用户名: 密码: 验证码:
合成孔径雷达成像方法与对合成孔径雷达干扰方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达是一种能够全天候、全天时、远距离提供高分辨率雷达图像的成像雷达,它的出现扩展了原始的雷达概念,它具有对区域目标进行成像和识别的能力,在军用和民用领域都具有非常重要的价值。由于合成孔径雷达具有卓越的性能以及广泛的军事用途,对合成孔径雷达干扰方法的研究也十分紧迫,该研究对国防技术现代化发展具有重大的意义。
     为了研究对合成孔径雷达的干扰方法,必须掌握合成孔径雷达的工作原理及其成像算法,从而为对合成孔径雷达干扰方法的研究提供平台,本论文就是围绕合成孔径雷达成像方法与对合成孔径雷达的干扰方法展开研究。论文主要涉及下面几个方面的研究内容:合成孔径雷达的距离向和方位向成像原理、条带式SAR与聚束式SAR的成像处理方法研究、合成孔径雷达的成像算法及其改进算法研究、对合成孔径雷达的干扰方法研究、对合成孔径雷达的干扰效果评估方法研究。主要工作概括如下:
     1.研究了合成孔径雷达的距离向成像原理和方位向成像原理。从距离向和方位向两个一维信号处理入手进行研究,为后面章节合成孔径雷达的二维成像方法研究打下基础。研究了距离向成像所涉及的处理方法,其中包括距离向匹配滤波重建处理方法和距离向解线频调(dechirp)处理方法,并比较了两者的异同点。针对不同的处理方法,研究了距离向信号处理的采样率选择问题,从而达到降低距离向采样率的目的。从距离向点扩展函数的角度出发,对距离向分辨率进行了分析。给出了距离向图像重建的步骤。研究了方位向成像所涉及的处理方法,其中包括方位向匹配滤波重建处理方法和方位向dechirp处理方法,研究表明方位向dechirp处理在聚束式SAR系统中是降低PRF的信号处理工具,也是SAR系统通过数字聚焦方法完成指定场景成像的信号处理工具。研究了不同条件下方位向信号处理的采样率选择问题,从而达到降低方位向采样率的目的。从方位向点扩展函数的角度出发,对方位向分辨率进行了分析。给出了方位向图像重建的步骤。
     2.针对条带式合成孔径雷达与聚束式合成孔径雷达的特点,研究了两者成像处理方法的区别与内在联系。研究了合成孔径雷达成像的空间频率插值算法,分析了该算法对于条带式SAR与聚束式SAR成像处理的相同点和不同点,在此基础上实现了条带式SAR与聚束式SAR成像算法的统一。在各个方面对条带式SAR与聚束式SAR进行了分析比较,其中包括频谱结构分析、分辨率分析、回波信号带宽及其采样率分析、聚束式SAR的方位向dechirp处理分析以及部分波束成像处理方法分析,并说明了各种处理方法对SAR成像处理的优缺点。提出了在斜视条件下将条带式SAR数据分块,进行聚束式处理的方法,并对聚束式成像区域参数的选择进行了分析,此方法一方面减小了信号处理的运算量,另一方面对单一模式的SAR提供了数据处理上的灵活性。
     3.提出了一种合成孔径雷达成像的改进算法—子孔径参考信号相位对齐算法,该算法可以增大合成孔径雷达的方位向成像范围。该算法的本质是将各个子孔径参考信号的相位调整为同相(也就是使相位对齐),使用相位对齐的参考信号对子孔径场景回波信号进行解调,进而构造新的聚焦窗函数进行SAR成像。理论分析表明,在相同的数据采样点条件下,相对于子孔径数字聚焦处理方法,参考信号相位对齐算法使得方位向成像范围明显增大。
     4.研究了几种合成孔径雷达的成像算法,其中包括距离徙动算法和Range stacking算法,对算法中所涉及到的关键处理方法进行了理论分析。从研究距离徙动算法入手,对合成孔径雷达成像中所涉及的dechirp处理技术进行了全面、细致的理论分析,其中包括距离向dechirp处理、方位向dechirp处理、二维dechirp处理中运动补偿到点和运动补偿到线的分析、距离去斜处理加剩余视频相位(RVP)校正的理论分析。比较了距离徙动算法与空间频率插值算法的异同点,在此基础上提出了空间频率插值算法的改进方法,即将空间频率插值算法的距离向压缩方式从快时间域匹配滤波处理替换为距离徙动算法中的距离向dechirp处理加RVP校正,该处理方法可以降低距离向的采样率,为超宽带雷达的数字信号处理带来很大的好处。
     5.针对合成孔径雷达具有相当高的信号处理增益的特点,提出了几种对合成孔径雷达的相干干扰方法,并对各种干扰方法所涉及到的关键参数进行了细致的理论分析。采用相干干扰方法可以利用SAR的全部或部分信号处理增益,其相对于传统的非相干干扰方法可以提高干扰功率的利用率。提出了针对合成孔径雷达采用数字图像合成(DIS)完成欺骗干扰的方法,通过理论分析确定了对SAR欺骗干扰信号的幅度调制量和相位调制量,并给出了采用DIS方法对SAR进行欺骗干扰的实现框图和步骤,该方法可以获得和SAR回波信号相同的处理增益。提出了对合成孔径雷达的移频干扰方法,其中包括对SAR的距离向移频干扰方法和方位向移频干扰方法,从而推广到对SAR的二维移频干扰方法,对其模型及其参数选择进行了理论分析。理论分析表明,对SAR的移频干扰方法可以获得SAR的部分处理增益。提出了对合成孔径雷达的调频预加重干扰方法,其中包括正弦调频预加重干扰方法、锯齿调频预加重干扰方法、噪声调频预加重干扰方法,对各种调频预加重干扰方法关键参数的选择进行了细致的理论分析,并提出了二维调频预加重干扰方法以及将调频预加重干扰与移频干扰相结合的二维干扰方法。理论分析表明,对合成孔径雷达的调频预加重干扰可以看作多个移频干扰的线性组合,因而可以获得SAR的部分处理增益。
     6.研究了对合成孔径雷达的干扰效果评估方法,由于合成孔径雷达是二维成像雷达,其探测目标是面目标,其信号处理所得结果是图像,对SAR的干扰效果评估是以雷达成像区域受到干扰的效果来评价的。研究了合成孔径雷达接收到的各种信号模型以及对合成孔径雷达阻塞干扰的判决准则,该准则是以干扰前SAR的杂波-噪声功率比与干扰后SAR的杂波-干扰功率比的变化为基础建立的。以对合成孔径雷达阻塞干扰的判决准则为基础,从战术应用角度出发,通过干扰机阻止雷达侦察信息的范围(即干扰区)来度量对SAR的阻塞干扰效果。利用等轮廓曲线图得到对SAR的方位向干扰范围,从而提出了对SAR分布式干扰布站的方法。从图像质量评估的角度研究了对合成孔径雷达阻塞式干扰和欺骗式干扰的干扰效果评估方法。
Synthetic aperture radar is a kind of imaging radar with characteristics of all-weather, day/night and long range, which could provide high-resolution image. The advent of SAR expands the original concept of radar. It has the capability of imaging and recognizing the territorial targets, which is of great importance in either military or civilian fields. Since synthetic aperture radar has prominent performances and wide military applications, it is urgent to study jamming methods against SAR, the work is important to technical modernization of national defence.
     In order to study jamming methods against SAR, we should understand principle and imaging algorithms of synthetic aperture radar, which provide the foundation for study of jamming methods against SAR. Aim of the dissertation is to study imaging and jamming methods of SAR, which include following aspects: imaging principle of SAR in range and azimuth dimension, imaging processing of stripmap SAR and spotlight SAR, imaging algorithms and improved algorithms of SAR, jamming methods against SAR, evaluation of jamming effectiveness of SAR. Primary work of the dissertation is summarized as follows:
