用户名: 密码: 验证码:
微波硬化水玻璃砂应用的关键技术基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波加热硬化水玻璃砂可充分发挥水玻璃的粘结效率,具有水玻璃加入量低、强度高、硬化时间短、旧砂溃散及再生回用性好、清洁生产等一系列优势。本文针对微波硬化水玻璃砂应用的关键问题开展了如下研究:
     1、试验研究了普通微波硬化水玻璃砂的加热特征、强度特征和存放特征,分析了加热时间和功率、水玻璃加入量、水玻璃模数、存放时间和存放环境等对砂型强度的影响,研究了砂型抗湿性差、强度快速下降的原因,并通过测试微波加热作用下型砂试样的温度场分布,探索了微波加热硬化水玻璃砂的传热特征。
     2、针对造型模具要求高的问题,开展了四种少模或无模硬化新工艺的系统研究:
     (1)研究了二次微波硬化水玻璃砂新工艺的特征及其影响因素。结果表明,10-30s微波初次硬化可达到15KPa的脱模强度,90-100s的二次无模具直接微波硬化能达到可使用强度,该工艺具有模具要求低、直接加热、硬化效率高等优点。
     (2)研究了有机酯―微波复合硬化水玻璃砂工艺。测试了有机酯加入量、加热时间、微波功率等对砂型强度和抗湿性的影响。该工艺能提高砂型的抗湿性能,硬化过程中生成的三水醋酸钠晶体和甘油、高模数水玻璃等疏水性物质保护了粘结桥。
     (3)研究了CO_2―微波复合硬化水玻璃砂工艺。测试了CO_2吹气流量、吹气时间、微波硬化时间、微波功率等对砂型强度和抗湿性的影响。发现该工艺能提高砂型的抗吸湿性能,硬化产生的十水碳酸钠和高模数水玻璃保护了粘结桥。
     (4)研究了热空气―微波复合硬化水玻璃砂工艺。测试结果表明,该工艺硬化时间较慢,砂型的抗湿性较差,需要热空气保温设备。
     3、结合水玻璃本身的特征(富含硅原子或者硅氧键、本身即为表面活性剂),开展了微波硬化水玻璃砂的抗吸湿性材料及其方法的研究;开发了三类水玻璃砂抗吸湿涂料(层)。
     (1)对粘结剂或原砂进行改性以提高型砂的抗吸湿性。采用纳米氮化硅、纳米碳化硅、纳米绢云母等无机硅质粉末改性水玻璃;甲基硅酸钠、甲基硅油的液体有机硅及烷基苯磺酸钠、Span-80等表面活性剂改性原砂,添加了改性剂的砂型恒湿瓶4h存放强度较未改性砂型大都能提高90%左右。
     (2)开发了以PbO-ZnO低温陶瓷粉为骨料的醇基涂料来改善砂型的抗湿性,点火烧结后,生成了Al_2TiO_5、NaAlO_2、PbTiO_3等物质,涂覆了涂料的水玻璃砂样恒湿瓶4h存放强度较普通砂样提高了将近2.33倍。
     (3)研究了在水玻璃砂型表面生成低共熔体锂盐涂层的方法,来提高砂型的抗湿性。首先在水玻璃砂型表面喷涂0.38LiOH-0.62LiNO_3混合锂盐(共熔点温度最低只有175.7℃)饱和水溶液,再将砂型放入微波炉加热硬化制得表面有致密混合锂盐涂层的水玻璃砂型。砂型硬化温度高达370℃,远高于普通微波硬化砂型(110℃),表面涂层处理的砂型恒湿瓶4h存放强度较未处理的提高了将近2倍。
     (4)以PbO-ZnO系低温陶瓷粉为骨料,再加入3.5%V2O_5、2.5%Al_2O_3、2.5%TiO_2及20%的0.38LiOH-0.62LiNO_3混合锂盐而制备了低温涂料,在微波烧结和硬化作用下,表面具有低温涂料的砂样在恒湿瓶中存放4h的强度较未处理提高6倍多,砂型被Zn_2TiO_4、Pb_5O_8、PbTiO_3、PbSiO_3、Pb_6Al_2Si6O_21和Al_2SiO_5等无机物质的致密熔体包裹。该涂层开始烧结温度仅为259.6℃,砂型的硬化温度高达390℃。
     4、针对目前水玻璃砂工艺应用仍未很好解决的旧砂再生问题,提出了生物再生水玻璃旧砂新方法,初步研究了水玻璃旧砂生物再生的可行性及其影响因素。
     对比了谷皮菱形藻、直链藻和小环藻再生水玻璃旧砂污水的效果,结果表明谷皮菱形藻的效果最好。利用水玻璃旧砂湿法再生污水培养经过耐碱驯化的谷皮菱形藻,确定了回收效率的各种影响条件的单因素最佳值:温度25℃,光强5000lux,光照时间14h/d,氮浓度80mg/L,磷浓度50mg/L,氮磷比14:1,Fe3+浓度2.28mg/L,Mg2+浓度16mg/L。对部分影响因子进行了优化,并对污水循环问题也进行了研究。
Sodium silicate sand cured with microwave can exert adequately the bondingpotential of binder and so the sand mould with low binder addition would achieve higherstrength and better collapsibility. Beside these, microwave curing possesses manyadvantages such as fast curing, clean production, and so on.The dissertation had carriedout in order to solve the key problems of this microwave curing process.
     (1). The heating, strength and storage characteristics of the traditional microwavecuring process for sodium silicate sand were investigated, and the curing time, microwavepower, binder addition and modulus, storage time and circumstance would influence thesand mould strength. Especially, the mechanism of humidity absorption of sodium silicatesand cured with microwave was analyzed.The temperature field distribution of standardcylindrical sand specimen was studied, and the results showed that there was a positivetemperature gradient from inside to outside within the samples of sodium silicate sandsamples cured with microwave. Furthermore, heat transfer formula was deduced.
