用户名: 密码: 验证码:
长白山第四纪玄武岩隧道光面爆破研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着长白山风景区申请“世界自然遗产”的开发和国家高速公路网规划的完善,长白山地区势必成为重要的隧道工程施工场地。长白山地区是我国最大的第四纪火山岩分布区,该地区第四纪玄武岩具有形成年代短,多期喷发、喷发韵律突出、原生柱状节理发育等特点。基于这样的背景,本文对长白山第四纪玄武岩隧道光面爆破进行了详细而深入的研究。
     本文结合长白山地区所处的地理位置和长白山地区在新生代经历的八次火山活动形成的火山喷发序列,对长白山第四纪玄武岩的分布范围、矿物组成及结构、物理力学参数、岩体中的特殊构造和玄武岩的工程地质性质进行了深入的研究。对玄武岩中发育的柱状节理的研究主要是从形成条件、柱状节理分类和柱状节理的构造等方面进行的。
     应用Ansys软件建立隧道光面爆破的模型,模拟节理裂隙与炮孔连线之间不同的夹角对隧道光面爆破的影响,当节理裂隙与炮孔连线之间的夹角在70~90°之间时,节理裂隙对隧道光面爆破的影响可以忽略;当节理裂隙与炮孔连线之间的夹角小于70°时,在节理裂隙与炮孔连线相交处出现超、欠挖交替出现的锯齿。运用爆破理论对产生的现象进行理论分析。
     在研究节理裂隙对隧道光面爆破影响的基础上,运用爆破理论、波动理论和断裂力学理论分析柱状节理对隧道光面爆破的影响。根据柱状节理的不同类型和不同出露位置,讨论柱状节理对光面爆破的影响以及在光面爆破中爆破参数的调整:
     (1)极小型、很小型和小型柱状节理使爆破后的轮廓线出现超、欠挖交替的锯齿状,进行光面爆破时,在柱状节理与炮孔连线相交的部位加密炮孔也就是减小孔距;
     (2)柱状节理对隧道顶部及顶部附近岩体的爆破没有影响,可以按照常规设计方法进行爆破设计;
     (3)柱状节理对隧道两侧洞壁底部爆破的影响是产生微量的欠挖现象,在进行光面爆破设计时,要减小孔距和最小抵抗线;
     (4)炮孔连线之间存在多条柱状节理的时候,在柱状节理与炮孔连线相交处出现超、欠挖交替的锯齿状,柱状节理之间出现超挖现象,在进行隧道光面爆破设计时,可以减小孔距和最小抵抗线,并且采用间隔装药结构。
     当存在柱状节理时,爆破参数的调整都是从孔距和最小抵抗线两方面进行考虑的;对于孔距的计算,提出了一种新的方法,其适用性还要经过大量的实际工程的检验;当柱状节理为中等、大型、很大型和极大型的时候,最小抵抗线可以按照柱状节理的宽度确定,其他情况根据孔距和炮孔密集系数确定。除了孔距和最小抵抗线,炮孔深度、周边孔装药不耦合系数和装药密度对光面爆破也存在一定的影响。
Changbai Mountain area will become important tunnel construction site alongwith the development of Changbai Mountain scenic area for “World Natural Heritage”and the improvement of national highway network planning. Changbai mountain areais the largest distribution area of the Quaternary basalt, there are some characteristicin the basalt area, such as in short form, multistage eruption, prominent of volcaniceruptive rhythm, development of primary columnar. Based on this background, thisarticle is in detail and depth study about the tunnel smooth bleating in ChangbaiMountain quaternary basalt.
     Combination with the location of Changbai Mountain area and the formation ofthe volcano eruption sequence in the new generation eight volcano activity, there aredetail and depth study in distribution range, mineral composition and structure,physical and mechanical parameters, the special structure of rock mass and theengineering geological properties of basalt. The study about columnar section is fromformation conditions, the classification of columnar section and the structure ofcolumnar section.
     Simulate the smooth blasting influence of the included angle between jointfissure and hole connection by Ansys. When the included angle is between70°and90°, the influence of joint fissure is very little. When the included angle is less than70°, there will be alternate serrated between super and owes digs. Conduct theoreticalanalysis by theory of blasting.