     1. The dissertation studies imaging principle of SAR in range and azimuth dimension, which is basis of two-dimensional SAR imaging methods. The processing methods concerned with range imaging are presented, which include matched filtering and dechirp processing in range dimension. The problem of choosing range sampling rate is studied in order to reduce the range sampling rate. From viewpoint of range point spread function, range resolution is analyzed. The steps of range imaging are given. The processing methods concerned with azimuth imaging are presented in detail, which include matched filtering and dechirp processing in azimuth dimension. Dechirp processing in azimuth dimension is a processing tool which could reduce PRF in spotlight SAR and digital spotlight the desired target area. The dissertation studies the problem of choosing azimuth sampling rate under different conditions in order to reduce the azimuth sampling rate. From viewpoint of azimuth point spread function, azimuth resolution is analyzed. The steps of azimuth imaging are given.
     2. The dissertation studies difference and relationship between stripmap SAR and spotlight SAR. Spatial frequency interpolation algorithm is discussed, which could adopted to either stripmap SAR or spotlight SAR. The difference on the algorithm between stripmap SAR and spotlight SAR is analyzed, based on which imaging algorithm of both stripmap SAR and spotlight SAR is unified. The dissertation compares stripmap SAR and spotlight SAR in various aspects, which include spectrum structure, bandwidth of echo, resolution, sampling rate, azimuth dechirp processing of spotlight SAR, imaging processing with data of partial beam. The dissertation brings forward a method which adopts spotlight processing of stripmap SAR data under squint condition and analyzes how to choose parameters of the spotlight imaging area. The method could decrease amount of computation and provide flexibility of data processing of SAR.
     3. The dissertation puts forward an improved imaging algorithm of SAR named as phase alignment algorithm of subaperture reference signal. The algorithm adjusts phases of respective subaperture reference signals in ordre to make them be in phase and adopts the inphase reference signal to demodulate subaperture echo signal of the target area, then constructs a new spotlighting window function for SAR imaging. Theoretical analysis shows that under condition of the same sample data, the improved algorithm could increase SAR scene area in azimuth dimension relative to subaperture digital spotlighting algorithm.
     4. The dissertation studies serval imaging algorithms of SAR, which include range migration algorithm (RMA) and range stacking algorithm. Key processing methods of the two algorithms are analyzed. Starting from analysis of RMA, the dissertation investigates dechirp processing of SAR imaging thoroughly, which includes range dechirp processing, azimuth dechirp processing, two-dimensional dechirp processing consisting of motion compensation to point and motion compensation to line, range deskew processing plus RVP calibration. The dissertation compares RMA with spatial frequency interpolation algorithm. Based on the theoretical analysis, the dissertation proposes an improved method which modifies spatial frequency interpolation algorithm, with substitution of range dechirp processing plus RVP calibration of RMA for fast-time matched filtering of spatial frequency interpolation algorithm. This method can reduce range sampling rate obviously, which brings great benefit to ultra-bandwidth radar signal processing.
