用户名: 密码: 验证码:
光声技术在生物医学成像中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光声成像(Photoacoustic Tomography/PAT)利用短脉冲激光照射生物组织所产生的超声波进行成像,反映生物组织对特定波长激光吸收特性的空间分布,可得到高分辨率和对比度的组织断层图像。本文首先对生物组织的光学和声学特性、光声信号的产生机理以及图像重建算法进行了总结。在此基础上,用数值模拟的方法研究了影响成像空间分辨率的若干因素。用数值模拟与实验相结合的方法研究了超声探头的频率响应特性对光声图像对比度的影响并提出了相应的信号处理方法。完成了基于线性阵列超声探头的光声成像系统,提高了光声成像的速度。完成了基于非聚焦针状超声探头的光声成像系统,得到了活体白鼠脑皮层血管和离体动物眼球的高对比度光声图像。主要内容包括:
     1.以点扩展函数(Point Spread Function/PSF)为依据,用数值模拟的方法计算了滤波器上限截止频率与带宽、探头探测面孔径大小以及探头的探测距离与光声成像空间分辨率的关系。结果表明:点扩展函数的半峰全宽(FWHM)随着滤波器带宽和上限截止频率的增加呈指数的关系减小;在相同的探头扫描半径情况下,点扩展函数的扩散范围随着探头有效探测面直径的增加而线性地扩大;在相同的探测面直径下,点扩展函数的扩散程度随着探头的扫描半径的减小而增加。模拟计算的结果为实验中成像空间分辨率的提高提供了理论依据。
     2.提出了基于维纳滤波的点源逆卷积的信号处理方法,避免了逆卷积过程中对宽带光声信号进行带通滤波时对滤波器带宽和截止频率的人为限制,宽带光声信号的幅频特性得到了很好地恢复,显著提高了光声图像的对比度。
     3.在国内率先对光声技术在眼科成像中的应用进行了试探性的研究,得到了高对比度的离体猪眼睛整体生理结构的光声图像。
     4.研究了探头的空间扫描位置对成像质量的影响,发现了图像中像素点空间位置坐标的累积误差是造成图像边缘变形的重要因素,可以通过适当增大探头的扫描半径来消除这一因素的影响。
In photoacoustic tomography(PAT), a short-pulsed laser is used to irradiate biological tissue samples to generate acoustic wave. Photoacoustic image reconstructed from the photoacoustic(PA) signal reveals the spatial optical absorption distribution at a certain wave length and has the advantage of both high imaging resolution and contrast. In this dissertation, the optical and acoustic properties of biological tissue is firstly summarized. Then, several factors that influences the spatial resolution is researched by numerical simulation. The relationship between the transducer frequency response and imaging contrast is researched both by numerical simulation and experiment. The corresponding signal processing method is also proposed. A photoacoustic imaging system based on the linear acoustic transducer array is developed and the imaging speed had been improved. A photoacoustic imaging system based on unfocused needle acoustic transducer is developed and the photoacoustic image with high contrast and resolution of the blood vessel network inside mouse brain in-vivo and the porcine eyeball ex-vivo is acquired. The main contents in this dissertation is as follows:
     1. Taking the Point-Spread-Function(PSF) as the criteria, the relationship between the spatial resolution and the several influencing factors such as the band-width and upper cutoff frequency of the filter, the diameter of the transducer active detecting surface and the transducer detecting radius is researched numerically. The results shows that the full width at half maximum(FWHM) of PSF decreases exponentially with the increase of the band-width and the upper cutoff frequency of the filter. The PSF diffuses linerly with the increase of the active detecting diameter of the transducer. With the same active detecting diameter of the transducer, the PSF diffuses with the decrease of the transducer scanning radius. The numerical simulation provides the theoretical basis for the improvement of the spatial resolution of PA image.
     2. The deconvolution algorithm with wiener filter based on the transducer point source response is presented. The method had avoided the determination of the band-width and the cutt-off frequency of the band-pass filter manually during deconvolution. The frequency spectrum of the wide-band PA signal had been restored preferably and the imaging contrast had been improved.
     3. The trial photoacoustic tomography for ophthalmology is performed. The two dimensional optical absorption image of the entire porcine eyeball was reconstructed with high imaging contrast.
     4. The relationship between the spatial position of the transducer and the PA image quality is researched. The accumulated spatial position error of pixels in PA image is founded to be the main factor that causes the distortion on the edge of the PA image. The distortion can be eliminated by the increase of transducer scanning radius.