     (2). Four less-using mould, even non-mould moulding processing were developed tosolve the problem of high-performance mould in the microwave oven, that was the firstcuring for demoulding and the second microwave curing for service strength.
     1).Twice microwave curing processing: The sodium silicate sand specimens werecured in microwave oven for10-30s to the stripping strength of15KPa, and then the sandand mould were taken out from microwave oven, and the sand specimens were demoulded,after which the sand specimens were cured for90-100s in the microwave oven to the sandservice strength, and this processing could greatly decrease the requirements on the mouldmaterial and increase the efficiency of curing.
     2).Ester―microwave composite curing: The sodium silicate sand specimens werecured by ester fistly for demoulding. A system research of influence factors, included esteraddition, curing time and power, on the strength and moisture resistance properties of thisnew process were investigated. The humidity resistance of the sodium silicate sand wasimproved after the production of hydrophobic materials, glycerol and sodium acetatetrihydrate and high-modulus sodium silicate from the ester curing process.
     3).CO_2―microwave composite curing: The sodium silicate sand specimens werecured by CO_2fistly.The influence factors, included CO_2gassing flow and time, curingtime and power, on the strength and moisture resistance properties of this new processwere investigated. The humidity resistance of the sodium silicate sand was improved afterthe production of hydrophobic materials, sodium carbonate decahydrate and high-modulussodium silicate from the CO_2curing process.
     4).Hot air―microwave composite curing: The sodium silicate sand specimens werecured by hot air fistly.But the demoulding time was longer and humidity resistance wasworse, and the thermal insulating equipment was complex.
     (3).The new modifiers and three coatings were developed to solve the high moistureabsorbability of sodium silicate sand cured with microwave.
     1).Many modifiers, such as nano Si3N4, SiC, sericite and methyl sodium silicate,methyl silicone oil and sodium dodecyl sulphate, span-80, were used to improve humidityresistance. The results show that: the4h storage strength in humidistat with0.2%nanoSi3N4increased about93.7%in which the modifier was the minimum, and the modifiedsodium silicate sand with15%methyl silicone oil increased about129.52%in which themodified effect was the best.