     5. Since synthetic aperture radar has advantage of high signal processing gain, the dissertation proposes several coherent jamming methods against SAR, key parameters of which are analyzed. Coherent jamming methods could obtain whole or partial processing gain of SAR, which enhances efficiency of jamming power relative to classical incoherent jamming methods. The dissertation proposes a deception jamming method against SAR, which adopts digital image synthesis and obtains the same processing gain as echo of SAR. The quantities of phase and amplitude modulation of the deception jamming method are determined through theoretical analysis. Steps of the deception jamming method are given. The dissertation presents shift-frequency jamming methods against SAR, which include shift-frequency jamming method in range dimension, shift-frequency jamming method in azimuth dimension and two-dimensional shift-frequency jamming method. Model and parameters of the shift-frequency jamming method are developed theoretically. Theoretical analysis shows that the shift-frequency jamming method could obtain partial processing gain of SAR. The dissertation brings forward weighted frequency modulated jamming methods against SAR, which include weighted sine frequency modulated jamming method, weighted sawtooth frequency modulated jamming method and weighted noise frequency modulated jamming method. How to choose key parameters of weighted frequency modulated jamming methods is analyzed. The dissertation puts forward two-dimensional weighted frequency modulated jamming method and a method which combines weighted frequency modulated jamming and shift-frequency jamming in two dimensions in order to jam SAR in two-dimensional domain. Theoretical analysis shows that the weighted frequency modulated jamming against SAR could be regarded as linear combination of multiple shift-frequency jamming and could obtain partial processing gain of SAR.
     6. The dissertation studies evaluation of jamming effectiveness against SAR. Since SAR is a kind of two-dimensional imaging radar, target of which is extended and result of which is a image, it is necessary to evaluate jamming effectiveness against SAR based on the image. The dissertation discusses mathematical models of different received SAR signals and judging criterion of barrage jamming against SAR. The criterion is established on the basis of variation of ratio of clutter power to noise power and ratio of clutter power to jamming power. From the viewpiont of tactical application, the dissertation discusses a concept called jammed region, which could evaluate barrage jamming effectiveness against SAR. The dissertation proposes a method of distributed jamming system against SAR based on contour curve chart, which could measure jammed scope of SAR in azimuth dimension. From the viewpiont of image qulity evaluation, the dissertation studies evaluation of barrage jamming effectiveness and deception jamming effectiveness against SAR.
引文
[1] J.C. Curlander, R.N. Mcdonough. Synthetic aperture radar: system and signal processing[M]. John Wiley & Sons, INC, 1991.
    [2] W.G. Carrara, R.S. Goodman, R.M. Majewski. Spotlight synthetic aperture radar: signal processing algorithms[M]. Artech House, Boston, 1995.
    [3] M. Soumekh, Fourier array imaging[M]. Prentice Hall, INC,1994.
    [4] C.V. Jakowatz Jr., D.E. Wahl, P.H. Eichel, D.C. Ghiglia, P.A. Thompson. Spotlight-mode synthetic aperture radar: a signal processing approach[M]. Kluwer Academic Publishers, Boston, 1996.
    [5] G. Franceschetti, R. Lanari. Synthetic aperture radar processing[M]. CRC Press, Boca Raton, London, New York, Washington, D.C., 1999.
    [6] M. Soumekh. Synthetic aperture radar signal processing with MATLAB algorithms[M]. John Wiley & Sons, INC, 1999.
    [7] R.J. Sullivan. Microwave radar imaging and advanced concepts[M]. Artech House, Boston, 2000.
    [8] J. Patrick Fitch. Synthetic aperture radar[M]. Springer-Verlag, New York, INC, 1988.
    [9]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [10]魏钟铨.合成孔径雷达成像卫星[M].北京:科学出版社, 2001.
    [11]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2004.
    [12]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [13] S.A.霍凡尼斯恩.合成阵与成象雷达导论[M].北京:宇航出版社, 1986.
    [14]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社, 1989.
    [15]张直中.微波成像技术[M].北京:科学出版社, 1990.
    [16]杨士中.合成孔径雷达[M].北京:国防工业出版社, 1981.
    [17]丁鹭飞,耿富录.雷达原理(第三版)[M].西安:西安电子科技大学出版社, 2002.
    [18]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社, 1999.
    [19] Walter W. Goj. Synthetic aperture radar and electronic warfare[M]. Artech House, 1993.
    [20]王国玉,肖顺平,汪连栋.电子系统建模仿真与评估[M].长沙:国防科技大学出版社, 1999.
    [21]王国玉,汪连栋.雷达电子战系统数学仿真与评估[M].北京:国防工业出版社, 2004.
    [22]桑炜森.综合电子战新技术新方法[M].北京:国防工业出版社, 1996.
    [23]邵国培,曹志耀,何俊.电子对抗作战效能分析[M].北京:解放军出版社, 1998.
    [24]候印鸣.综合电子战[M].北京:国防工业出版社, 2000.
    [25]周一宇.电子战原理与技术[M].北京:国防工业出版社, 1999.
    [26] C.A. Wiley. Synthetic aperture radar[J]. IEEE Trans. on AES, 1985, 21(3): 440-443.
    [27] C.A. Wiley. Pioneer award acceptance remarks[J]. IEEE Trans. on AES, 1986, 21(3): 433-433.
    [28] C.W. Sherwin, J.P. Ruina, R.D. Rawcliffe. Some early developments in synthetic aperture radar systems[J]. IRE Trans. on military electronics, 1962, 6(2): 111-115.
    [29] L.J. Cutrona, et al. A high resolution radar combat-surveillance systems[J]. IRE Trans. on military electronics, 1961, 5(2): 127-131.
