用户名: 密码: 验证码:
水下图像增强和复原方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字图像处理技术的发展在很多领域已经取得了显著的成果,但是针对水下图像处理的研究却鲜有成效,这是由于水下成像的环境比陆上复杂得多。虽然海洋光学的研究历来已久,但因为光在水介质中传输衰减这一物理限制而长期受到冷落。近十几年来关于水下视觉技术的研究驱动主要来自迅速增长的对海洋探测开发的手段需求。高分辨率的视觉模式本身具备传统声纳所无法替代的优势,而计算机视觉技术的进展也使得水下视觉在海洋探测方面得到越来越多的应用。然而,改善水下成像质量的图像处理方法和技术目前还远远不能满足和应用需求。
     除了水介质的吸收以外,悬浮粒子对光的散射效应是限制水下观测距离的关键因素。由于水下没有环境光源,成像系统必须依赖主动照明方式。目标对照明光线的反射在向传感器的传输过程中被散射而导致成像模糊称为前向散射,根据海洋光学小角度散射理论,可以用点扩散函数(PSF)或光学传递函数(OTF)来描述前向散射效应。而照明光线在到达目标之前同样会受到水体的散射而形成后向散射光被传感器接收。后向散射效应在图像中造成一种“雾化”背景,导致图像对比度下降。前向散射和后向散射的同时作用导致水下图像严重降质,这是限制水下观测距离的主要原因。虽然提高照明功率可以增加目标反射光强度,但是后向散射光的强度也同时增加,并不能提高图像对比度。因此,图像处理技术是提高水下成像观测距离的必要手段。
     本文从图像增强和图像复原两个方面对改善水下图像质量的方法进行了系统研究。论文的主要工作包括以下几方面:
     (1)提出了一种基于散射分层传输原理的PSF模型和后向散射统计描述方法。以往的水下图像复原方法中,PSF的模型是根据水下小角度散射理论以及经验公式得到,或者通过基于传感器的图像特征提取得到数值化描述。但是这些方法都没有给出关于后向散射这一导致图像降质的重要因素的定量描述。在理论分析和实验结果的基础上,本文从后向散射与前向散射的物理机制出发,建立了一种新的散射分层传输描述方法,通过将目标与接收器之间的水体分层为各个独立的散射单元,并将各单元的散射传输视为各个线性子系统的输出,推导出了一种简化的PSF模型,在此基础上给出了后向散射噪声的统计描述。这一模型的建立,为本项研究中水下图像增强和复原的实现提供了原理框架。这是本文的主要创新点。
     (2)研究了抑制后向散射噪声背景的图像增强方法。传统的图像去噪方法一般把噪声视为不相干的白噪声。本文的理论分析和水池实验结果表明,后向散射信号是由直流分量和随机起伏噪声构成的,排除直流分量的影响,随机起伏噪声呈现强烈的相干性,基本特性是后向散射噪声能量集中在低频部分。其原因正如我们所提出的散射分层传输模型所描述的,后向散射是多层散射信号经过不同长度的水体所对应的低通滤波后的叠加。因此,直接应用现有的去噪方法不能解决水下图像的后向散射噪声抑制问题。在研究把现有的小波去噪方法应用于水下图像时,可以发现虽然高频噪声分量得到抑制,但是与目标信号能量重叠的占主要地位的噪声低频分量仍然无法消除。我们的研究结论是:水下图像后向散射噪声抑制的原则是高通滤波而非传统去噪方法所依据的低通原则。根据这一结论,本文提出了小波去噪结合高通滤波以及利用传统图像增强滤波抑制后向散射的方法。
     (3)提出了一种基于估计的水下图像复原方法。图像复原理论为解决水下图像降质问题提供了原理性框架。有关水下图像复原的研究一直集中在PSF的描述上,模型都是建立在海洋光学理论和小角度前向散射理论基础上的半经验公式。但现有模型的一个共同特点就是均依赖于水下光学参数的先验知识,这些先验知识是需要标准的海洋光学测量加上理论计算来完成的,因此更适用于有代表性的特定海域。而对于在近海作业中的实时观测方面的应用,动态环境的变化使得先验知识不可用,而现场测量经常是一个高代价的技术难题。为此,我们提出一种基于估计的图像复原方法,可以在实时、动态的条件下,仅通过对后向散射信号的分析对目标图像进行近似复原。这一方法的实现源于我们所提出的基于散射分层传输模型的后向散射描述,只要通过现场测量后向散射背景,即可以获得复原所需的系统参数而无需关于水下固有光学参数的先验知识。
     (4)本文提出一种基于后向散射噪声物理模型的水下低信噪比条件下的目标检测方法,并通过实验验证该方法的有效性。与传统的水下弱目标检测方法相比较,本文采用的方法无需知道水下目标的尺寸和灰度级以及水下图像的对比度。因此,该方法更加灵活且具有更强的应用价值。
Digital image processing technology has achieved remarkable results in many areas, but the study of underwater image processing is rarely effective, which is due to the environment of underwater imaging is much more complex than on land~([1]). Although the ocean optics research has always been studied for a long time, it was also ignored in a long term because of the physical limitations that the attenuation when light transmited in the water. Over the last decade, the rapid growth of demand for ocean exploration and development is the mainly driving force of underwater vision. The high-resolution visual model has the advantages which can not be replaced with the traditional sonar, and the development of computer vision makes the ocean underwater exploration to get more and more applications. However, the method to improve the quality of underwater image processing technology can still is far from meeting the requirements of applications.
