用户名: 密码: 验证码:
炭砂滤池处理引黄水库水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是“国家水体污染控制与治理”重大科技专项“饮用水安全保障技术体系研究与示范”主题中“黄河下游地区饮用水安全保障技术研究与综合示范”项目中课题三“高藻引黄水库水常规工艺强化集成技术研究与示范”的子课题“技术集成与组合工艺研究与示范”的部分研究内容。
     本研究以东营胜利油田辛安水厂为研究对象,针对引黄水库水质恶化,氮磷营养物质含量高,藻和嗅味物质污染问题突出等特点,为满足新水质国标《生活饮用水卫生标准》(GB5749-2006)的要求,将该水厂一组砂滤池改为炭砂滤池,开展试验研究。
     研究的主要内容有:(1)对比炭砂滤池与砂滤池的净水效果,并进行分析;(2)研究炭砂滤池的反冲周期;(3)探讨适于辛安水厂活性炭的再生技术方案。
     通过比较炭砂滤池与砂滤池出水水质发现,炭砂滤池对浊度、CODMn、TOC、 UV254、氨氮的去除效果均明显优于砂滤池。炭砂滤池对CODMn、TOC、UV254、氨氮的平均去除率分别达到38.92%、50.42%、61.04%、44.33%,砂滤池对CODMn、 TOC、UV254氨氮的平均去除率分别为10.23%、7.95%、8.26%、30.24%。
     试验期间,原水的藻类数量达到109数量级,常年处于较高水平,达到富营养化状态。原水经处理后,藻类数量急剧减少,总去除率达90%以上。其中,大部分藻类是通过气浮去除,但过滤单元对藻仍有一定的去除效果,炭砂滤池出水中的藻类数量略少于砂滤池出水。
     经检测发现,原水中的致嗅物质含量比较大,MIB、GSM分别达到74.81ng/L、4.29ng/L。传统工艺对嗅味物质GSM和MIB的去除极其有限,而活性炭可以有效吸附水中GSM和MIB,去除率高于砂滤池。炭砂滤池对MIB和GSM的去除率分别高达89.28%、93.43%。
     对消毒副产物前体物去除方面的研究表明,常规工艺对消毒副产物前体物的去除能力有限,炭砂滤池可以有效地吸附消毒副产物前体物,去除能力远高于砂滤池。
     研究中,炭砂滤池的进水与出水的pH值均在7.5以上,更好的保证了活性炭上的微生物进行硝化作用,降低水中的氨氮,提高了出水水质。
     本研究以滤池的水头损失和出水浊度作为控制指标,优化炭砂滤池反冲洗周期。从炭砂滤池水头损失的角度考虑,炭砂滤池的反冲周期为5-6d;从炭砂滤池出水浊度的角度考虑,炭砂滤池的过滤周期为3-3.5d。经综合考虑过滤周期与两指标之间的关系,最终确定炭砂滤池的过滤周期由出水浊度决定,即过滤周期为3d。
     从辛安水厂的实际运行效果来看,炭砂滤池能提高给水厂的出水水质,而且不增加基建投资,运行安全、方便、有效,适应给水厂的升级改造,并具有示范意义。
     分析了活性炭再生的必要性以及再生方式,并且比较归纳了各种再生方式的适用条件和优缺点。根据辛安水厂处理规模和活性炭使用量,从活性炭的再生成本上分析,得出该水厂活性炭再生方案。将饱和活性炭进行再生具有极其重要的工程应用价值和经济价值。
This study is the sub-topics of "The Research and Demonstration of Strengthening Conventional Process Integration Technology to treat the Yellow River Reservoir Water with High Algae", which is the third of "The Research and Demonstration of the Drinking Water security technology in the Lower Reaches of Yellow River lower". It belongs to "The Research and Demonstration of the Drinking Water security technology" which is from Major science and technology program named "State Water Pollution Control and Governance".
     Aim at deterioration of water quality, such as the high content of nitrogen and phosphorus nutrients and algae pollution characteristics, the waterworks transformed a group of sand filter into GAC-sand filter, in order to meet the requirements of the new water quality of drinking water health standard (GB5749-2006).
     The main contents of the study include three aspects:(1) Comparing the purification effect of GAC-sand filter and sand filter through experiment;(2) To determine the backwash cycle of the GAC-sand filter according to the filter head loss and turbidity;(3) The regeneration of activated carbon is discussed in the end of the article.