     2).The alcohol-based coating made of PbO-ZnO low-temperature ceramic powder(aggregate) was fired to form coating in the sodium silicate sand. The results show thathumidity resistance of the sodium silicate sand had significantly greater improvement aftersurface coating, the4hour storage strength can be increased by2.33times. And three newkinds of phase were produced: Al_2TiO_5, NaAlO_2, and PbTiO_3, which were the mainreasons for humidity resistance of sodium silicate sand increased by surface coating.
     3).The coating of eutectic lithium salts (0.38LiOH-0.62LiNO_3) were sprayed on thesurface of water glass sand and then sintered by the microwave energy to obtain glassymembrane for its lowest eutectic point of175.7℃,so the humidity resistance of waterglass sand cured with microwave was improved greatly. The results showed that the curingtemperature of coating sand mould was about370℃,which was higher than thetemperature (110℃) of common one by the microwave energy,and the strength of coatingsand mould was higher than common one. The4h storage strength of coating sand mould in humidistat with relative humidity of98-100%increased by two times comparing withthe common microwave curing one.
     4).The microwave low-temperature coating, which was made of PbO-ZnO ceramicpowder,3.5%V2O_5,2.5%Al_2O_3,2.5%TiO_2,20%0.38LiOH-0.62LiNO_3eutectic lithiumsalts could produce Zn_2TiO_4, Pb_5O_8, PbTiO_3, PbSiO_3, Pb_6Al_2Si6O_21and Al_2SiO_5in thesurface of the sodium silicate sand mould cured with microwave, and the coatingbeginning sintering temperature was259.6℃, but the curing temperature was390℃. The4h storage strength of coating sand mould in humidistat with relative humidity of98-100%increased by six times comparing with the common microwave curing one.
     4. A new process of wet reclamation by biologically treating the waste waterproduced during the wet reclamation process of used sand was studied in this dissertation.Comparing three diatom species of Melosira varians, Cyclotella hebeiana and Nitzschiapalae (for short N. palea below), and N. palea was seleted as the optimum diatom to treatthe waste water. So the domestication was used in the N. palea and many influence factorson the reclaimation were investigated as following: temperature25℃, irradiance5000lux,illumination time14h/d, N concentration80mg/L, P concentration50mg/L, N: P14:1,Fe3+concentration2.28mg/L, Mg2+concentration16mg/L, thus a optimized research wasdone to get the best reclamation effect on basis of these data.And the waste water cyclemethod was tested.
引文
[1]曲卫涛.铸造工艺学.西安:西北工业大学出版社,1994
    [2]朱纯熙,卢晨.水玻璃砂基础理论.上海:上海交通大学出版社,2000
    [3]周尧和.21世纪需要绿色集约化铸造.铸造工程·造型材料,1998,(1-2):4-7
    [4] Melngk S A, Smith R T. Green Manufacturing. Dearborn, USA: Society ofmanufacturing Engineers,1996
    [5]李依依.我国铸造技术的现状和发展对策.中国科学院院刊,2006(5):395-398
    [6]路甬祥.21世纪中国制造业面临的挑战和机遇.铸造世界报,2004(10):5-14
    [7] ZHU CX.Recent advances in waterglass sand technologies. China Foundry,2007,4(1):13-17
    [8] Rabbii A. Sodium silicate glass as an inorganic binder in foundry industry.IRANIAN POLYMER JOURNAL,2001,10(4):229-235
