用户名: 密码: 验证码:
防空火箭炮系统发射动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高防空火箭炮的射击精度为出发点,进行了系统发射响应特性问题的研究。
     根据车载防空火箭炮发射过程的物理特点,基于相对坐标系和广义递归算法研究了防空火箭炮多体系统动力学的建模理论和方法。依据防空火箭炮系统拓扑结构图形描述,应用递归算法计算了系统关于广义相对坐标的笛卡尔速度和力的偏微分,并例举了递归计算顺序。
     用虚拟样机技术建立了系统的动力学模型,进行动力学仿真。分析提高火箭射击精度的措施,从减小初始扰动中间偏差的角度出发,应用多枚弹同时点火的发射方式,分析了可能的射序,并对比了射序的优劣,获得了一些有益的结论。提出了变间隔的发射方法,根据试验设计方法,采集动力学仿真结果的样本数据点,通过样本点构建近似模型,模拟射击间隔和初始扰动中间偏差之间的非线性近似关系,并将高精度近似模型与多岛遗传算法相结合,从而完成射击间隔的优化。近似模型方法可以显著减少优化计算成本,合理的变射击间隔能够有效提高射击密集度。
     建立了车载防空火箭炮刚柔耦合发射动力学模型,考虑了定向管与车大梁的弹性变形。综合考虑模态缩减法和有限元节点法两种柔性体建模方法的优缺点,并根据车载防空火箭炮系统的自身结构特点,采用模态缩减法生成柔性车大梁,节点法生成柔性定向管,在模型精度和计算效率上都取得了较满意结果。
     在防空火箭炮刚柔耦合模型的基础上,采用机一电系统联合仿真的方法研究了防空火箭炮动态跟踪各种目标航路过程中的发射响应,获得了一些有益结论。建立了防空火箭炮伺服系统控制模型,用遗传算法对控制器参数进行整定,运用虚拟样机的方法,实现动力学系统与控制系统的耦合求解,避免了复杂动力学控制方程的推导过程。仿真结果表明主动控制可以有效抑制动态跟踪过程中的发射响应,提高跟踪过程中火箭的发射精度。
Some researches on launching response property of antiaircraft rocket launcher were done in the dissertation with intent to improve the launching precision of rockets.
     In term of the physical characteristics of antiaircraft rocket launcher, the modeling of multi-body system dynamics was investigated for antiaircraft rocket launche by relative coordinate and generalized recursive formulas. Based on the graph theory used to topological structure for antiaircraft rocket launcher system, this recursive formula was applied to compute the partial derivative of the cartesian velocity and force of antiaircraft rocket launcher system with respect to relative coordinates, for example, computation sequence for the cartesian velocity and force was shown.
     The dynamical model of system was established through the Virtual Prototype(VP) technology, and dynamical simulation was also run after. First, the methods were studies of improving the rocket launching precision, second, the possible launching sequences with respect to launch numerous rockets simultaneously were addressed, and finally, the better firing order of the initial disturbance was determined by the simulation outcomes. The variable interval was firstly applied in antiaircraft rocket launching, applying in Design of Experiments (DOE)-guided, the database of dynamic simulation results was established, the nonlinear relationship between the approximate model of the firing interval, which was constructed by utilizing the previous database, and the initial disturbance variables was determined, this precise approximate model was further improved by introducing the multi-island genetic algorithm method to find the optimal solution of the variable firing intervals. Results showed that the approximate model can significantly reduce the computational expense in searching the best solution of the variable firing intervals, and the reasonable variable firing intervals can effectively improve the firing dispersion.
     The rigid-flexible coupling Launch dynamics model for a automobile carried antiaircraft rocket launcher was established, in which both the automobile beam and launch tubes were treated as the flexible bodies. Base on the structural characteristics of automobile carried antiaircraft rocket launcher, the flexible automobile beam was created by the modal reduction method, and the flexible launch tubes were generated by means of nodal flexible method with considering the advantages and disadvantages of both modal reduction method and nodal flexible method, the calculation precision and efficiency of model were improved.