     The key factor except absorption of water medium is scattering effect of suspended particles. Because of the absence of light source, imaging system must rely on the active lighting pattern. Reflection light of illumination is scattered when it transmits from object to the sensor, which is called forward scattering and it causes the image blur. According to ocean optics'small-angle scattering theory, we can use point spread function (PSF) or optical transfer function (OTF) to describe the forward scattering effect. Before reaching the target, the illumination rays are also scattered by the same water body to form backward scattering, and then the back-scattering is received by the sensor. Backscattering effect occur a "fog" background in the underwater image, which results in the contrast of the image decreased. The combined action of backscattering and forward scattering can lead the underwater image degraded seriously, which is the main reason to limit the distance of underwater observation. While increasing the illumination power can increase the intensity of object reflected light, but the intensity of backscattering is increased too, so the image contrast can not be improved. Therefore, the image processing technology is the necessary means to improve underwater imaging system.
     In this paper, the method of improving underwater image is discussed from the two aspects, which are image enhancement and image restoration. And the main study of the thesis are listed as follows:
     1. We proposed a simplified multi-layer transfer model to formulate both the PSF and the statistics of backscattering. In the previous methods of underwater image restoration, the model of PSF was acquired according to the theory of underwater small-angle scattering and experience formula. And the value description was acquired by the image feature extraction of sensor. However these methods did not describe the backscattering quantitatively, which is the important factor to cause image quality degraded. Based on the theoretical analysis and experimental results, we established a new description method of scattering layer-transmission proceeding from the physical mechanism of backscattering and forward scattering. With separating the water body between object and receiver into many independent scattering units and regarding the each scattering unit as an output of each linear subsystem, a simplified model of PSF was derived and the statistical description of backscattering noise was also gained on the basis. The model provided a framework of principles for underwater image enhancement and restoration in this study. So it is the main innovation of this article.
     2. We studied the enhancement methods for restraining the backscattering noise in the paper. The traditional image denoising methods focused on the irrelevant white noise usually. The theoretical analysis and experimental results of this paper showed that the backscattering signal was composed of the direct component and random fluctuation noise. Excluding the impact of the direct component, the random fluctuation noise showed a strong coherence, and its basic characteristics was that the energy of backscattering noise was concentrated in low frequency. The reason, as we described in the scattering multi-layer transfer model we proposed, was that backscattering was a superposition of the multi-scattering signals through the low-pass filter corresponding to the different length water. Therefore, it did not suppressing the backscattering noise of underwater images by using the existing denoising methods directly. In the study of the existing wavelet denoising method that was applied to underwater images, although the high-frequency noise components can be inhibited, the low-frequency of noise which is the main noise and overlaps with the object signal still can not be suppressed. Our conclusion is that the principle of underwater image backscattering-noise suppression is high-pass filter instead of the low-pass filter principle in the traditional denoising methods. Based on this conclusion, we presented a method to suppress the backscattering noise by using the method of combining wavelet denoising with high-pass filtering and traditional image enhancement filtering.