    [9]樊自田,董选普,陆浔.水玻璃砂工艺原理及应用技术.北京:机械工业出版社,2004
    [10] Chang H, Chen EL. Collapsibility of sodiumsilicate cores cured by microwaveenergy and CO2gassing process. AFS Transactions,1988,96:217-222
    [11]李远才.金属液态成形工艺.北京:化学工业出版社,2007
    [12] Owusu Y.A.Physical-chemistry study of sodium silicate as a foundry sand binder.Advances in Colloid and Interface Science,1982,18(1-2):57–91
    [13] Mackenzie K.J.D, Brown I. W.M, Ranchod P. Silicate bonding of inorganicmaterials. II,Reactions at high temperatures.Journal of materials science,1991,26(3):769-775
    [14] Mackenzie K. J.D., Brown I.W.M., Ranchod P., Meinhold R. H. Silicate bonding ofinorganic materials. I, Chemical reactions in sodium silicate at room temperature.Journal of materials science,1991,26(3):763-768
    [15]樊自田,黄乃瑜,董选普.酯硬化改性水玻璃砂工艺的技术优势.金属加工(热加工),2004,(3):11-13
    [16]林宗寿,李凝方,赵修建,刘顺妮.无机非金属材料工学.武汉:武汉工业大学出版社,1999
    [17] Petrzela L.捷克-化学硬化法的生产报告.铸工,1956,(11):36-40
    [18]孟爽芬著.造型材料.哈尔滨:哈尔滨工业大学出版社,1996
    [19]小林一典.VRHプロヒス(真空置换法).JACT News,1982,(10):48-51
    [20] Worthington R. The silicate-carbon dioxide bond.Iron and steel,1966,(5):176-188
    [21] Carey P and Sturtz G. sand binder systems Part Ⅲ------silicate CO2, silicateno-bake, CO2cured alkaline phonetic.Foundry M&T,1996,(4):74-82
    [22]许进.铸造用水玻璃及其改性机制.武汉:华中科技大学出版社,2009
    [23] Lucas S, Tognonvi MT, Gelet JL, Soro J, Rossignol S. Interactions between silicasand and sodium silicate solution during consolidation process.Journal ofnon-crystalline solids,2011,357(4):1310-1318
    [24]李传拭.造型材料新论.北京:机械工业出版社,1992
    [25] Hutera B. The effect of dynamic wetting in a sand-binder system on the sandmould strength. Archives of metallurgy and materials,2009,54(2):413-419
    [26] Lemmoui A, Baccouche M, Hadji A.Improvement in the aptitude to discharge andto unstop of sands binded with sodium silicate and hardened by carbon dioxide.Annales de Chimie Science des Materiaux,2000,24:51-57
    [27]王文清,李魁盛.铸造工艺学.北京:机械工业出版社,1998
    [28] Kulkarni S.N, Radhakrishna K.Prediction of solidification time duringsolidification of aluminum base alloy castings cast in CO2-sand mold.Theinternational journal of advanced manufacturing technology,2007,34(11-12):1098-1110
    [29] M.Venkata Ramana, S.Sundarrajan, M.Komaraiah, V.Vasudeva rao,N.Chakradhar.Modelling of parameters of silicate bonded CO2mould usingartificial neural networks.Proceedings of the International Conference onMechanical Engineering2007, ICME07-AM-28
    [30] Parappagoudar MB, Pratihar DK, Datta GL.Neural network-based approaches forforward and reverse mappings of sodium silicate-bonded, carbon dioxide gashardened moulding sand system. Materials and Manufacturing Processes,2009,24(1):59-67
    [31] Noorul Haq A, Guharaja S, Karuppannan K. Parameter optimization of CO2castingprocess by using Taguchi method. International Journal on Interactive Design andManufacturing,2009(3):41-50
    [32]李传拭,李承永译.造型材料实验手册.北京:机械工业出版社,1983.4
    [33]高柳猛.2CaO·SiO2と水かうスの硬化反应の考察.铸物.1968,(14):11-13