     By comparing the water quality of GAC-sand filter and sand filter, it is found that the removal efficiency of GAC-sand filter on turbidity, CODMn, TOC, UV254and ammonia nitrogen are much better than the sand filter. In the GAC-sand filter, the average removal rates of CODMn, TOC, UV254and ammonia nitrogen are38.92%,50.42%,61.04%and44.33%, respectively. In the sand filter, the average removal rates of CODMn, TOC, UV254and ammonia nitrogen are10.23%,7.95%,8.26%and30.24%, respectively.
     During the test, the number of raw water algae is up to109orders of magnitude. The number of Algae is at a high level, reaching the state of eutrophication. After treatment, the alga of raw water has drastically reduced. Most of the algae are removed by flotation, however, filtration unit on removal of algae have some effect, and in the GAC-sand filter the number of algae is slightly less than the sand filter.
     After the examination, it is found that the odor substance of the raw water is relatively large. MIB and GSM of raw water are74.81ng/L and4.29ng/L, respectively. Traditional process is extremely limited to the removal of GSM and MIB. However, activated carbon can be an effective adsorption of GSM and MIB, and its removal rates are higher than the sand filter. In the GAC-sand filter, removal rates of MIB and GSM are up to89.28%and93.43%, respectively.
     According to the study on the removal of disinfection by-product precursor, it is found that traditional process is limited on removal of disinfection by-product precursors, the GAC-sand filter can effectively adsorb disinfection by-product precursors, its removal rates is higher than sand filter.
     During the test, in the GAC-sand filter, the pH of inlet and outlet are above7.5, which make for the microbial nitrification, reduce the ammonia nitrogen of water and improve water quality.
     The test takes the head loss and turbidity as control indexes, optimizes backwash cycle of GAC-sand filter. Considered from the perspective of head loss, the backwash cycle of GAC-sand filter is5-6days. Considered from the perspective of turbidity, the backwash cycle of GAC-sand filter is3-3.5days. After comprehensive consideration of the relationship between the filtration cycle and the two indicators, the final decision is that filtration cycle of GAC-sand filter is3days which determined by turbidity.
     From actual operating results of Xin'an water plants, GAC-sand filter can improve water quality of water supply plant, and it does not add infrastructure investment. GAC-sand filter has the advantage of running a safe, convenient and effective, which adapt to the water treatment plant upgrade, and demonstration of significance.
     Finally, article briefly describes the necessity and method of regeneration of activated carbon, and compares the conditions of application, advantages and disadvantages of the various regeneration modes. The regeneration of "saturated carbon" has an extremely important value in engineering and economic.
引文
[1]丁锡锋.水资源:“成长的烦恼”[J].宁波经济,2007,12:44-46.
    [2]鄂学礼.饮用水深度净化与水质处理器[M].北京:化学工业出版社,2004.1-2.
    [3]2010中国环境状况公报,
    [4]张燊.浮滤池工艺处理引黄水库水的研究[D].山东建筑大学大学,市政工程:2011.
    [5]王培县.基于黄河流域协同发展的产业结构优化研究:以黄河上游石嘴山市为例[D].中国科学院,地理科学与环境资源研究所:2008.
    [6]贾瑞宝,孙韶华,宋武昌等.引黄供水系统水质安全现状及保障对策研究[J].给水排水,2010;36(增刊):26-29.
    [7]王晖.山东省城市水源水质污染特征分析与评价[J].城镇供水,2007,2:44-46.
    [8]付乐.饮用水深度净化工艺中试研究[D].华中科技大学,市政工程:2006.
    [9]赵玉华,李妍,傅金祥.粉末活性炭处理微污染水库水试验研究[J].辽宁化工,2011,40(1):39-41.
    [10]侯轶,高乃云,张楠彭等.粉末活性炭(PAC)强化处理微污染原水国内外研究现状[J].城镇供水,2008,6:37-39.
    [11]王琳,王宝贞.优质饮用水净化技术[M].北京:科学出版社,2000.
    [12]王晓东.饮用水中典型内分泌干扰物的检测和去除的研究[D].天津大学,环境工程:2006.
    [13]许保玖.给水处理理论[M].北京:中国建筑工业出版社,2000.