     3. We proposed an underwater image restoration method based on estimation. The theory of image restoration provided a schematic framework in order to solve the problem of the degraded underwater image. The researches about image restoration has always focused on the description of PSF, the models were all built on the basis of the ocean optics theory and small-angle forward scattering theory. The common feature of the existing models is that they all depend on the prior knowledge of underwater optics parameters, and the prior knowledge need to be acquired with standard ocean optical measurements and theoretical calculations, so the existing models are more suitable for the particular representative marine area. For the application of the real-time observation in offshore operations, the changes of dynamic environments make the prior knowledge unavailable, and on-site measurement is often a costly technical problem. To this end, we proposed a method of image restoration based on estimation which can restore the target image approximatively under the real-time and dynamic conditions only by analyzing the backscattering signals. The implementation of this method dued to the backscattering description based on the scattering multi-layer transfer model. Only with the in-site measurement of backscattering background, we can get the system parameters needed by restoration without any prior knowledge about underwater inherent optical parameters.
     4. We proposed a method of the target detection with the low SNR, and the method is based on the power spectrum of underwater backscattering noise. By using this method, we can obtained a better result. And the method needs no contrast of image or gray scale and size of target, so it is better than the traditional methods.
引文
[1]Kashif Iqbal, Rosalina Abdul Salam, Azam Osman, Abdullah Zawawi Talib, Underwater Image Enhancement Using an Integrated Colour Model, IAENG International Journal of Computer Science,34:2.
    [2]孙飞飞.激光水下散射对图像清晰度的影响.中国海洋大学(学位论文),2007.
    [3]江晋剑,王志远,钱萌.小波变换在水下图像处理中的应用.自动化与仪器仪表,2007,6:36-41.
    [4]彭复员,陈敬东,余西.基于函数变换的水下图像目标分割和特征提取.高技术通讯,2006,16(1):16-20.
    [5]张赫,徐玉如,万磊,唐旭东,蔡吴鹏,水下退化图像处理方法,天津大学学报,2010,43(9):827-833.
    [6]Raimondo Schettini, Silvia Corchs. Underwater image processing:State of the art of restoration and image enhancement methods. Hindawi Publishing Corporation. EURASIP Journal on Advances in Signal Processing,2010.
    [7]孙传东,陈良益,高立民,张建生,卢笛.水的光学特性及其对水下成像的影响[J].2000,21(4):39—46.
    [8]默斯顿LE.水中摄影学[M].北京:科学出版社,1980.
    [9]J.S. Jaffe, Computer modeling and design of optimal underwater imaging systems, IEEE Journal of Oceanic Engineering,1990,15(2):101-111.
    [10]T. H. Dixon, T. J. Pivirotto, R. F. Chapman, R. C. Tyce, Arange-gated laser system for ocean floor imaging, Marine Technology Society Journal,1983, vol.17.
    [11]J. McLean, K. Voss, Point spread functions in ocean water:comparison between theory and experiment, Applied Optics,1991, vol.30:2027-2030.
    [12]K. Voss, Simple empirical model of the oceanic point spread function, Applied Optics,1991, vol.30:2647-2651.
    [13]J. Ja e, K. Moore, J. McLean, M. Strand, Underwater optical imaging:status and prospects, Oceanography,2001, vol.14:66-76.
    [14]滕云枫,基于水下激光视觉技术分析的低功率半导体水下成像系统,中国海洋大学(学位论文),2006.
    [15]展旭卿,集束光水下图像系统,中国海洋大学(学位论文),2006
    [16]于亦凡,丁田夫,水下模糊图象维纳滤波和卡尔曼滤波恢复算法研究,中国海洋大学学报,2002,第32卷,第3期:482-488.
    [17]谢杰成,张大力,徐文立,小波图像去噪综述,中国图像图形学报,2002,7(3):209-217.
    [18]张学梦,基于小波理论的水下图像后向散射降噪研究,中国海洋大学(学位论文)2010
    [19]刘琚,何振亚,利用SVD对带噪声的模糊图像进行盲复原,数据采集与处理,2002,第17卷.第1期:1-4.
    [20]马田,基于后向散射噪声模型的水下图像复原算法研究,中国海洋大学(学位论文),2010.
    [21]Curtis D Mobley,Bernard Gentili. Comparison of numerical models for computing underwa-ter light fields [J]. Applied Optics,1993,12(4):7484-7504
    [22]Nhat Nguyen,Peyman Milan Fat.Efficient generalized cross-validation with application to pa-rametric image restoration and resolution enhancement[J].IEEE Transactions on Image Pr-ocessing,2001,10(9):1299-1308
    [23]屈志毅,沃焱,任志宏.基于交替迭代和神经网络的盲目图像恢复.计算机学报,2000,23(4):410-413
    [24]陈炳权,刘宏立,孟凡斌,数字图像处理技术的现状及其发展方向,吉首大学学报(自然科学版),2009,30(1):63-70.