    [30] L.J. Cutrona, et al. A comparison of techniques for achieving fine azimuth resolution[J]. IRE Trans. on military electronics, 1962, 6(2): 129-131.
    [31] D.A. Ausherman, A. Kozma, J.L. Walker, et al. Developments in radar imaging[J]. IEEE Trans. on AES, 1984, 20(4): 363-400.
    [32] W.M. Brown, L.J. Porcello. An introduction to synthetic aperture radar[J]. IEEE Spectrum, Sep. 1969, 52-62.
    [33] L.J. Cutrona, et al. On the application of coherent optical processing techniques to synthetic aperture radar[J]. PIEEE, 1966, 54(8): 1026-1032.
    [34] C. Elahci, T. Bicknell, R.L. Jordan, et al. Spaceborne synthetic aperture imaging radars: application, techniques, and technology[J]. Proc. IEEE, 1982, 70(10): 1174-1209.
    [35] F. Li, R.K. Raney. Prolog to the special section on spaceborne radars for earth and planetary observations[J]. Proc. IEEE, 1991, 79(6): 773-776.
    [36] R.K.Raney, A.P. Luscombe, et al. Radarsat[J]. Proc. IEEE, 1991, 79(6): 839-849.
    [37] R.L. Jordan, B.L. Huneycutt, M.Werner. The SIR-C/X-SAR synthetic aperture radar system[J]. Proc. IEEE, 1991, 79(6): 827-838.
    [38]张直中.九十年代合成孔径雷达的发展简况[A].第七届全国雷达学术年会[C], 1999年11月.
    [39] R. Horn. E-SAR—The experimental airborne L/C band SAR system of DLR[A].Proc. IGARSS’88[C], 1988: 1025-1026.
    [40] S.N. Maden, E.L. Christensen. The Danish SAR system: design and initial tests[J]. IEEE Trans. on GRS, 1991, 29(3): 417-426.
    [41] J. Dall. Real-time processor for the Danish airborne SAR[J]. IEE Proceedings-F, 1992, 139(2): 115-121.
    [42] W.H. Hensley, A.W. Doerry, B.C. Walker. Lynx: a high-resolution synthetic aperture radar[J]. SPIE Aerosense, 1999, 3704.
    [43] R. Bamler, P. Hart. Synthetic aperture radar interferometry[J]. Inverse Problem, 1998, (14): 1-54.
    [44] A. Damini, M. McDonald, G.E. Haslam. X-band wideband experimental airborne radar for SAR, GMTI and maritime surveillance[J]. IEE Proceedings on Radar, Sonar and Navigation, Aug. 2003, 150(4): 305-312.
    [45] A. Damini, B. Balaji, G. Haslam, M. Goulding. X-band experimental airborne radar - Phase II: synthetic aperture radar and ground moving target indication[J]. IEE Proceedings on Radar, Sonar and Navigation, Apr. 2006, 153(2): 144-151.
    [46] A.R. Brenner, J.H.G. Ender. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proceedings on Radar, Sonar and Navigation, Apr. 2006, 153(2): 152-162.
    [47] T.J. Nohara, P. Weber, A. Premji, et al. SAR-GMTI processing with Canada's Radarsat 2 satellite[A]. Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC[C]. The IEEE 2000, 1-4 Oct. 2000: 379-384.
    [48] P.D. Beaulne, C.H. Gierull, C.E. Livinstone, et al. Preliminary design of a SAR-GMTI processing system for RADARSAT-2 MODEX data[A]. Geoscience and Remote Sensing Symposium, 2003. IGARSS’03[C], 21-25 July 2003, 2: 1019-1021.
    [49] D. Cerutti-Maori, J.H.G. Ender. Performance analysis of multistatic configurations for spaceborne GMTI based on the auxiliary beam approach[J]. IEE Proceedings on Radar, Sonar and Navigation, 13 April 2006, 153(2): 96- 103.
    [50] M.E. Davis. L-band SBR moving target detection in SAR-GMTI modes[A]. Aerospace Conference, 2004 IEEE Proceedings[C], 6-13 Mar 2004, 4: 2211-2219.
    [51] E. Chapin, C.W. Chen. GMTI along-track interferometry experiment[J].Aerospace and Electronic Systems Magazine, IEEE, March 2006, 21(3): 15-20.
    [52] R. Linnehan, L. Perlovsky, I.C. Mutz, et al. Detecting multiple slow-moving targets in SAR images[A]. Sensor Array and Multichannel Signal Processing Workshop Proceedings[C], July 2004: 643-647.
    [53] E. Chapin, C.W. Chen. Preliminary results from an airborne experiment using along-track interferometry for ground moving target indication[A]. Radar Conference, 2005 IEEE International[C], 9-12 May 2005: 343-347.
    [54] J.R. Guerci, A.O. Steinhardt. Multiresolution GMTI radar[A]. 2003. Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers [C], 9-12 Nov. 2003, 1: 50-53.
    [55] J.J. Sharma, C.H. Gierull, M.J. Collins. The influence of target acceleration on velocity estimation in dual-channel SAR-GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, Jan. 2006, 44(1): 134-147.
    [56] J.J. Sharma, C.H. Gierull, M.J. Collins. Compensating the effects of target acceleration in dual-channel SAR-GMTI[J]. IEE Proceedings on Radar, Sonar and Navigation, 16 Feb. 2006, 153(1): 53-62.