    [14]朱步摇,赵珍国.界面化学基础[M].北京:化学工业出版社,1996.
    [15]孙丽娜.活性炭对水中微量有机物的净化效能与处理工艺中试研究[D].天津大学,环境工程:2004.
    [16]Gayle N, David c, Influences on the removal of tastes and odours by PAC [J].Water Supply: Research and Technology,2002,51 (8):463-474.
    [17]王占生,刘文君.微污染水源饮用处理[M].北京:中国建筑工业出版社,1999.
    [18]余健.生物过滤去除饮用水中有机物、铁和锰的特性与机理研究[D].湖南大学,环境工程:2004.
    [19]刘益萱,钟亮洁.颗粒活性炭在饮用水深度处理中的应用[J].给水排水,2001,27(3):12-16.
    [20]王永磊.微絮凝-炭砂双层滤料浮滤池工艺处理引黄水库水的试验研究[D].山东建筑大学,市政工程:2006.
    [21]兰淑澄.活性炭水处理技术[M].北京:中国环境科学出版社,1991.
    [22]张晓健.松花江和北江水污染事件中的城市供水应急处理技术[J].给水排水,2006,32(6):6-12.
    [23]杨莹.深度处理饮用水处理工艺的选择[J].环境,2007,9:26-29.
    [24]张长明.活性炭在饮用水深度处理中的应用研究[D].太原理工大学,环境科学:2011.
    [25]李大鹏,李伟光,王铁民.投加粉末活性炭去除原水中的嗅味[J].中国给水排水,2004,20(6):44-46.
    [26]范洁,马军,陈忠林等.控制饮用水加氯消毒副产物的研究[J].净水技术,2004,23(1):4-6.
    [27]李伟光,安东,崔福义等.生物降解与吸附作用协同去除卤乙酸生成势[J].中国环境科学,2005,25(1):61-64.
    [28]陈蓓蓓,高乃云,尚亚波等.采用活性炭强化常规处理原水突发油类污染的研究[J].给水排水,2008,34(4):7-11.
    [29]高乃云,严敏,乐林生.饮用水强化处理技术[M].北京:化学工业出版社,2007.
    [30]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,2005.
    [31]李露.陶瓷滤料在给水处理中的应用研究[D].武汉理工大学,市政工程:2006.
    [32]周云,何以亮.微污染水源净水技术及工程实例[M].北京:化学工业出版社,2003.
    [33][日]藤田贤二.快滤池反冲洗诸问题的水力学研究[J].水道协会杂志,1972.8.
    [34]Cmap T. R., Gdarers. D., Conklin. G. E. Backwashing of granular Water filters [J]. Sanit. Engng Div. Am. Soc. civ. Engrs,1997,Vol.97(6):903-926.
    [35]黄万松.单层滤料反冲洗优化工艺的试验研究[D].武汉理工大学,市政工程:2009.
    [36]李想.TSS对微孔过滤压损影响及滤芯再生研究[D].大连海事大学,环境科学与工程:2010.
    [37]李圭白,刘俊新,郑庭林.滤池气水反冲洗机理探讨[J].哈尔滨建筑工程学院学报,1992,25(2):56-60.
    [38]刘荣光,罗辉荣,汪义强等.滤池气水反冲洗机理综述与初探[J].重庆建筑大学学报,1998,20(6):7-11.
    [39]张娟.V型滤池气水反冲洗过程的优化[D].西安建筑科技大学,市政工程:2010.
    [40]沈军.气水反冲洗机理的探讨[J].中国给水排水,1989,5(2):9-10.
    [41]彭伟.翻板阀滤池工艺设计[J].海峡科学,2007,10:73-75.
    [42]缪朝晖,古凌艳.翻板滤池的应用及反冲洗效果研究[J].工业用水与废水,2010,41(5):60-62.
    [43]李海英.浅谈翻板滤池在水处理工艺中的应用[J].城镇供水,2009,7:29-32.
    [44]水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [45]范平,吴纯德,陆少鸣等.GAC-石英砂生物滤池处理微污染原水[J].水处理技术,2008,34(8):59-62.
    [46]梁苑斐.微污染原水净化处理研究[D].暨南大学,环境工程:2010.
    [47]王广智,李伟光,王锐等.炭砂滤池在松花江污染应急处理中的应用特性研究[J].给水排水,2007,33(8):11-15.