     Based on the rigid-flexible coupling Launch dynamics model for a automobile carried antiaircraft rocket launcher, launching response property in situation of dynamical tracing various target route was studies by co-simulink of dynamics and control, some useful conclusions are obtained. The control model of servo system for antiaircraft rocket launcher was set up, the controllers parameters of which were confirmed through genetic algorithm(GA). The VP technology was used leading, i.e. to integrate dynamical system into control system to realize cooperation simulation, so avoiding the derivation process of complicated dynamics control equations. The simulation showed that the firing response in dynamical tracing situation could be controlled effectively when applying active vibration control and to improve precision.
引文
[1]王凤山,李孝军,马拴柱.现代防空学[M].北京:航空工业出版社,2008.
    [2]曹泽阳,高虹霓.弹炮合—防空武器系统抗击效率模型研究[J].弹箭与制导学报,2002,22(3):67-69.
    [3]孟东,刘永鸿,车建国.弹炮结合防空武器系统构建技术研究[J].战术导弹控制技术,2009,31(2):50-53.
    [4]王锋,潘书山,马大为.弹箭结合武器系统作战效能评估的排队网络方法[J].弹箭与制导学报,2005,25(3):274-277.
    [5]刘浩.弹箭炮三结合武器系统在近程防空反导中的应用[J].四川兵工学报,2009.30(8):41-43.
    [6]逯海军,王建林,徐敏.信息作战武器装备的发展趋势和对策[J].电子对抗,2010,2:23-26.
    [7]陈国光,田晓丽,辛长范.火箭发射动力学理论与应用[M].北京:兵器工业出版社,2007.
    [8]Cochran J. E. Rocket launchers as passive controllers[R]. AD-A 112571,1981.
    [9]Cochran J. E., Chen Y.-M., Bigelow S etal. Multiple body missile launcher simuIation[R]. AIAA-1994-3451,1994:10-18.
    [10]Weeks G. E. Coupled-interaction launch behavior of a flexible rocket and flexible launcher[J]. Journal of spacecraft and rockets,1980,17(5):432-439.
    [11]芮筱亭.多体系统传递矩阵法在火炮动力学中的应用[J].力学与实践,1995,17(4):42-44.
    [12]芮筱亭,陆毓琪,陈卫东,等.多管火箭发射动力学研究[J].兵工学报,2004,25(5):556-561.
    [13]J. Wittenburg. Dynamics of systems of rigid bodies[C]. B. G. Teubner, Stuttgart, 1977.
    [14]Hooker W., Margulies G. The dynamical attitude equtation for an n-body satellite [J]. Journal of the Astrnautical Science,1965,12:123-128.
    [15]R. Featherstone. The calculation of robot dynamics using articulated-body inertias[J]. Int. J. Roboics Res.,1983,2:13-30.
    [16]Lin T. C., Yae K. H. Recursive linearization of multibody dynamics and application to control design, Technical Report R-75, Center for Simulation and Design Optimization, Department of Mechanical Engineering, and Department of Mathematics, The University of Iowa, Iowa City, Iowa,1990.
    [17]Olivier A. Bauchau, Changkuan Ju. Modeling friction phenomena in flexible multibody dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2006,195(50-51):6909-6924.
    [18]Werner Schiehlen, Robert Seifried, Peter Eberhard. Elastoplastic phenomena in multibody impact dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(50-51):6874-6890.
    [19]赵振,刘才山.三维含摩擦多刚体碰撞问题的数值计算方法[J].中国科学G辑,2006,36(1):72-88.
    [20]何柏岩,王树新.计及铰链间隙的机械臂动力学建模与仿真[J].天津大学学报,2005,38(9):795-799.
    [21]S. H. Kim, S. W. An response surface method using vector projected sampling point[J]. Structural Safety,1997,19(1):3-19.
    [22]L. Kaymaz, C. A. McMahon. A response surface method based on weighted regression for structural reliability analysis [J]. Probabilistic Engineering Mechanics,2005,20(1):11-17.
    [23]江涛,陈建军,张建国等.基于区间模型的响应面法[J].机械设计与研究,2005,21(6):12-16.
    [24]隋允康,白海波.基于中心点精确响应面法的板壳结构优化[J].机械设计,2005,22(11):10-12.