     Based on the influence of joint fissure to smooth blasting, study the influence ofcolumnar joint to smooth blasting by the theory of blasting, wave theory and thetheory of fracture mechanics. According to the type and the exposed location ofcolumnar joint, study the smooth blasting influence of columnar joint and how toadjust the blasting parameters.
     (1) When the columnar joint is minimum, very small and small, there will besawtooth between super and owes digs. Encryption blast hole of the intersection position of columnar joints and hole connection.
     (2) When the columnar joint is on the top of the tunnel, we conduct blasting design inaccordance with the conventional design method.
     (3) When the columnar joints are in the bottom of the tunnel, we should reduce “E”and “W”
     (4) When there are a plurality of columnar sections between the holes, there will besawtooth between super and owes digs in the intersection position of columnarjoints and hole connection, there will be super digs in columnar joints. We shouldreduce “E” and “W” and use interval charge.
     When there are columnar joints, blasting parameter adjustment conducts fromreducing “E” and “W”, but there are some influence of hole depth, decouplecoefficient and charge density coefficient. Put forward a new method of calculatinghole distance, but the applicability of the new method need inspection of a lot ofengineerings. When the columnar joints are medium, large, very large and theextremely,“W” is equal to the width of the columnar joints. In other cases, we cancalculate “W” according to “E” and “m”.
引文
[1]徐松年玄武岩柱状节理构造研究的进展与动向武汉地质学院《地质科技情报》1986
    [2]郑文棠、徐卫亚节理玄武岩体变形模量的尺寸效应和各向异性工程地质学报2010
    [3]刘桂顺、池永翔、王思敬等柱状节理玄武岩体抗剪强度参数尺寸效应研究工程地质学报2009
    [4]OBERT L.R.I.4583,U.S.Bureau of Mine,1950:31.
    [5]ASH R.L.PH.D.SYMP.On Rock Mechanics, New York,1963:263-271.
    [6]GRIRK P.F.9th SYMP. On Rock Mechanics.Colorado School of Mines,1968:321-345.
    [7]LARSON W.C.Pugleise J.M.U.S.BMRI7863,1974
    [8]Fourney W.L.1st Int.SYMP.On Rock Frag.By Blasting,Lulea,Sweden,1983:503-531.
    [9]DA GAMA C.D.Proc.1st Int.Symp.On Rock Frag.By Blasting.Lulea Sweden,1983:565-579.
    [10]Margolin L.G.破坏的数值模拟[J].第一届国际爆破破岩会议文集.1985:218-226.
    [11]SINGH D.P,et al.Proc.1st Int.Symp.On Rock Frag.By Blasting.LuleaSweden,1983:533-559.
    [12]A.K.CHAKRABORTY,P.PAL.ROY,Blast Performance in small tunnels—Acritical evaluation in underground metal mines[J].Tunneling and UndergroundTechnology,1998,13(3):245-252.
    [13]A.K.CHAKRABORTY, J.L.JETHWA, A.G.PAITHANKER, Effects of jointorientation and rock mass quality on tunnel blasting[J].EngineeringGeology,1994,37(3):247-262.
    [14]A.K.CHAKRABORTY,A.K.RAINA,M.RAMULU.Development of rationalmodels for tunnel blast prediction based on a parametric study[J]. Geotechnical andGeological Engineering,2004.22:477-496.
    [15]敖聪利,尚嘉兰.应力波遇裂隙的反射和透射[J].爆破,1989,1:19-23.
    [16]尚嘉兰,郭汉彦.岩体裂隙对应力波传播的影响[J].防护工程学术交流会论文集,1979:91-98.
    [17]李建军,段祝平.节理裂隙岩体爆破试验研究[J].爆破,2005,22(3):12-16.
    [18]张奇.应力波在节理处的传递过程[J].岩土工程学报,1986,8(6):99-105.
    [19]张奇.层状岩体光面爆破效果的理论分析[J].爆炸与冲击,1988,8(1):60-66.
    [20]盛谦,黄正加,邬爱清.三峡节理岩体力学性质的数值模拟试验[J].长江科学院院报,2001,18(1):35-37.
