, 15;11(8):2962-8.
    43. Lahm H, Andre S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, Gabius HJ.Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures[J]. J Cancer Res Clin Oncol.2001,127(6):375-86.
    44. Simmons WJ, Koneru M, Mohindru M, Thomas R, Cutro S, Singh P, Dekruyff RH, Inghirami G, Coyle AJ, Kim BS, Ponzio NM.Tim-3+ T-bet+ tumor-specific Thl cells colocalize with and inhibit development and growth of murine neoplasms[J]. J Immunol.2005,174(3):1405-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700