    [34] Muralidhara M.K., Seshan S.Properties of Sodium Silicate Bonded Sands WithSilicofluoride Hardener. AFS Transactions.1986,(11):65-70
    [35]郑克义.铸造生产中应用水玻璃砂的前景.热加工工艺,1984,(4):15-18
    [36]王继娜,樊自田,昝小磊.超细粉末硬化水玻璃砂的性能特征研究.中国机械工程,2009,(8):999-1003
    [37] R.M. Mac Donald.Using a self-setting silicate process for molds.Foundry,1971,(8):96-98
    [38]赵学箴.有机酯水玻璃自硬砂应用现状及其发展.铸造设备研究,1998,(2):6-10
    [39] WANG Ji-na, FAN Zitian, WANG Hua-fang, Dong Xuan-pu, Huang Nai-yu. Animproved sodium silicate binder modified by ultra-fine powder materials. CHINAFOUNDRY,2007,4(1):26-30
    [40]樊自田,黄乃瑜,刘洪永,罗碧泉.影响酯硬化水玻璃干法再生砂性能的主要因素.铸造,2000,(10):773-775
    [41]樊自田,王继娜,汪华方,董选普,黄乃瑜.水玻璃粘结剂改性技术的现状及发展趋势.现代铸铁,2007,(4):76-80
    [42]姚进法.酯硬化水玻璃砂在高速动车铸钢件生产中的应用.铸造,2011,(8):807-810
    [43]丁振波,韩小峰,崔艳芳.酯硬化水玻璃砂在铸造生产中的应用.铸造技术,2011,(7):1027-1028
    [44]张生,余裕勇,王博.水玻璃自硬砂铸造工艺研究与应用.铸造技术,2011,(1):20-23
    [45]俞正江,郑慧.有机酯水玻璃砂在特大型铸钢件上的应用.铸造,2007,(11):1215-1217
    [46]沈阳汇亚通铸造材料有限责任公司.一种铸造造型、制芯用粘结剂及其制备方法. CN101108407
    [47]樊自田,董选普,黄乃瑜.水玻璃砂工艺及材料研究与应用的新进展.铸造,2002(9):530-534
    [48]朱旭东,朱以松,王逢钧等.大吨位酯硬化水玻璃砂热法再生线.铸造纵横,2003,(11):28-32
    [49]宜兴市奥兴石英砂处置有限公司.强擦洗水玻璃旧砂湿法再生工艺.ZL200910234904
    [50] S.M. Dobosz, K. Major-Gabrys. The mechanism of improving the knock-outproperties of moulding sands with water glass. Archives of foundry engineering,2008,8(1):37-42
    [51] K. Major-Gabrys, S.M. Dobosz.A new ester hardener for moulding sands withwater glass having slower activity. Archives of foundry engineering,2009,9(4):125-128
    [52]康健.微波加热技术极其在农副产品加工中的应用.西北农业学报,1999,8(4):110-112
    [53] Kuroki Akihiro, Ichinomiya Nabushige. Asahi Organic Chemical Co.Ltd., Patent7428562(July1974)
    [54] Dench EC, Freedman G. Drying of casting molds by microwave energy. BritishPatent No.1481356(1977)
    [55] Cole G.S. Effects of microwave heating on core processing. AFS Transactions,1978,(38):332-336
    [56] Cole, G. S. Sodium Silicate Bonded Sand. Bodies Cured with Microwave Energy.Org. Coat. Plast. Chem,1978,(39):330-335
    [57] Owusu Y A. Microwave cured sodium silicate bonded cores. AFS Transactions,1979,(55):605-612
    [58] Owuse Y.A.,et al. Humidity resistance of sodium silicate bonded sands cured withmicrowave energy. AFS Transactions,1980,(88):601-608
    [59] Owusu Y.A., Draper A.B.Inorganic additives improve the humidity resistance andshakeout properties of sodium silicate bonded sand.Transactions of the AmericanFoundrymen's Society,1982,89:47-54
    [60] Owuse Y.A.,Draper A.B. Inorganic additives improve the humidity resistance andshakeout properties of sodium silicate bonded sand AFS Transactions,1981(89):47-54
    [61] Ailin-Pyzik I B.silicate foundry binders with improved humidity resistance. AFSTransactions,1981,(89):101-105
    [62] Ailin-Pyzik, Iris B. Falcone Jr., James S. Method for binding particulate materials.US4347890
    [63] Gedevanishvili S grawal D Roy R. Microwave combustion synthesis and sinteringof intermetallics and alloy. Journal of Materials Science Letters,1999,18:665-674
    [64] Cheng J P,Agrawal D,Zhang Y H,et al. Fabrieating transparent ceramics bymicrowave sintering. American Ceramic Society Bulletin,2000,79(9):71-74