    [25]窦毅芳,刘飞,张为华.基于改进交互验证策略的序列响应面建模方法[J].机械强度,2008,30(5):753-757.
    [26]潘雷,谷良贤,阎代维.改进响应面法(IRSM)及其近似性能研究[J].自然科学进展,2009,19(2):222-226.
    [27]宇慧平,隋允康,丁力等.最大离差值极小响应面和按K-S函数的拟合[J].科技导报,2010,28(1):63-68.
    [28]C. G. Bucher, U. Bourgund, Fast and efficient response surface approach for structural reliability problem[J]. Structural Safety,1990,7(1):57-88.
    [29]Y. W. Liu, F. Moses. Sequential response surface method and its application in the reliability analysis of aircraft structural systems[J]. Structural Safety,1994, 16(1):39-46.
    [30]陈铁冰,王书庆,石志源.记入结构几何非线性影响时斜拉桥可靠度分析[J].同济大学学报,2000,28(4):407-412.
    [31]徐军,郑颖人.响应面重构的若干方法研究及其在可靠分析中的应用[J].计算 力学学报,2002,19(2):217-221.
    [32]熊铁华,常晓林.基于响应面的三维随机有限元法在大型结构可靠度分析中的应用[J].武汉大学学报,2005,38(1):125-128.
    [33]陈建英,郭艳梅,贺国京.用响应面有限元法分析既有混凝土桥梁的可靠性[J].中南林业科技大学学报,2008,28(5):123-126.
    [34]J. W. Free, A. R. Parkinson, etal. Approximations of computationally expensive and noisy functions for constrained nonlinear optimization[J]. Transmission and Automation in Design,1987,109:528-533.
    [35]L. F. P. Erman, J. M. T. Adriaenes, etc. Crash worthiness design optimization using multipoint sequential linear programming[J]. Structural Optimization,1996, 12:81-88.
    [36]郭秩维,白广忱.随机响应面法在结构随机响应计算中的应用[J].航空动力学报,2008,23(11):2021-2025.
    [37]T. M. Dvorak. Response surface optimization techniques for multiple objective and randomly valued independent variable problems. Ph. D Dissertation. University of Central Florida,2000.
    [38]王晓峰,席光,王尚锦Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2006,26(3):423-425.
    [39]苗强,王红岩.基于响应面法的悬架系统优化研究[J].装甲兵工程学院学报,2006,20(4):49-52.
    [40]窦毅芳,王中伟,张为华.固体火箭发动机内弹道响应面建模方法研究[J].弹箭与制导学报,2007,27(5):133-135.
    [41]程进,肖汝诚.基于集成化响应面法的薄壁箱梁结构随机剪力滞分析[J].应用力学学报,2007,24(2):249-253.
    [42]胡龙飞,刘全坤,王成勇,等.基于响应面模型的铝合金壁板挤压成形优化设计[J].中国机械工程,2008,19(13):1631-1633.
    [43]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计优化[J].机械工程学报,2008,44(11):192-196.
    [44]吴志远,邵惠鹤,吴新余.遗传退火进化算法[J].上海交通大学学报,1997,31(12):69-71.
    [45]赵文清.显示多盘制动器的模拟退火算法优化设计[J].北京科技大学学报,2002,24(4):414-417.
    [46]罗亚中,唐国金,田蕾.基于模拟退火算法的最优控制问题全局优化[J].南京理工大学学报,2005,29(2):144-148.
    [47]余国燕,郑时雄,刘桂雄,等.复杂工程问题全局优化算法研究[J].华南理工大学学报,2000,28(8):104-110.
    [48]周开利,康耀红.神经网络及MATLAB仿真程序设计[M].北京:清华大学出版社,2004.
    [49]文绍纯,罗飞,付连续.遗传算法在人工神经网络中的应用综述[J].计算机技术与自动化,2001,20(2):1-5.
    [50]俞云新.蚁群算法研究及其应用[D].南昌:华东交通大学,2010.
    [51]雷英杰,张善文,李旭武,等MATLAB遗传算法工具箱及其应用[M].西安:西安电子科技大学出版社,2005.