    [48]张守成,武凤霞,敖春等.对水体中有机污染综合指标及其相互间的关系探研[J].环境科学与技术,2005,28(5):45-46.
    [49]A. D. Eatonad. Measuring UV-Absorbing Organics:a Standard Method. J.AWWA,1995, 87(2):86-90.
    [50]赵振业,孙伟,章诗芳等.活性炭对不同有机物吸附性能的影响[J].水处理技术,2005,31(1):23-25.
    [51]常颖,沈军.给水厂氨氮控制工艺[J].2008年给水厂污水厂运行与管理及升级改造高级研讨会,2008.
    [52]陆柱,蔡兰坤,丛梅.给水与用水处理技术[M].北京:化学工业出版社,2004.
    [53]黄辉.活性炭吸附法去除水中硒的研究[D].昆明理工大学,环境工程:2005.
    [54]王新为,孔庆鑫,金敏等.pH值与曝气对硝化细菌硝化作用的影响[J].解放军预防医学志,2003,21(5):319-322.
    [55]贾瑞宝,周善东.城市供水藻类污染控制研究[M].济南:山东大学出版社,2006.
    [56]张克峰.济南玉清供水系统藻污染及二氧化氯除藻特性研究[D].西安建筑科技大学,环境工程:2004.
    [57]夏红卫,文钰嵘.水中藻类检测技术改进[J].供水技术,2007,1(3):42-44.
    [58]陈蓓蓓,高乃云,马晓雁等.饮用水中嗅味物质—土臭素和二甲基异冰片去除技术[J].四川环境,2007,26(3):87-93.
    [59]施东文,陈健波,奚旦立等.活性炭滤池深度处理水中有机物[J].环境工程境,2006,24(6):85-87.
    [60]金盛.凌桥水厂工艺运行优化研究[D].同济大学,环境工程:2007.
    [61]A. Rasheed, A. Amirtharajah. Detachment of Paticles During Biofilter Backwashing. J. AWWA,1998,80(12):74-84.
    [62]袁旭安.常规过滤工艺优化研究[D].湖南济大学,市政工程:2003.
    [63]张健.粒状活性炭在饮用水深度处理中的应用及再生[J].供水技术,2007,1(5):44-46.
    [64]吴琪,宋乾武,曾燕艳等.活性炭再生技术研究进展和发展趋势[J].中国环保产业.2011,10:14-17.
    [65]翁元生.活性炭再生及新技术研究[J].中国给水排水.2004,30(1):86-91.
    [66]城市供水水质标准(CJ/T 206—-2005).
    [67]魏代波,郑爽英.粒状活性炭的电化学再生实验研究[J].能源环境保护.2006,20(4):40-42.
    [68]张莉平,习晋.特殊水质处理技术[M].北京:化学工业出版社,2006.
    [69]林冠烽,牟大庆,程捷等.活性炭再生技术研究进展[J].林业科学,2008,44(2):150-154.
    [70]岳宗豪,郑经堂,曲降伟等.活性炭再生技术研究进展[J].应用化工,2009,38(11):1667-1670.
    [71]E Furuya, K Sato, T Kataoka, et al. Amount of aromatic compounds adsorbed on inorganic adsorbents [J], Separation and Purification Technology.2004,39(1-2):73-78.
    [72]庄毅璇,王枫,赵振业等.活性炭的电解氧化再生研究[J].环境科学与技术,2011,34(12H):17-19.
    [73]朱艳秋.活性炭的低温催化氧化再生方法研究[D].山东大学,环境工程:2006
    [74]曾雪玲,唐晓东,卢涛.活性炭再生技术的研究进展[J].四川化工,2008,4(11):11-14
    [75]Haque K E. Microwave energy for mineral treatment processes-a brief review[J].International Journal of Processing,1999,57(1):1-24.
    [76]曾志江,钟汉强.活性炭再生技术探讨[J].黑龙江生态工程职业学院学报,2008,21(4):8-9.
    [77]杜尔登,张玉先,沈亚辉.自俩水厂活性炭再生技术与成本分析[J].净水技术,2008,27(6):54-57.
    [78]Clark R. M., Lykins B. W. Granular activated carbon:design, operation, and cost [M]. Chelsea, Mich.:Lewis Publishers,1989.
    [79]立本英机,安部郁夫.活性炭应用技术[M].南京:东南大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700