引文
[1]Kruger RA, Kiser Jr WL, Reinecke DR, Kruger GA , “Application of thermoacoustic computed tomography to breast imaging,” Proc. SPIE., 3659, pp. 426-430, 1999.
    [2]Minghua Xu, Lihong V. Wang,“Time-domain reconstruction for thermoacoustic tomography in a spherical geometry, ” IEEE Trans. on Medical Imaging, 21(7) , pp. 814-822,2002.
    [3]Valeriy G. Andreev,Alexander A. Karabutov, Alexander A. Oraevsky,“Detection of ultrawide –band ultrasound pulses in optoacoustic tomography, ” IEEE Trans. on ultrasonics, ferroelectrics and frequency control, 50(10) , pp.1383-1390,2003
    [4]Yaguang Zeng, DaXing,Yi Wang. ,“Photoacoustic and ultrasonic coimage with a linear transducer array, ” Opt. Lett., 29(16) , pp.1760-1762,2004.
    [5]Foster KR and Arkhipov NS, “Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves, ” Science 185(147), pp.256-258,1974
    [6]Chou CK, Galambos R, Guy AW, and Lovely RH, “ Coclear microphonics generated by microwave pulses, ” Journal of Microwave Power 10, pp.361-367,1975.
    [7]Baranski S and Czerski P, “ Interaction of microwaves with living systems, ” Biologic Material – Microwave Properties, Chapter 3, Warsaw, Polish Medical Publishers, 1976
    [8]Lin JC, “ The microwave auditory phenomenon, ” Proc. IEEE, 68,pp.67-73, 1980.
    [9]von Gutfeld RJ, “Thermoelastic generation of elastic waves for non-destructive testing and medical diagnostics, ” Ultrasonics, 18(4), pp.175-181,1980.
    [10] Bowen T , “Radiation-induced thermoacoustic soft tissue imaging, ” Proceedings IEEE Ultrasonics Symposium 2, pp.817-822,1981.
    [11]Olsen RG and Lin JC, “Acoustic imaging of a model of a human hand using pulsed microwave irradiation,” Bioelectromagnetics 4, pp.397-400, 1983.
    [12]Lin JC and Chan KH , “Microwave thermoelastic tissue imaging –system design,”. IEEE Trans. Microwave Theory Tech. 32, pp.854-860, 1984.
    [13]Chan KH and Lin JC , “Microwave-induced thermoacoustic tissue imaging,”. Proc. Engineering in Medicine and Biology Society 10th Annual International Conference (New Orleans), 1988.
    [14]W.F. Cheong, S.A. Prahl and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J Quantum Elect 26, 2166–2185, 1990.
    [15]F.A. Marks, H.W. Tomlinson and G.W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissuecharacterization by spectral discrimination,” in Proc SPIE Photon Migration and Imaging in Random Media and Tissues, B. Chance and R.R. Alfano, eds, 1888, pp. 500–510, 1993.
    [16]L.-H.V. Wang, S.L. Jacques and X.-M. Zhao , “Continuouswave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt Lett 20, 629–631, 1995.
    [17]W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204 14-19, 1995.
    [18]M. Kempe, M. Larionov, D. Zaslavsky and A.Z. Genack, “Acousto-optic tomography with multiply-scattered light,” J Opt Soc Am 4, 1151-1158, 1997.
    [19]Kruger RA, Kiser Jr WL, Miller KD, Reynolds HE, “Thermoacoustic CT: imaging principles, ” Proc. of SPIE. 3916, pp.150-159,2000.
    [20]Minghua Xu, Lihong V. Wang,“Time-domain reconstruction algorithms and numerical simulation for thermoacoustic tomography in various geometries,” IEEE Trans. on biomedical engineering, 50(9), pp.1086-1099,2003.
    [21]Christoph G. A. Hoelen ,Frits F. M. de Mul,“Image reconstruction for photoacoustic scanning of tissue structures,” Appl.Opt.,39(31) ,pp.5872-5883,2000.
    [22] Kornel P Kostli, Martin Frenz, Hans Bebie and Heinz P Weber ,“Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, pp.1863-1872,2001.
    [23]吴恩惠 主编,“医学影像学(第四版)”,北京:人民卫生出版社,2001.
    [24]谢静霞,杜湘珂 主编,“医学影像学”,北京:北京医科大学出版社,2002.
    [25]孟俊非 主编,“医学影像学”,北京:高等教育出版社,2004.