    [25]Sos S. Agaian, Karen P. Lentz, Artyom M. Grigoryan, A new measure of image enhancement,
    [26]刘晓光,基于水下图像增强滤波方法的研究,中国海洋大学(学位论文),2010.
    [27]S. Bazeille, I. Quidu, L. Jaulin, J. P. Malkasse, Automatic underwater image pre-processing, in Proceedings of the Caracterisation du Milieu Marin (CMM'06),2006.
    [28]S. Bazeille, Vision sous-marine monoculaire pour la reconnaissance d'objets, Ph.D. thesis, University of Bretagne Occidentale,2008
    [29]M. Chambah, D. Semani, A. Renouf, P. Courtellemont, A. Rizzi, Underwater color constancy: enhancement of automatic live fish recognition, Color Imaging IX:Processing, Hardcopy, and Applications, January 2004, vol.5293, pp.157-168
    [29]A. Arnold Bos, J. P. Malkasset, G. Kervern, Towards a model-free denoising of underwater optical images, Proceedings of the IEEE Europe Oceans Conference, vol.1, pp.527-532, Brest, France, June 2005
    [30]A. Arnold Bos, J. P. Malkasse, G. Kerven, A pre-processing framework for automatic underwater images denoising, in Proceedings of the European Conference on Propagation and Systems, Brest, France, March 2005.
    [31]L. A. Torres Mendez, G Dudek, Color correction of underwater images for aquatic robot inspection, Proceedings of the 5th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Eds., vol.3757 of Lecture Notes in Computer Science, pp.60-73, Springer, St. Augustine, Fla, USA, November 2005.
    [32]翟艺书,柳晓鸣,涂雅瑗,基于模糊逻辑的雾天降质图像对比度增强算法,计算机应用,2008,28(3):662-664
    [33]TAN R T, PETTERSSON N, PETERSSON L, Visibility enhancement for roads with foggy or hazy scenes[C], IEEE intelligent Vehicles Symposium,2007:19-24.
    [34]祝培,朱虹,钱学明,一种有雾天气图像景物摄影的清晰化方法[J],中国图象图形学报,2004,9(1):124-128.
    [35]王萍,张春,罗颖听,一种雾天图像低对比度增强的快速算法[J],计算机应用,2006,26(1):152—156.
    [36]翟艺书,柳晓鸣,涂雅瑗,陈亚宁,一种改进的雾天降质图像的清晰化算法,大连海事大学学报,2007,33(3):56-58.
    [37]曾好德,张韧,基于小波分解的薄云薄雾模糊图像的恢复与增强,解放军理工大学学报,2005,6(1):76-80
    [38]祝培,恶劣天气环境下图像的清晰化,西安理工大学(学位论文),2004.
    [39]M.E. Alexander, R. Baumgartner, M. Klarhoefer, E. Moser, R.L. Somorjai, Removal of correlated noise from MR images using wavelet domain filters, Proc. Intl. Soc. Mag. Reson. Med. 8(2000):1775.
    [40]Slark L K,Yu C.Denoising by Optimal Fuzzy Thresholding in Wavelet Domain. Electronics Letters,2000,36(6):581-582.
    [41]沈垣,李舜酩,毛建国,辛江慧,数字图像复原技术综述,南京航空航天大学能源与动力学院,中国图像图形学报,2009年9月,14(9):1765-1775.
    [42]冈萨雷斯,数字图像处理(第二版),电子工业出版社,2003.
    [43]W. Hou, Deric J. Gray, Alan D. Weidemann, and Robert A. Amone, Comparison and validation of point spread models for imaging in natural waters, OPTICS EXPRESS, Vol.16, No.13, pp.9958-9965, 2008.
    [44]W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, J. L. Forand, Automated underwater image restoration and retrieval of related optical properties, in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '07), pp.1889-1892,2007
    [45]W. Hou, A. D. Weidemann, D. J. Gray, G. R. Fournier, Imagery-derived modulation transfer function and its applications for underwater imaging, in Applications of Digital Image Processing, vol.6696 of Proceedings of SPIE,SanDiego, Calif, USA, August 2007.
    [46]Z. Liu, Y. Yu, K. Zhang, H. Huang, Underwater image transmission and blurred image restoration, Optical Engineering, vol.40, no.6, pp.1125-1131,2001.