    [57] R. Lipps, V. Chen, M. Bottoms. Advanced SAR GMTI techniques[A]. Radar Conference, 2004. Proceedings of the IEEE[C], 26-29 April 2004: 105-110.
    [58] W.J. Miceli, L.A. Gross. Test results from the AN/APY-6 SAR/GMTI surveillance, tracking and targeting radar[A]. Radar Conference, 2001. Proceedings of the 2001 IEEE[C], 1-3 May 2001: 13-17.
    [59] C. Morgan, S. Jaroszewski, P. Mountcastle. Terrain height estimation using GMTI radar[A]. Radar Conference, 2004. Proceedings of the IEEE[C], 26-29 April 2004: 378-381.
    [60] S. Suchandt, G. Palubinskas, R. Scheiber, et al. Results from an airborne SAR GMTI experiment supporting TerraSAR-X traffic processor development[A]. 2005. IGARSS’05. Proceedings on Geoscience and Remote Sensing Symposium. 2005 IEEE International[C], 25-29 July 2005, 4: 2949-2952.
    [61] I. Sikaneta. SPECAN filtering for dual-channel stripmap-SAR GMTI[A]. Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE International[C]. 25-29 July 2005, 4: 2942-2945.
    [62] I. Sikaneta, C. Gierull. Ground moving target detection for along-track interferometric SAR data[A]. Aerospace Conference, 2004. Proceedings. 2004 IEEE[C], 6-13 Mar 2004, 4: 2227-2235.
    [63] D. Cerutti-Maori, W. Burger, J.H.G. Ender, et al. Experimental results ofground moving target detection achieved with the multi-channel SAR/MTI system PAMIR[A]. Radar Conference[C], 2005. EURAD 2005. European, 6-7 Oct. 2005: 45-48.
    [64] S. Wei, H.Y. Wang. High resolution DBS imaging and the moving target trajectory forming with raw SAR/GMTI Data[A]. Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International[C], 2004, 6: 4251-4254.
    [65] C.W. Chen. Performance assessment of along-track interferometry for detecting ground moving targets[A]. Radar Conference, 2004. Proceedings of the IEEE[C], 26-29 April 2004: 99-104.
    [66] L.C. Graham. Synthetic interferometer radar for topographics mapping[J]. Proc. IEEE, 1974, 62:763-768.
    [67] H.A. Zebker, R.M. Goldstein. Topographic Mapping from interferometric synthetic aperture radar observations[J]. J Geophys Res, 1986, 91(5): 4993-4996.
    [68] A.K. Gabriel, R.M. Goldstein. Crossed orbit interferometry: theory and experiment results from SIR-B[J]. Int J Remote Sensing, 1988, 9(5): 857-872.
    [69] S. Hensley, P.Rosen, E. Gurrola. The SRTM topographic mapping processor[A]. Proceedings IGARSS 2000[C], 2000, 3: 1168-1170.
    [70] X. Wei. A region-growing algorithm for InSAR phase unwrapping[J]. IEEE Trans. on GRS, Jan. 1999, 37(1): 124-134.
    [71] A. Ferretti, C. Prati, F. Rocca. Multibaseline InSAR DEM reconstruction: the wavelet approach[J]. IEEE Trans. on GRS, Mar. 1999, 37(2): 705-715.
    [72] T.L. Ainsworth, S.R. Chubb, A.F. Richard et al. INSAR imagery of surface currents, wave fields, and fronts[J]. IEEE Trans. on GRS, Sep. 1995, 33(5): 1117-1123.
    [73] C. Streck, O. Hellwich. Retrieval of man-made structures in Siberia with INSAR techniques using ERS-SAR data[A]. Geoscience and Remote Sensing Symposium, IGARSS'96[C], 27-31 May 1996, 3: 1836-1838.
    [74] R. Abdelfatah, J.M. Nicolas. Topographic SAR interferometry formulation for high-precision DEM Generation[J]. IEEE Trans. on GRS, Nov. 2002, 40(11): 2415-2426.
    [75] R. Hanssen, R. Bamler. Evaluation of interpolation kernels for SAR interferometry[J]. IEEE Trans. on GRS, Jan. 1999, 37(1): 318-321.
    [76] M.D. Prit. Phase unwrapping by means of multigrid techniques forinterferometric SAR[J]. IEEE Trans. on GRS, 1996, 34(3): 728-738.
    [77] J.O. Hagberg, M.H. Ulander, J. Askne. Repeat-pass SAR interferometry over forested terrain[J]. IEEE Trans. on GRS, 1997, 33(2): 331-340.
    [78] D. Geudtner, M. Zink, C, Gierull, et al. Inerferometric alignment of the X-SAR antenna system on the space shutle radar topography mission[J]. IEEE Trans. on GRS, 2002, 40(5): 995-1005.
    [79] P.A. Rosen, S. Hensley, I.R. Joughin. Synthetic aperture radar interferometry[J]. Proc. IEEE, March 2000, 88(3): 333-382.
    [80] G.W. Davidson, R. Bamler. Multiresolution phase unwrapping for SAR interferometry[J]. IEEE Trans. on GRS, 1999, 37(1): 163-174.
    [81]《CSAR-2003会议》论文集[A].第一届中国合成孔径雷达会议[C],合肥, 2003年12月1日至4日.
    [82] P.M. Woodward. Probability and information theory with application to radar[M]. Pergamon Press, 1953.
    [83] D.O. North. An analysis of the factors which determine signal-noise discrimination in pulsed carrier systems[R]. RCA Lab Rept, PTR-6C, June 1943.