    [26]李麟荪 主编,“医学影像学”,南京:东南大学出版社,2002.
    [27]侯家声 汪宝林 等主编,“医学影像学新进展”,济南:山东大学出版社,1996.
    [28](美)斯普罗斯(Sprawls,Perry)著 黄诒焯等译,“医学成像的物理原理”,北京: 高等教育出版社,1993.
    [29]杨国忠等 编著,“医学成像技术”,北京:人民卫生出版社,1987.
    [30]霍纪文,王秀章主编,“医学成像技术”,沈阳:辽宁科学技术出版社,1994.
    [31]苏翼雄,王瑞康, 徐可欣,“时域光声谱技术及其在生物组织检测中的应用. 光谱学与光谱分析”,25(8), pp.1176-1179,2005.
    [32]Wang LH, Zhao XM ,“Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue- simulating turbid media,” Appl.Opt., 36, pp. 7277-7282, 1997.
    [33]Jacques SL , Kirkpatrick SJ ,“Acoustically modulated speckle imaging of biological tissues,” Opt. Lett., 23(11) pp.879-881, 1998.
    [34]Marks FA, Tom linson HW, Brooksby GW ,“A comprehensive approach to breast cancer detection using light photon localization by ultrasound modulation of multiply scattered light,” Physica B, 204, pp.14-19, 1995.
    [35]Lihong V. Wang,“Ultrasound-mediated biophotonic imaging: A review of acousto-optical - 92 -tomography and photo-acoustic tomography,” Disease Markers, 19, pp.123-128, 2004.
    [36]J. J. Niederhauser, D. Frauchiger, H. P. Weber, M. Frenz,“Real-time optoacoustic imaging using a Schlieren transducer,” Appl. Phys. Lett. 81(4), pp. 571-573, 2002.
    [37] J. J. Niederhauser, M. Jaeger, and M. Frenz,“Real-time three-dimensional optoacoustic imaging using an acoustic lens system,” Appl. Phys. Lett. 85(5), pp. 846-848, 2004.
    [38] Kornel P. Kostli, Martin Frenz, Heinz P. Weber, Gunther Paltauf, Heinz Schmidt-Kloiber ,“Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction,” Appl. Opt. 40(22), pp. 3800-3809, 2001.
    [39] P. C. Beard, F. Perennes, E. Draguioti, T. N. Mills,“Optical fiber photoacoustic–photothermal probe,” Opt. Lett., 23(15) pp.1235-1237, 1998.
    [40] Beard PC , Mills TN,“An optical detection system for biomedical photoacoustic imaging,” Proc. SPIE ,3916, pp.100-109, 2000.
    [41] Beard PC, Mills TN,“2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom,” Proc. SPIE, 4256, pp34-42, 2001
    [42] Beard PC,“Photoacoustic imaging of blood vessel equivalent phantoms,” Proc. SPIE ,4618, pp.54-62, 2002.
    [43] Barry P. Payne, Vasan Venugopalan, Bora B. Mikic,“Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” Journal of Biomedical Optics, 8(2), pp.273-280 ,2003.
    [44] G. Paltauf and H. Schmidt-Kloiber,“Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75(8), pp. 1048-1050, 1999.
    [45] Lihong V. Wang, Xuemei Zhao, Haitao Sun, Geng Ku,“Microwave-induced acoustic imaging of biological tissues,” REVIEW OF SCIENTIFIC INSTRUMENTS, 70(9), pp. 3744-3748, 1999.
    [46]Dazi Feng, Yuan Xu, Geng Ku, and Lihong V. Wang, “Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture, ” Med. Phys. 28(12), pp. 2427-2431.2001.
    [47]A.A.Oraevsky,E.V.Savateeva,S.V.Solomatin,A.A.Karabutov,Z.Gatalica,T.Khamapirad, “Diagnostic imaging of breast cancer microvasculature with optoacoustic tomography, ” Proc. of the Second Joint EMBS/BMES Conference, Houston, TX,USA, Oct. 23-26, 2002.
    [48]Alexander A. Karabutov, Elena V. Savateeva, Natalia B. Podymova, Alexander A. Oraevsky, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer, ” Appl.Phys. 87(4), pp.2003-2014, 2000.
    [49]Rinat O. Esenaliev, Alexander A. Karabutov, and Alexander A. Oraevsky, “Sensitivity of Laser Opto-Acoustic Imaging in Detection of Small Deeply Embedded Tumors, ” IEEE Journal of Selected Topics in Quantum Electronics, 5( 4), pp. 981-988,1999.