    [21]张电吉.岩体中的节理裂隙对爆破效果影响机理研究[J].有色金属,2003,55(3):34-36.
    [22]王鲁明,赵坚,华安增.节理岩体中应力波传播规律研究的进展[J].岩土力学,2003,24(增刊):602-606.
    [23]郭文章,王树仁,张奇等.节理岩体爆破的破裂规律分析[J].振动与冲击,1999,18(2):30-35.
    [24]YANG ZG,RUSTAN A.1st Int.Symp.On Rock Frag.By Blasting.LuleaSweden,1983:581-603.
    [25]杨祖光.多排同段爆破技术的应用及其机理研讨[J].江西冶金,1987,7(6):26-28.
    [26]陆文.岩体节理裂隙对爆破应力波阻隔作用的试验研究[J].岩土力学,2004,1:6-9.
    [27]王和平.不耦合装药爆破开挖隧道的作用机理[J].铁道建筑,2007,9:46-50.
    [28]吴永强,南世卿,孙艳秋.矿岩爆破性分区的研究及应用[J].矿治,1999,8(4):21-25.
    [29]张宪堂,陈士海.考虑碰撞作用的节理裂隙岩体爆破块度预测研究[J].岩石力学与工程学报,2002,21(8):1141-1146.
    [30]Thomas J.A,Allan M.R.Impact-induced Tensional Failure in Rock[J].J GeoRes,1993,98(E1):1185-1203.
    [31]Liu C,Thomas J A.Stress Wave Attenuation in Shock-Damaged Rock[J]. J GeoRes,1997,102(B3):5243-5250.
    [32]He Hongliang,Ahrens TJ. Mechanical Properties of Shock-Damaged Rocks[J].IntJ Rock Mech Min Sci&Geomech Abstr,1994,31(5):525-533.
    [33]M.N.Bagde,A.K.Raina,A.K.Chakraborty. Rock mass characterization by fractaldimension[J].Engineering Geology,2002,63:141-155.
    [34]蔡福广.光面爆破技术[M].北京:中国铁道出版社,1994.
    [35]姜彦忠.爆破技术基础[M].北京:中国铁道出版社,1994.
    [36]杨军,陈鹏万.现代爆破技术[M].北京:北京理工大学出版社,2004.
    [37]戴俊.爆破工程[M].北京:机械工业出版社,2005.
    [38]张志呈.钻眼爆破[M].成都:四川建材学院,1989.9.
    [39]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984.
    [40]龙维祺.钻眼爆破[M].北京:北京钢铁学院,1984.3.
    [41]陶颂霖.凿岩爆破[M].北京:冶金工业出版社,1986.4.
    [42]钮强.岩石爆破机理[M].沈阳:东北工学院出版社,1990.
    [43]张守中.爆炸基本原理[M].北京:国防工业出版社,1988.
    [44]张志毅.交通土建工程爆破工程师手册[M].北京:人民交通出版社,2002.
    [45]齐伟.岩体力学[M].长春:吉林人民出版社,2001.
    [46]秦明武.光面爆破参数设计探讨[J].控制爆破专辑,1994.
    [47]陈建平,高文学.爆破工程地质学[M].北京:科学出版社,2005.
    [48]李先纬.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [49]王明洋,钱七虎.爆破应力波通过节理裂隙带的衰减规律[J].岩土工程学报,2(17):42-46.
    [50]李夕兵.论岩体软弱结构面对应力波传播的影响[J].爆炸与冲击,1993,4(13):334-342.
    [51]张奇,高金石.爆破理论与爆破优化[M].西安:西安地图出版社,1992.
    [52]何思为.裂隙岩体爆破破碎的理论与应用研究[D].中国地质大学,1992.
    [53]张继春.节理岩体爆破的块度研究[D].沈阳:东北大学,1993.
    [54]陆鹏举.软岩巷道光面爆破技术研究与应用[D].合肥:安徽理工大学,2006.
    [55]徐颖,孟益平,程玉生.不耦合系数对爆破裂纹控制的试验研究[J].岩石力学与工程学报,2004,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700