    [84] A.W. Rihaczek. Principles of high-resolution radar[M]. McGraw-Hill, 1969.
    [85] J.R. Bennett, I.G. Cumming. A digital processor for the production of Seasat synthetic aperture radar imagery. Proc. SURGE workshop, Frascati, ESA-SP-154, 1979.
    [86] I.G. Cumming, J.R. Bennett. Digital processing of Seasat SAR data[A]. Proc. ICASS’79[C], 1979: 710-718.
    [87] J.R. Bennett, I.G. Cumming. Digital SAR image formation airborne and satellite results[A]. 13th International Symposium on Remote Sensing of the Enviroment[C], Michigan, 1979: 23-27.
    [88] J.R. Bennett, I.G. Cumming, R.A. Deane. The digital processing of Seasat synthetic aperture radar data[A]. IEEE International Radar Conference[C], Washington, 1980: 168-175.
    [89] J.R. Bennett, I.G. Cumming, P.R. McConnell, et al. Features of a generalized digital synthetic aperture radar processor[A]. 15th International Symposium on Remote Sensing of the Enviroment[C], Michigan, 1981.
    [90] R.N. McDonough, et al. Image formation from spaceborne synthetic aperture radar signals[J]. Johns Hopkins APL technical digest, 1985, 6(4): 300-312.
    [91] M.Y. Jin, C. Wu. A SAR correlation algorithm which accommodates largerange migration[J]. IEEE Trans. on GRS, 1984, 22: 592-597.
    [92] F.H. Wong, I.G. Cumming. Error sensitivities of a secondary range compression algorithm for processing squinted satellite SAR data[A]. Proc. IGARSS’89[C], Vancouver, 1989: 2584-2587.
    [93] C.Y. Chang, M. Jin, J.C. Curlander. Squint mode SAR processing algorithms[A]. Proc. IGARSS’89[C], Vancouver, 1989: 1702-1706.
    [94] A.M. Smith. A new approach to range-doppler SAR processing[J]. Int J Remote Sensing, 1991, 12: 235-251.
    [95] C. Wu, K.Y. Liu, M. Jin. Modeling and a correlation algorithm for spaceborne SAR signals[J]. IEEE Trans. on AES, 1982, 18(5): 563-573.
    [96] C. Wu. A digital fast correlation approach to produce Seasat SAR imagery[A]. IEEE International Radar Conference[C], 1980: 153-160.
    [97] K.H. Wu, M.R. Vant. Extensions to the step transform SAR processing technique[J]. IEEE Trans. on AES, 1985, 21(3): 338-344.
    [98] X.B. Sun, T.S. Yeo et al. Time-vary step-transform algorithm for high squint SAR imaging[J]. IEEE Trans on GRS, 1999, 37(6): 2668-2677.
    [99] J.L. Walker. Range-doppler imaging of rotating objects[J]. IEEE Trans. on AES, 16(1): 23-52.
    [100] D.L. Mensa, S. Halevy, G. Wade. Coherent Doppler tomography for microwave imaging[J]. Proceedings of the IEEE, 1983, 71(2): 254.
    [101] D.C. Munson, J.D. O’Brien, W.K. Jenkins. A tomographic formulation of spotlight-mode synthetic aperture radar[J]. Proceedings of the IEEE, 1983, 7: 917-925.
    [102] N.J.S. Stacy. Range cell migration in spotlight polar format algorithm[A]. IEEE on GRS symposium proceedings[C], 1998: 1168-1170.
    [103] J. Walker, W. Carrara, I. Cindrich. Optical processing of rotating-object radar data using a polar recording format[R]. Technical Report RADC-TR-73-136, AD 526 738, Rome Air Development Center, Rome, NY, May 1973.
    [104] D.C. Munson Jr., R.L. Visentin. A signal processing view of strip-mapping synthetic aperture radar[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, Dec. 1989, 37(12): 2131-2147.
    [105] A.W. Doerry. Synthetic aperture radar processing with polar formatted subaperture[A]. Conference record of the 28th Asilomar Conference[C], 1994, 2(2): 1210-1215.
    [106] B.L. Burns, J.T. Cordaro. A SAR image-formation algorithm thatcompensates for the spatially-variant effects of antenna motion[A]. SPIE Proceeding[C], Orlando, 1994, 2230.
    [107] F. Rocca, C. Cafforio, C. Prati. Synthetic aperture radar: a new application for wave equation techniques[J]. Geophysical prospecting, 1989, 37: 809-830.
    [108] C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migration techniques[J]. IEEE Trans. on AES, 1991, 27(2): 194-206.
    [109] C. Cafforio, C. Prati, F. Rocca. Full resolution focusing of Seasat SAR images in the frequency-wave number domain[A]. Proceedings of the 8th EARSEL Symposium[C], Capri, Italy, 1988: 194-206.
    [110] J. Gazdag, P. Sguazzero. Migration of seismic data[J]. Proceedings of the IEEE, Oct. 1984, 72(10): 1302-1315.
    [111] C. Prati, A.M. Guarnieri, E. Rocca. Spot mode SAR focusing with theω?k techniques[A]. Proceedings of the 1991 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)[C]. Espoo, Finland, 3-6 June 1991: 631-634.
    [112] A.S. Milan. SAR imaging byω?k migration[J]. International Journal of Remote Sensing, 1993, 14(10): 1965-1979.
    [113] A. Golden, S.C. Wei, K.K. Ellis, et al. Migration processing of spotlight SAR[A]. Proceedings of the SPIE Symposium on Algorithms for SAR Imagery[C], Orlando, FL, Apr. 1994: 25-35.