    [50]Alexander A. Oraevsky, Steven L. Jacques, and Frank K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress, ” Appl.Opt. 36(1), pp. 402-415,1999.
    [51]Bowen T, Nasoni L, Pifer AE , “Some experimental results on the thermoacoustic imaging ofsoft tissue-equivalent phantoms, ” Proc IEEE Ultrasonics Symposium 2, 823-827,1981.
    [52]Nasoni RL, Evanoff Jr GA, Halverson PG,and Bowen T. , “Thermoacoustic emission by deeply penetrating microwave radiation, ” Proc. IEEE Ultasonics Symposium 5,pp.633-637,1984.
    [53]S. K. Gayen, M. E. Zevallos, B. B. Das, and R. R. Alfano, “Time-sliced transillumination imaging of normal and cancerous breast tissues,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, Eds. Orlando, FL: Opt. Soc. Amer , 21, pp. 63-66, Mar. 1998.
    [54]V. Ntziachristos, X. H. Ma, M. Schnall, A. Yodh, and B. Chance, “Concurrent multi-channel time-resolved NIR with MR mammography: Instrumentation and initial clinical results,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto and M. S. Patterson, Eds. Orlando, FL: Opt. Soc. Amer., 21, pp. 284-288. Mar, 1998.
    [55]S. Fantini, S. A. Walker, M. A. Franceschini, A. E. Cerussi, J. Edler, K. T. Moesta, P. M. Schlag, M. Kaschke, and E. Gratton, “Optical characterization of breast tumors by frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, J.G. Fujimoto and M. S. Patterson, Eds. Orlando, FL: Opt. Soc. Amer., 21, pp. 289-293, Mar. 1998.
    [56]R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved reflectance and transmittance spectroscopy from 610-nm to 1010-nm in breast tissues,” in Advances in Optical Imaging, Photon Migration and Tissue Optics, A. C. Boccara, Ed., in Tech. Dig. Biomedical Optics Conf., Munich, Germany: Opt. Soc. Amer., pp. 246 , June 1999.
    [57]R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Karabutov, “Laser optoacoustic imaging for breast cancer dignostics: limit of detection and comparison with x-ray and ultrasound imaging,” in Optical Tomography II, B. Chance, R. Alfano, and A. Katzir, eds., Proc. SPIE 2979, pp.71–82 ~1997.
    [58]Geng Ku, Xueding Wang, George Stoica, Lihong V Wang, “Multiple-bandwidth photoacoustic tomography, ” Phys. Med. Biol. 49 ,pp. 1329-1338, 2004.
    [59]Geng Ku, Lihong V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent, ”Opt.Lett. 30(5), pp. 507-509, 2005.
    [60]Geng Ku, Xueding Wang, Xueyi Xie, George Stoica, and Lihong V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography, ” Appl.Opt. 30(5), pp. 770-775, 2005.
    [61]Xueding Wang ,Geng Ku, Malgorzata A. Wegiel, Darryl J. Bornhop, George Stoica, Lihong V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent, ” Opt.Lett. 29(7), pp. 730-732, 2004.
    [62]R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser Jr, D. R. Reinecke, G. A. Kruger , “Contrast enhancement of breast cancer in vivo using thermoacoustic CT at 434 MHz, ” Radiology 216, pp.279-283, 2000.
    [63]R. A. Kruger , W. L. Kiser Jr, “ Thermoacoustic CT of the breast: pilot studyobservations, ”Proc. SPIE, 4256, pp.1-5,2001.
    [64]R. A. Kruger, K. Stantz, W. L. Kiser Jr, “ Thermoacoustic CT of the breast, ” Proc. SPIE 4682, pp.521-525, 2002.
    [65]Rinat O. Esenaliev, Irina V. Larina, Kirill V. Larin, Donald J. Deyo, Massoud Motamedi,, Donald S. Prough , “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility studys, ” Appl.Opt. 41(22), pp.4722-4731, 2002.