    [52]熊仲宇,丁运亮.确定性的遗传算法[J].南京航天航空大学学报,2001,33(1):27-32.
    [53]赵志国,司传胜.基于多岛遗传算法的铰接车轮边减速器优化设计[J].机械设计与制造,2010,12:213-215.
    [54]牟淑志,杜春江.基于多岛遗传算法的连续体结构拓扑优化[J].机械科学与技术,2009,28(10):1316-1320.
    [55]石秀华,孟祥众.基于多岛遗传算法的振动控制传感器优化配置[J].振动、测试与诊断,2008,28(1):62-65.
    [56]Pfeiffer F. Dynamical systems withtime-varying or unsteady structure[J]. ZAMM, 1991,71(4):6-22.
    [57]洪嘉振,倪纯双.变拓扑多体系统动力学的全局仿真[J].力学学报,1996,28(5):633-637.
    [58]章定国,张福祥.多管火箭炮发射过程中的变结构问题[J].南京理工大学学报,2002,26(3):225-228.
    [59]章定国,张福祥.火箭发射系统的动力学控制[J].南京理工大学学报,2002,26(2):139-143.
    [60]丘焕耀,毛宗源.变结构模糊神经网络控制及其学习规律研究[J].华南理工大学学报,1999,27(3):88-93.
    [61]胡海岩,孟国庆,孟光,等.动力学、振动与控制学科未来的发展趋势[J].力学进展,2002,32(3):294-298.
    [62]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [63]刘延柱,洪嘉振,杨海兴.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [64]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [65]D. S. Bae, Edward J. Haug. A recursive formulation for Constrained mechanical system dynamics:Part II[J]. Closed Loop Systems, Mech. Struct. and Machines, 1987,15(4):481-506.
    [66]Jeng Yen, Edward J. Haug, Florian A. Potra. Numerical method for constrained equations of motion in mechanical systems dynamics. Technical Report R-92, Center for Simulation and Design Optimization, Department of Mechanical Engineering, and Department of Mathematics, The University of Iowa, Iowa Cit y, Iowa,1990.
    [67]潘振宽,洪嘉振.多体系统动力学微分代数方程数值计算方法[J].力学进展,1996,26(2):28-40.
    [68]Haug E. J. Computer aided kinematics and Dynamics of Mechanical Systems[M]. Vol 1 Basic Methods. Needham Heights, Allyn and Baeon,1989.
    [69]员超,宗光华Huston多体系统动力学方法的矩阵分析[J].机械工程学报,1999,35(6):5-9.
    [70]张学胜,陈万吉.多体系统动力学Euler-Lagrange方程的非线性规划方法[J].工程力学,2000,17(1):20-24.
    [71]A. A. Shabana. Substructure synthesis methods for dynamic analysis of multibody systems[J]. Computers & Structures,1985,20(4):737-744.
    [72]N. Vukasovic, J. T. Celigueta, J. Garciade Jalon, etal. Flexible multibody dynamics based on a fully cartesian system of support Coordinates [J]. Journal of Mechanical Design,1993,115:294-299.
    [73]S. S. Kim, E. J. Haug. A recursive formulation for flexible multibody dynamics: part Ⅰ, open loop systems[J]. Comp. Methods Appl. Mech.Eng,1988,71:293-314.
    [74]H. J. Lai, E. J. Haug, S. S. Kim, etal. A decoupled flexible-relative coordinate recursive approach for flexible multibody dynamics[J]. International Journal for Numerical Methods in Engineering,1991,32:1669-1689.
    [75]Avello A. J., Jolon G. D., Bayo E. Dynamics of flexible multibody systems using cartesian co-ordinates and large displacement theory [J]. Int. J. Numer. Methods Eng,1991,32(8):1543-1564.
    [76]Shabana A. A., Christensen A. Three dimensional absolute nodal coordinate formulation plate problem[J]. Int. J. Nuner. Methods Eng,1997, 40(15):2275-2790.
    [77]Jiang Zhao, Qiang Tian, Haiyan Hu. Modal analysis of a rotating thin plate via absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics,2011,6:1-8.