    [65] Romualdo R Menezes, Pollyane M Souto, Ruth HGA Kiminami. Microwavehybrid fast sintering of porcelain bodies. Journal of Materials ProcessingTechnology,2007,190(1-3):223-229
    [66] Constantinos J Millos, A Gavin Whittaker,Euan K Brechin. Microwave heating-Anew synthetic tool for cluster synthesis. Polyhedron,2007,(26):1927-1933
    [67] R Benitez, A Fuentes, K Lozano. Effects of microwave assisted heating of carbonnanofiber reinforced high density polyethylene. Journal of Materials ProcessingTechnology,2007,190(1-3):324-331
    [68] Basak T, Role of metallic, Ceramic and composite plates on microwave processingof composite dielectric materials. Material Science and Engineering A,2007,457:261-274
    [69] Czernik A. Microwave drying of casting cores. INDUSTRIAL CERAMICS,2000,20(1):48
    [70] Jelinek P, Polzin H, Skuta R.Utilization of physical dehydration for hardening ofcores bonded with colloidal solutions of alkaline silicates.Acta MetallurgicaSlovaca,2004,(10)1:10-23
    [71] K. Granat, D. Nowak, M. Pigiel, M. Stachowicz, R. Wikiera. Microwaves energy incuring process of water glass molding sands. Archives of foundry engineering,2007,7(1):183-188
    [72] M. Stachowicz, K. Granat, D. Nowak. Application of microwaves for innovativehardening of environment-friendly water-glass moulding sands used inmanufacture of cast-steel castings. Archives of civil and mechanical engineering,2011, XI (1):209-219
    [73] K. Granat, D. Nowak, M. Pigiel, M. Stachowicz, R. Wikiera.Microwavesenergy in curing process of water glass molding sands. Archives of foundryengineering,2007,7(1):183-188
    [74] K. Granat, D. Nowak, M. Pigiel, M. Stachowicz, R. Wikiera.The influence ofmicrowave curing time and water glass kind on the properties of molding sands.Archives of foundry engineering,2007,7(4):79-82
    [75] M. Stachowicz, K. Granat, D. Nowak, K. Haimann. Effect of hardening methods ofmoulding sands with water glass on structure of bonding bridges. Archives offoundry engineering,2010,10(3):123-128
    [76] Grabowska B, Holtzer M. Application of microwave radiation for crosslinking ofsodium polyacrylate/silica gel system used as a binder in foundry sands.POLIMERY,2007,52(11-12):841-847
    [77] Grabowska B, Holtzer M. Microwave crosslinking of polyacrylic compositionscontaining dextrin and their applications as molding sands binders.Polimery2009,54(7-8):507-513
    [78] Masuda Yuki, Tsubota Keiji, Ishii Kenichi, Imakoma Hironobu, OhmuraNaoto.Drying rate and surface temperature in solidification of glass particle layerwith inorganic binder by microwave drying.Kagaku Kogaku Ronbunshu,2009,35(2):229-231
    [79]李华基,谢卫东.水玻璃砂微波加热工艺及工程应用方案研究.重庆大学学报(自然科学版),1999,22(6):24-28
    [80]李艳芬.水玻璃砂微波硬化特征及溃散性的研究.内蒙古工业大学硕士学位论文,2005
    [81]车广东,刘向东,郭刚,黄雪枫,张伟.水玻璃砂微波硬化强度的试验研究.铸造技术,2006,(10):1052-1053
    [82]王秀萍,肖波,徐正达,杨照伟,黄乃瑜.微波水玻璃砂芯和砂型及其旧砂再生.特种铸造及有色合金,1997,(4):7-9
    [83]肖波,徐正达,王秀萍,张俊德,黄乃瑜,程金生.水玻璃砂──未来化学粘结剂砂的主力军.中国机械工程,1996,(6):70-72