    [47]E. Trucco, A. Olmos, Self-tuning underwater image restoration, IEEE Journal of Oceanic Engineering, vol.31, no.2, pp.511-519,2006.
    [48]Ozkam M K, Erdem A T, Sezan M I. Efficient multiframe Wiener restoration of blurred and noisy image sequences[J].IEEE Transactions on Image Processing,1992,1(4):453-478
    [49]Wu W,Kundu A. Image estimation using fast modified reduced update Kalman filter[J].IEEE Transactions on signal Processing.1992,40(4):915-926
    [50]D.Kundur and D.Hatzinakos.A Novel Blind Deconvolution Scheme for Image Restoration using Recursive Filtering[J].IEEE Trans.Signal Processing,1998,26(2):375-390
    [51]J. Ahlen, D. Sundgren, E. Bengtsson, "Application of underwater hyperspectral data for color correction purposes, Pattern Recognition and Image Analysis, vol.17, no.1, pp.170-173,2007.
    [52]W. H. Wells, Theory of small angle scattering, NATO 1973.
    [53]L. E. Mertens and J. F. S. Replogle, Use of point spread and beam spread functions for analysis of imaging systems in water, J. Opt. Soc. Am., Vol.67, pp.1105-1117,1977.
    [54]J. W. McLean and K. J. Voss, Point spread function in ocean water: comparison between theory and experiment, Applied Optics, Vol.30, Issue 15, pp.2027-2030,1991.
    [55]V.I. Haltrin, V.L. Mankovsky, Analytical representation of experimental light scattering phase functions measured in seas, oceans and lake Baykal, in Proc. of 2002 IEEE International Geoscience and Remote Sensing Symposium, Vol.5, pp.2651-2653,2002.
    [56]Raimondo Schettini and Silvia Corchs, Underwater image processing:state of the art of restoration and image enhancement methods, EURASIP Journal on Advances in Signal Processing, Vol.2010, Article ID 746052,14 pages,2010 (doi:10.1155/2010/746052)
    [57]F. Fan, K. Yang, M. Xia, W. Li, B. Fu, W. Zhang, Underwater image restoration by means of blind deconvolution approach, Frontiers of Optoelectronics in China, Volume 3, Issue 2, pp.169-178,2010
    [58]Ozkam M K, Erdem A T, Sezan M I. Efficient multiframe Wiener restoration of blurred and noisy image sequences [J]. IEEE Transactions on Image Processing,1992,1(4):453-478
    [59]Wu W,Kundu A. Image estimation using fast modified reduced update Kalman filter[J].IEEE Transactions on signal Processing.1992,40(4):915-926
    [60]Hunt B R. The application of constrained least squares estimation to image restoration by digital computer[J].IEEE Transaction on computers,1973,22(9):805-812
    [61]Erler K, Jernigan E. Adapive image restoration using recursive image filters[J].IEEE Tran-sactions on Signal Processing,1994,42(7):1877-1881
    [62]Chow T W S,Li X D, Cho S Y. Improved blind image restoration scheme using recurrent filtering[J].IEEE Proc. Vis.,Image Processing,2000,147(1):23-28
    [63]Reeves S J, Mesereau R M.Automatic assessment of constraint sets in image restoration[J]. IEEE Transactions on Image Processing,1992,1 (1):119-122
    [64]于亦凡,陈维真,黄海龙,图像传输方法测量海水的点扩展函数,光学学报,2000,第20卷,第12期,1647-1651。
    [65]涂国勇,杨乐平,崔吉俊,基于小波的信噪分离方法,国防科技大学学报,1999,第21卷,第4期,40-4。
    [66]胡茂海,谢仁龙,高万荣,薄雾模糊图像的恢复算法研究,红外技术,2004,第26卷,第6期,76-78。
    [67]张航,罗大庸,图像盲复原算法研究及其展望,中国图象图形学报,2004,第9卷,第10期,1145-1152。
    [68]Kurdur D, Hatzinakos D, Blind image deconvolution revisited, IEEE Signal Processing Magazine,1996, Vol.13, No.6,61-63.
    [69]Donoho D L, De-noising by soft-thresholding, IEEE Trans, on Information Theory,1995, Vol.41, No.3,613-627.