    [78]裴胤,胡光余,乐贵高,等.多管火箭炮系统发射动力学仿真研究[J].南京理工大学学报,2003,27(1):40-43.
    [79]于存贵,马大为,王惠方,等.舰载火箭炮随动系统调炮动力学仿真[J].南京理工大学学报,2007,31(2):143-146.
    [80]管红根,袁人枢,高树滋,等.车载炮发射动力学仿真研究[J].兵工学报,2005,26(1):53-55.
    [81]冯勇,马大为,薛畅,等.多管火箭炮刚柔耦合多体发射动力学仿真研究[J].兵工学报,2006,27(3):545-548.
    [82]贺北斗,林永明,曹听荣.火箭发射装置设计[M].北京:国防工业出版社,1988.
    [83]赫雄.ADAMS动力学仿真算法及参数设置分析[J].传动技术,2005,19(3):27-30.
    [84]张胜三,郭卫东.多管火箭弹出管姿态仿真[J].导弹与航天运载技术,2003,2:16-24.
    [85]曹广群,张艳华,刘树华.基于ADAMS的多管火箭炮动力学仿真分析[J].2009,28(2):32-35.
    [86]姚志军,芮筱亭,王执铨,等.远程多管火箭射击精度折合方法研究[J].弹箭与制导学报,2006,26(4):197-200.
    [87]芮筱亭,王国平,陆毓琪,等.提高多管火箭射击密集度新技术[J].兵工学报,2006,27(2):301-305.
    [88]姚志军,王国平,芮筱亭,等.简易控制远程多管火箭密集度仿真[J].系统仿真学报,2007,19(5):1127-1130.
    [89]陈兵,马大为,乐贵高.多管火箭系统变阻尼振动控制研究[J].弹箭与制导学报,2006,26(1):763-765.
    [90]朱怀亮.柔性旋转火箭发射时的弹—管间隙效应[J].兵工学报,2003,24(1):1-4.
    [91]骆连珍,徐明友,安慧春.弹炮间隙对火箭初始扰动的影响[J].弹道学报,1999,11(3):73-77.
    [92]王国平,芮筱亭.弹管间隙对多管火箭密集度的影响[J].弹道学报,2003,15(4):27-31.
    [93]蔺法鹏.某多管火箭炮虚拟样机仿真与优化[D].南京:南京理工大学,2011.
    [94]易兴利,黄德武,赵德全.大长径比火箭弹在瞬态冲击下的振动响应[J].弹箭与制导学报,2003,23(3):39-42.
    [95]王国平,芮筱亭,陆毓琪.射序对多管火箭武器性能的影响[J].南京理工大学 学报,2004,28(4):364-368.
    [96]常宗旭,赵文宣,陈国光.多管火箭武器齐射时合理射序分析[J].弹箭与制导学报,1995,15(3):43-49.
    [97]陈效全,徐美丽.多管火箭炮发射间隔仿真研究[J].弹箭与制导学报,2003,23(2):48-50.
    [98]杨帆,王国平,芮筱亭,等.射击间隔对动态特性的影响[J].南京理工大学学报,2006,30(4):400-403.
    [99]姚昌仁,张波.火箭导弹发射装置设计[M].北京:北京理工大学出版社,1998.
    [100]陈兵,马大为,乐贵高,等.群射防控火箭炮射序优化[J].弹道学报,2006,18(4):25-28.
    [101]Zhan Zhihuan, Rui Xiaoting. Design of active vibration control for launcher of multiple launch rocket system[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics,2011,255(3):280-293.
    [102]朱忠领,马大为,李自勇等.2枚火箭同时发射时火箭炮动态特性分析[J].弹道学报,2006,18(3):65-67.
    [103]徐品高.现代点防御防空导弹的火力密度和目标通道数[J].战斗导弹技术,2007,3(3):1-6.
    [104]刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    [105]叶元烈.机械优化理论与设计[M].北京:中国计量出版社,2001.
    [106]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [107]陈魁.试验设计与分析[M].北京:清华大学出版社,2005:5-28.
    [108]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612.
    [109]陈建民,张仲义.神经网络在优化计算中的应用[J].系统工程与电子技术,1999,21(3):69-71.