    [114] T.E. Scheuer, F.H. Wong. Comparion of SAR processors based on a wave equation formulation[A]. Proceedings of the 1991 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)[C]. Espoo, Finland, 3-6 June 1991: 635-639.
    [115] D. Dendal, J.L. Marchand.Ω?k techniques advantages and weaker aspects[A]. Proceedings of the 1992 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)[C], Houston, TX, 26-29 May 1992: 366-368.
    [116] R. Bamler. A systematic comparison of SAR focusing algorithms[A]. Proceedings of the 1991 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)[C]. Espoo, Finland, 3-6 June 1991: 1005-1009.
    [117] R.H. Stolt. Migration by fourier transform[J]. Geophysics, 1978, 43(1): 23-48.
    [118] M. Soumekh. A system model and inversion for synthetic aperture radar imaging[J]. IEEE Trans. on Image Processing, 1992, 1(1): 64– 67.
    [119] M. Soumekh. Digital spotlighting and coherent subaperture image formationfor stripmap synthetic aperture radar[A]. International Conference on Image Processing[C], 1994: 476-480.
    [120] R.K.Raney, P.W. Vachon. A phase preserving SAR processor[A]. IGARSS’89[C], 1989: 2588-2591.
    [121] R.K. Raney. An exact wide field digital imaging algorithm[J]. Int J Remote Sensing, 13(5): 991-998.
    [122] H. Runge, R. Bamler. A novel high precision SAR focusing algorithm based on chirp scaling[A]. Proc. IGARSS’92[C], Houston, 1992: 372-375.
    [123] I. Cumming, F. wong, K.Raney. A SAR processing algorithm with no interpolation[A]. Proc. IGARSS’92[C], Houston, 1992: 376-379.
    [124] R.K. Raney, H. Runge, R. Bamler, I.G. Cumming, F.H. Wong. Precision SAR processing using chirp scaling[J]. IEEE Trans. on GRS, 1994, 32(4): 786-799.
    [125] A. Moreira, Y. Huang. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Trans. on GRS, 1994, 32(5): 1029-1039.
    [126] A. Moreira, J. Mittermayer, R. Scheiber. Extended chirp scaling algorithm for air and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Trans. on GRS, 1996, 34(5): 1123-1139.
    [127] F.H. Wong, I.G. Cumming, R.K. Raney. Processing simulated radarsat SAR data with squint by a high precision algorithm[A]. Proc. IGARSS’93[C], Japan, 1993: 1176-1178.
    [128] A. Martinez, J.L. Marchand. Implementation and quality analysis of a CSA SAR processor[A]. Proc. IGRASS’93[C], Japan, 1993: 1179-1181.
    [129] C.Y. Chang, M.Y. Jin, J.C. Curlander. SAR processing based on the exact two-dimensional transfer function[A]. Proc. IGRASS’92[C], Houston, 1992: 355-357.
    [130] M.Y. Jin, F. Cheng, M. Cheng. Chirp scaling algorithms for SAR processing[A]. Proc. IGRASS’93[C], Japan, 1993: 1169-1172.
    [131] A. Moreira, J. Mittermayer, R. Scheiber. Processing of SAR and ScanSAR imaging modes using the extended chirp scaling algorithm[A]. International Radar Conference[C], 1998: 1361-1367.
    [132] J. Mittermayer, A. Moreria, O. Loffeld. High precision processing of spotlight SAR data using the extended chirp scaling algorithm[A]. Proc. EUSAR’98[C], 1998: 561-564.
    [133] J. Mittermayer, A. Moreria, R. Scheiber. Spotlight SAR processing using theextended chirp scaling algorithm[A]. Proc. ERIM’97[C], 1997.
    [134] J.C. Crespo. The extended chirp scaling processor for experimental SAR system of DLR, E-SAR[A]. Proc. EUSAR’96[C], 1996: 353-356.
    [135] A. Moreira, R. Spielbauer. Combining a subaperture and chirp scaling approach for real-time SAR processing[A]. Proc. EUSAR’96[C], 1996, 397-401.
    [136] C.W. Davidson, I.G. Cumming, et al. An approach for improved processing in squint mode SAR[A]. Proc. IGARSS’93[C], Japan, 1993, 1173-1175.
    [137] C.W. Davidson, I.G. Cumming, et al. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Trans. on AES, 1996, 32(1): 121-133.
    [138] J. Mittermayer, A. Moreira, O. Loffeld. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37(5): 2198-2214.
    [139] R. Lanari. A new method for the compensation of the SAR range cell migration based on the chirp Z-transform[J]. IEEE Trans. on GRS, 1995, 33(5): 1296-1299.
    [140] R.Keith Raney, R. Bamler. Comments on SAR signal and noise equations[A]. Geoscience and Remote Sensing Symposium, IGARSS’94[C], 8-12 Aug. 1994, 1: 298-300.
    [141] C.J.Condley. Some system considerations for electronic countermeasures to synthetic aperture radar[A]. Electronic Warfare Systems, IEE Colloquium on Published( 1991)[C], 1991: 8/1 -8/7.
    [142] K.Dumper, P.S.Cooper, A.F.Wons, et al. Spaceborne synthetic aperture radar And noise Jamming[A]. IEEE International Radar Conference[C], 14-16 October 1997: 411-414.
    [143]李兵,洪文.合成孔径雷达噪声干扰研究[J].电子学报, 2004年12月, 32(12): 2035-2037.