    [70]刘雪明,水下激光成像分辨率影响因素的理论分析.电子器件,1998,21—1:13—17。
    [71]李建平著.小波分析与信号处理—理论、应用及软件实现.重庆:重庆出版社.1997
    [72]刘明才著.小波分析及其应用.北京:清华大学出版社.2005
    [73]王大凯,彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社.2006.58-122
    [74]郝志航.小波分析在图像去噪于压缩中的应用研究:[学位论文].长春:中国科学院研究生院,2005
    [75]Donoho D, Johnstone. Ideal spatial adaptation via wavelet shrinkage [J] Biometrika, 1994.81:425-452
    [76]董卫军,樊养余,周明全.基于多小波变换的图像去噪.计算机应用与软件,2007,24(12):32-34.
    [77]赵瑞珍,胡占义,胡绍海.天体光谱信号去噪的小波域复合闽值新算法.光谱学与光谱分析,2007.
    [78]A.M.Comak,Pepresentation of a function by its line integrals,with some radiological applications,J.Appl.Phys.,34(1963),2722-2727
    [79]Junmei Zhong,Ruola Ning,David Conover.Image Denoising Based on Multiscale Singularity Detection for Cone Beam CT Breast Imaging.IEEE Transactions on Medical Imageing,2004,23(6):696-703.
    [80]R.M.Lewitt,Reconstruction algorithms:transform methods,Proc.IEEE,71(1983),390-408
    [81]桂志国,韩焱,王明泉等.射线图象自动配准技术.无损检测,2002,21(10):1-3
    [82]刘杰,李政,康克军.小波多分辨率CT成像及处理算法.光电工程.2004,29(2):48-51.
    [83]Yang Shubin, Peng Fuyuan, Underwater Laser Imaging for Dim Target Detection Based on K-L Transform, Journal of Detection & Control:Vol.30 No.6, Dec,2008
    [84]X. F. Liang, T. Asano, A Linear Time Algorithm for Binary Fingerprint Image Denoising using Distance Transform. IEICE Trans. INF.&SYST.2006, E89-D(4):1534-1542.
    [85]Di Hongwei and Bo Lijun, Image Denoising in Near-field Optical Scanning Microscopy.Acta Photonica Sinica 2006,35(6):940-943.
    [86]Jinhui Tang, Xiuqing Wu, Pengwei Wang, Scale-Space and Inverse Diffusion Function Based Image Denoising. Journal of data acquisition&processing, Chinese Sept.2006,251-255.
    [87]Jinhui Tang,Xin Yang,Xiuqing Wu,Image Denoising Based on Edge Recovery, The 6th World Congress on Intelligent Control and Automation(WCICA06), Dalian, China. June,2006.
    [88]洪明坚.图像增强的自适应直方图修正算法研究及其应用,硕士论文.重庆:重庆大学,2002.
    [89]B.Svensson,M.Andersson,P.Smedby,H.Knutsson.Efficient 3-D Adaptive Filtering for Medical Image Enhancement.Proceedings of the IEEE International Symposium on Biomedical Imaging.April,2006
    [90]唐志航,黄哲,张东衡.基于尺度相关性的自适应图像增强新算法.计算机应用,2006,26(9):2084-2085.
    [91]Thomas Luft, Carsten Colditz, Oliver Deussen.Image enhancement by unsharp masking the depth buffer. ACM Transactions on Graphics(TOG),2006,25 (3):1206-1213.
    [92]Sos Agaian,Blair Silver,and Karen Panetta.Tranform Coefficient Histogram Based Image Enhancement Algorithms Using Contrast Entropy.IEEE Transactions on ImageProcessing,2006.
    [93]李建水下图像后向散射的去噪问题研究[学位论文]。青岛:中国海洋大学.2009
    [94]李丽,王振领.MATLAB工程计算及应用.北京:人民邮电出版社,2001.43-51
    [95]姚若河,黄继武,吴湘淇.改进的直方图均衡化图像增强算法.铁道学报,1997,19(6):78-81
    [96]刘忠仁,孙圣和.基于模糊神经网络的脉冲噪声滤波器.中国图形图像学报.2001,6(4):36-39.
    [97]Y. Y. Schechner, N. Karpel, Recovery of underwater visibility and structure by polarization analysis, IEEE Journal of Oceanic Engineering,30(3), pp:570-587,2005.
    [98]G. Koennen, Polarized Light in Nature, Cambridge University Press, Cambridge, UK,1985.
    [99]Hunt B R. The application of constrained least squares estimation to image restoration by digital computer[J].IEEE Transaction on computers,1973,22(9):805-812

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700