    [110]王红涛,竺晓程,杜朝辉.自适应Kriging近似模型及其在二维扩压器优化设计中的应用[J].计算力学学报,2011,28(1):15-24.
    [111]刘小民,张文斌.一种基于径向基函数的近似模型构造方法[J].燕山大学学报,2010,34(5):390-394.
    [112]窦毅芳,刘飞,张为华等.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363.
    [113]Z. M. Wu. Generalized bochners theorem for radial function[J]. Approximation Theory and its Application,1997,12:47-57.
    [114]薛亮,韩万金.基于遗传算法与近似模型的全局气动优化方法[J].推进技术, 2008,29(3):360-366.
    [115]R. Jin, W. Chen, T. W. Simpson. Comparative studies of metamodeling techniques under multiple modeling criteria[J]. Structural and Multidisciplinary Optimization, 2001,23(1):1-13.
    [116]T. Krishnamurthy. Response surface approximation with augmented and compactly supported radial basis function[R]. Presented at 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. April 7-10, Norfolk, Virginia,2003.
    [117]傅德彬,姜毅,刘琦.发射装置刚柔耦合仿真分析[J].弹箭与制导学报,2004,24(5):425-428.
    [118]夏文斌.弹炮发射系统的刚柔耦合动力学[D].南京:南京理工大学,2007.
    [119]徐达,胡俊彪,穆歌.基于刚柔耦合的坦克炮发射动力学仿真分析[J].装甲兵工程学院学报,2009,23(4):45-47.
    [120]黄文虎,邵成勋.多柔体系统动力学[M].北京:科学出版社,1996.
    [121]张涛,刘相新,郑斌.基于模态综合法的发射过程刚柔耦合动力学研究[M].导弹与航天运载技术,2009,304:51-54.
    [122]Wang D., Conti C., Beale D. Interference impact analysis of multibody systems[J]. Journal of Mechanical Design,1999,121:121-135.
    [123]Djerassi, S. Three-dimensional, one-point collision with friction[J]. Multibody System Dynamics,2012,27(2):173-195.
    [124]Zhechev, M.M., Khramova, M.V. Geometrical conditions for wedging in mechanical systems with Coulomb friction[J]. Proceedings of the Institution of Mechanical Engineers,2009,223(5):1171-1179.
    [125]蔡文勇.大口径车载火炮多柔体动力学与总体优化研究[D].南京:南京理工大学,2009.
    [126]于存贵,申亮,马大为.舰炮刚柔耦合发射动力学仿真[J].系统仿真学报,2009,21(23):7694-7696.
    [127]张蓉.某防空火箭炮发射动力学分析与结构轻量化研究[D].南京:南京理工大学,2008.
    [128]俞水强.工业机器人的动力学与控制研究及其可视化仿真[D].南京:南京航空航天大学,2008.
    [129]陈正洪.混合驱动两自由度并联机构动力学与控制研究[D].济南:山东大学,2008.
    [130]马如奇,郝双晖,郑伟峰,等.基于MATLAB与ADAMS的机械臂联合仿真 研究[J].机械设计与制造,2010,4:93-95.
    [131]韩雁飞.舰空导弹发射模型研究[J].舰载武器,2001,4:12-16.
    [132]李强,薄玉成,朵英贤.转管炮旋转发射惯性对弹丸初始扰动的影响分析[J].弹道学报,2005,17(4):88-92.
    [133]戴耀,汪德虎.舰艇运动对舰炮起始发射条件的影响[J].火炮发射与控制学报,2002,3:9-12.
    [134]朱玉川,马大为,李志刚,等.防空多管火箭炮交流位置伺服系统的控制策略[J].武器装备自动化,2006,25(4):5-6.
    [135]朱玉川,马大为,李志刚,等.火箭炮交流位置伺服系统滑模变结构控制策略[J].火炮发射与控制学报,2006,2:11-15.
    [136]姜玉春,吴红燕.PID控制器参数的整定[J].莱钢科技,2006,122:54-55.
    [137]刘金昆.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [138]黄锐友,曲立国.PID控制器参数整定与实现[M].北京:科学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700