    [66]Markolf(德) 著, 张镇西等 译 ,“激光与生物组织的相互作用”,西安交通大学出版社,西安,1999
    [67]徐国祥 主编,“实用激光医学”,广东高等教育出版社,广州,1990。
    [68]王惠文 编著,“激光与生命科学”,北京理工大学出版社,北京,1995。
    [69]唐建民 赵玉衡等 主编,“实用激光医学”,科学技术出版社重庆分社,重庆,1989
    [70]朱菁 主编,“激光医学”,上海科学技术出版社,上海,2003
    [71]史宏敏 主编,“激光医学基础”,华南理工大学出版社,广州,1990
    [72]白净 著,“医学超声成像机理”, 清华大学出版社, 北京,1998
    [73]周康源 著,“生物医学超声工程”,四川教育出版社,成都,1991
    [74]周永昌 郭万学 主编,“超声医学”,科学技术文献出版社,北京,2003
    [75]金树武 主编,“医学超声”,浙江大学出版社,杭州,1992
    [76]王鸿樟 编著,“声学及医学超声应用”,上海交通大学出版社,上海,1991
    [77]万明习,卞正中,程敬之,“医学超声学-原理与技术”,西安交通大学出版社,西安,1992
    [78]郑德连,“医学超声原理与仪器”,上海交通大学出版社,上海,1990.
    [79]G.J.Diebold, T.Sun. “Properties of photoacoustic waves in one, two and three dimensions,” Acustica, 80, pp.339-351, 1994.
    [80]Minghua Xu, Lihong V. ,“Wang.Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Transactions on Medical Imaging, 21(7) , pp.814-822,2002.
    [81]Valerity G. Andreev, “Wide-band acoustic pulse detection in opto-acoustic tomography system,” IEEE Ultrasonics Symposium, pp.1205-1208,2000.
    [82]G. Ku and L.-H.V.Wang, “Scanning thermoacoustic tomography in biological tissues,” Med.Phys., 27,pp.1195-1202,2000.
    [83]G. Ku and L.-H.V.Wang, “Scanning microwave-induced thermoacoustic tomography:signal, resolution, and contrast,” Med.Phys., 28,pp.4-10,2001.
    [84]M.H Xu, G.Ku,and L. H.V.Wang, “Microwave-induced thermoacoustic tomography using multi-sector scanning,” Med.Phys., 28, pp.1958-1963,2001.
    [85]C.G.A.Hoelen Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt.Lett. , 23(8), pp.648-650,1998.
    [86]C. G. A. Hoelen and F. F. M. de Mul, “A new theoretical approach to photoacoustic signalgeneration,” J. Acoust. Soc. Am. 106, pp.695-706 ,1999.
    [87]C. G. A. Hoelen, R. Pongers, G. Hamhuis, F. F. M. de Mul, and J. Greve, “Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue,” in Optical and Imaging Techniques for Biomonitoring III, H. J. Foth, R. Marchesini, H. Podbielska, and A. Katzir, eds., Proc. SPIE , 3196, pp.142-153, ,1998.
    [88]Kruger RA. , “Photo-acoustic ultrasound ,” Medical Physics 1994; 21(1):127-131.
    [89]Kruger RA, Liu P, “Photoacoustic ultrasound: Pulse production and detection in 0.5% liposyn,” Medical Physics, 21(7), pp.1179-1184, 1994.
    [90]Kruger R, Liu P, Fang R. , “Photoacoustic ultrasound (PAUS) – reconstruction tomography,” Medical Physics 22(10), pp.1605-1609, 1995.
    [91]Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser Jr W. , “ Thermoacoustic computed tomography – a medical imaging paradigm,” Radiology, 211, pp.275-278. 1999.
    [92]Kruger RA, Reinecke DR, Kruger GA. , “Thermoacoustic computed tomography – technical considerations,” Medical Physics 26(9):1832-1837, 1999.
    [93]Kiser Jr W and Kruger RA. , “Thermoacoustic computed tomography – imaging simulations,” Proc SPIE 3659:895-904, 1999.
    [94] K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, “Optoacoustic imaging using a three-dimensional reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 7, pp.918-923 2001.
    [95]Kornel P. Kostli and Paul C. Beard, “Two-dimensional photoacoutic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl.Opt.,42(10), pp. 1899-1908,2003.
    [96]Yuan Xu and Lihong V. Wang, “Signal processing in scanning thermoacoustic tomography in biological tisues”, Med.Phys. ,28(7), pp.1519-1524, 2001.
    [97]赵凯华,钟锡华 编著 光学 第七章, 北京大学出版社,北京,1984.
    [98]Minghua Xu and Lihong V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. , 67, pp.056605-1~056605-14,2003.
    [99]Minghua Xu and Lihong V. Wang, “Pulsed-microwave-induced thermoacoutic tomography:Filtered backprojection in a circular measurement configuration,” Med.Phys.,29(8), pp.1661-1669,2002.