    [144]袁翔宇,王国玉,汪连栋.有源噪声干扰对SAR干扰效果的仿真研究[J].系统工程与电子技术, 2004年11月, 26(11): 1564-1566.
    [145]吴彦鸿,叶伟,刘树贤,贾鑫.噪声干扰的SAR图像研究[J].装备指挥技术学院学报, 2002年6月, 13(3): 70-73.
    [146]高建卫,魏青,杨绍全.噪声调频信号对合成孔径雷达的干扰[J].航天电子对抗, 2004年, (4): 16-19.
    [147]梁百川.对合成孔径雷达的干扰[J].上海航天, 1995年, (1): 37-42.
    [148]张连江,王鼎奎.合成孔径雷达干扰方法研究[J].舰船电子对抗, 2003年,26(1): 7-11.
    [149]余莉.合成孔径雷达原理及其干扰分析[J].航天电子对抗, 2003年, (4): 10-12.
    [150]陈宁,张杰儒.合成孔径雷达干扰技术研究[J].航天电子对抗, 1997年, (4): 45-48.
    [151]孙云辉,赵宝.对合成孔径雷达的干扰措施研究[J].光电技术应用, 2004年8月, 19(4): 47-50.
    [152]郑同良.对空间合成孔径雷达的干扰[J].航天电子对抗, 2001年, (1): 1-4.
    [153]王兵.合成孔径雷达的噪声干扰[J].电子对抗技术. 2004年7月, 19(4): 44-46.
    [154]巫胜洪.合成孔径雷达的发展与干扰技术[J].华东船舶工业学院学报, 2003年8月, 17(4): 56-59.
    [155]周彦平,赵雪,舒锐,龙伟军. SAR星的可对抗性研究[J].装备指挥技术学院学报, 2003年10月, 14(5): 33-37.
    [156]胡东辉,吴一戎,王宏琦,彭海良.基于移相调制的合成孔径雷达虚假图像干扰[J].雷达与对抗, 2002年, (2): 1-10.
    [157]王盛利,于立,倪晋鳞,张光义.合成孔径雷达的有源欺骗干扰方法研究[J].电子学报, 2003年12月, 31(12): 1900-1902.
    [158]孙云辉,陈永光,焦逊.星载SAR应答式欺骗干扰研究[J].电子对抗技术, 2004年3月, 19(2): 23-26.
    [159] P.E. Pace, D.J. Fouts, S. Ekestorm, et al. Digital false-target image synthesiser for countering ISAR[J]. IEE Proc. on Radar Navig., Oct. 2002, 149(5): 248-257.
    [160] D.J. Fouts, P.E. Pace, C. Karow, et al. A single-chip false targe radar image generator for countering wideband imaging radars[J]. IEEE Journal of Solid-state Circuits, June 2002, 37(6): 751-759.
    [161] S. Ekestorm, C. Karow. An all-digital image synthesizer for countering high-resolution imaging radar[D]. Dissertation for master’s degree, Naval Postgraduate School, Sep. 2000.
    [162]胡东辉,吴一戎.合成孔径雷达散射波干扰研究[J].电子学报, 2004年12月, 32(12): 2035-2037.
    [163]甘荣兵,王建国,何川,徐美林.一种改进的对SAR的弹射式干扰方法[J].电子与信息学报, 2005年2月, 27(2): 256-268.
    [164]文科,李军,宋小全.合成孔径雷达理论模型下点目标干扰效果评估研究[J].无线电通信技术, 2002年, 28(6): 49-50.
    [165]李军,文科.精确计算SAR图像质量指标的递推方法[J].无线电通信技术, 2004年, 30(6): 15-16.
    [166]马俊霞,蔡英武,张海.一种SAR压制干扰效果评估方法[J].现代雷达, 2004年10月, 26(10): 4-6.
    [167]马俊霞,蔡英武,陈惠连. SAR压制式干扰仿真及效果评估[J].信息与电子工程, 2004年6月, 2(2): 109-113.
    [168]韩中生,宋小全. SAR成像及干扰效果评估方法研究[J].飞行器测控学报. 2004年6月, 23(2): 81-84.
    [169]谢虹,汪连栋,袁翔宇.对SAR的噪声干扰效果评估研究[J]. 2003年, (3): 15-17.
    [170] A. Papoulis. Systems and transforms with applications in optics[M]. New York: McGraw-Hill, 1968: 203-204.
    [171] T.S. Yeo, N.L. Tan, Y.H. Lu, C.B. Zhang. A stripmap to spotlight data converting algorithm[A]. IEEE Geoscience and Remote Sensing Symposium Proceedings[C], 1998, 2: 1168 - 1170.
    [172]武昕伟,朱兆达.基于聚束照射SAR成像算法的条带SAR数据处理[J].南京航空航天大学学报, 2002年10月, 34(5): 466-469.
    [173]杨绍全,张正明.对线性调频脉压雷达的干扰[J].西安电子科技大学学报, 1991年9月, 18(3): 24-30.
    [174]史林,彭燕,杨万海.脉冲压缩雷达干扰仿真分析[J].现代雷达, 2003年8月, (8): 37-40.
    [175]李敬勇.对线性调频脉冲压缩雷达干扰的时域分析[J].电子对抗技术, 1998年, 13(3): 15-20.
    [176]杨绍全.信号分析[M].西安:军事电信工程学院, 1964.
    [177]丁鹭飞,张平.雷达系统[M].西安:西北电讯工程学院出版社, 1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700