    [100]苏翼熊,二维光声成像技术在医学检测应用的基础研究,第四章,天津大学博士论文,2006.
    [101]Zibiao Wei, Shujun Yang, Amin N. Dharamsi, and Barbara Hargrave, “ Applications of wavelet transforms in biomedical optoacoustics, ” Proc. SPIE., 3916, pp.249-257,2000.
    [102]Igor Patrickeyev and Alexander A. Oraevsky, “Multiresolution reconstruction method to optoacoustic imaging ,” Proc. SPIE , 4960, pp. 99-105,2003.
    [103]Torrence, C., and G.P. Compo, “A practical guide to wavelet analysis,” Bull. Amer. Meteor. Soc., 79, 61-78,1998.
    [104]David L. Donoho, “De-Noising by Soft-Thresholding, ” IEEE Trans. on IT, 41(3), pp.612- 627, 1995.
    [105]Ramesh Neelamani,Hyeokho Choi,Richard Baraniuk, “ ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems, ” IEEE Trans. on signal processing , 52(2), pp.418-433, 2004.
    [106]陈智文,张旦松 主编,“B型超声诊断仪原理、调试与维修”,湖北科学技术出版社发行,武汉,1992
    [107]Bangzheng Yin, Da Xing,Yi Wang. , “Fast photoacoustic imaging system based on 320-element linear transducer array,” Physics in Medicine and Biology. 49, pp. 1339-1346, 2004.
    [108]D. A. Hutchins and A. C. Tam, “Pulsed photoacoustic materials characterisation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, pp.429-449 ,1986.
    [109]A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, pp.381-431, 1986.
    [110]R. A. Mucci, “A comparison of efficient beamforming algorithms,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, pp.548-558,1984.
    [111]D. E. Dudgeon, “Fundamentals of digital array processing,” Proc. IEEE 65, pp.898-904 1977.
    [112]D. H. Johnson and D. E. Dudgeon, “Beamforming,” in Array Signal Processing: Concepts and Techniques ~PTR Prentice-Hall, Englewood Cliffs, N.J., Chap. 4, pp. 111-190,1993.
    [113]Diwu Yang, Da Xing,a_ Huaimin Gu, Yi Tan, and Lvming Zeng. , “Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm,” .Appl.Phys.Lett., 87,2005.
    [114] J. K. Barton, G. Frangineas, H. Pummer, and J. F. Black, “Cooperative phenomena in two-pulse, two-color laser photocoagulation of cutaneous blood vessels,” Photochem. Photobiol. 73, pp.642-650,2001.
    [115] P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE 1888, pp.454-465 ,1993.
    [116] Kety, S.S. , Schmidt, C.F. , “ The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men,” J. Clin. Invest. 27, pp.484–491 ,1948.
    [117] Siesjo, B. Brain Energy Metabolism (John Wiley, New York, 1978).
    [118] Bereczki, D. et al. , “Hypoxia increases velocity of blood-flow through parenchymal microvascular systems in rat brain,” Cerebr. Blood F. Met. 13, pp. 475-486 ,1993.
    [119] Duong, T.Q., Iadecola, C. , Kim, S.G. , “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn.Reson. Med. 45, 61-70 , 2001.
    [120]Xueding Wang,Yongjiang Pang, Geng Ku. , “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Biotechnology, 21(7), pp.803-806, 2003.
    [121]刘磊 ,“眼超声生物显微镜诊断学”,北京科学技术出版社,北京,2002
    [122]Carmen A P, Michael R H, Charles P L, et al. , “Imaging of macular disease with optical coherence tomography,” Ophthalmology, 102, pp. 217-229,1995.
    [123]Hee MR, Puliafito CA, Wong C, et al. , “Optical coherence tomography of macular. holes,” Ophthalmology, 1102, pp. 748-756,1995.
    [124]Hee MR,Puliafito CA,Wong C,et al , “Optical coherence tomography of central serous chorioretinopathy,” Am J Ophthalmol, 120, pp.65-74, 1995.
    [125]Wang RK,Elder JB , “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissues,” Lasers Surg Med, 30, pp. 201-208, 2002.
    [126]Cilesiz I,Fockens P,Kerindongo R,et a1,“Comparative optical coherence tomography imaging of human esophagus How accurate is localization of the muscularis mucosae,” Gastrointest Endosc 56, pp.852-857, 2002.
    [127] The American National Standards Institude, American National Standard for the Safe Use of Lasers in Health Care Facilities:Standards Z136.1-2000(ANSI,Inc., NewYork,2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700