    [84]肖波,徐正达,王秀萍,曹伟,张洪海,黄乃瑜.铸造水玻璃砂粘结性能研究新方法.湖北工学院学报,1995,(S1):6-9
    [85]昝小磊,樊自田,王继娜等.微波硬化水玻璃砂的性能.铸造,2008(4):384-385
    [86]吴香清.二次微波加热水玻璃砂工艺及性能特征及抗吸湿性初步研究[D].华中科技大学:2011
    [87] Skubon M.J. Microwave curing of core binders and coating. AFS Transactions,1978,(37):221-230
    [88] Wullff C E. Investigation of the hardening of sodium silicate bonded sand.Moderncasting,1958,(3):81-85
    [89] Matsumoto K, Yoshida A. Carbon dioxide gas hardening binder composition formolds sand manufacture of molds. JP Patent:200051933,1996
    [90] Yoshida A, Mizuno W. Binder composition sand their use in manufacture of molds.JP Patent:08206775,1996
    [91]中国机械工程学会铸造专业学会.造型手册.北京:机械工业出版社,1992
    [92]胡彭生.型砂.第二版.上海:上海科学技术出版社,1994
    [93]李华基,谢卫东.水玻璃砂芯微波固化用模具材料.重庆大学学报(自然科学版),2002,(1):116-119
    [94] Cajkova R, Novotny V. Possibilities of the Practical Utilization of Magneticallytreated Sodium Silicate. S1evarenstvi,1978,(26):96-99
    [95] Jelinek. R, Petrikova R, Hahnel U, et al. Possibilities for the modification ofsodium silicate solutions using magnetic field and ultra sonic treatment andPractical experience in the application of magnetically treated sodium silicatesolutions in Czech. Giessereitechnik Partl,1981(3):370~373; Part2,1982(l):21-25
    [96] Ibitoye S A., Oyatogun G M, Umoru L E, et al. Effect of Bulk Density Variation onthe Shear Strength of Clay-Sodium Silicate-Bonded Molding Sand. Indian FoundryJournal,2006(l):43-45
    [97] Кукуй Д М. Иссе д о в а н и е л ро ц ессо в л оу ч е н и я и и с л о ь з о в а н и яорга н о м и н ера л ь н ь х. Л и т Проиэ,1980(8):10-11
    [98] R nsch.Chemische modifizerung and untersuchungs moglichkeiten von wasserglaslosungen als bindermittel fur Giesserei fprmstoffe, Giesserei Technik,1981,(27):348-351
    [99]李振阳.酸改性钠水玻璃建筑涂料的研制.化学建材通讯,1986(S2):53-54
    [100]王桂芹、陈峰、程骥.新型水玻璃改性剂(LiOH)的研究.铸造,1996(9):17-20
    [101]李艺明,叶巧明.四硼酸钠对水玻璃改性作用的研究.广东微量元素科学,2006,13(10):66-68
    [102]朱筠,於有根,周联山.聚氧化乙烯改性水玻璃粘结剂的研究.铸造,2006,55(8):839-841
    [103]谈剑.铸造用水玻璃改性技术及应用研究.昆明理工大学硕士论文,2007
    [104]汪华方,樊自田等.超细粉末材料改性水玻璃粘结剂.华中科技大学学报(自然科学版),2006,(4):93-95
    [105]张黎,董选普,王继娜等.纳米氧化物改性水玻璃的作用机理研究.铸造,2006,55(11):1192-1194
    [106] Wenninger C E. Development of Foundry Sand Reclamation. AFS Trans,1953,(21):191
    [107] A Status Report of AFS Sand Reclamation&Reuse Committee (80-S). SandReclamation. Modern Casting,1979(3):60
    [108] First Report of Working Group P7.Sand Reclamation. British Foundryman,1973(8):45
    [109] Kleinheyer U, Quellmalz E, Staufenbiel R, et al. Pollution ControlRegulations-Laws on Monitoring and Reporting for Foundries. Giesserei,1987,74(10):307-309
    [110] Bastian K C, Alleman J E. Microtox characterization of foundry sand residuals.Waste Management,1998,(18):227-234
    [111] Weiss R, Kleinheyer U. Actual Application Trends of Mold-and Core-ProductionMethods: Old Sand Regeneration and Remainder Disposal.1987,74(21):629-633
    [112] Brown John R. Sodium Silicate Bonded Sand. Foseco Ferrous Foundryman'sHandbook,2000,(11):204-215
    [113]樊自田,黄乃瑜,黄有谋等.新型水玻璃旧砂湿法再生设备系统.铸造,1999(7):49-52
    [114]郭景纯,刘福举,李长疆等.水玻璃砂干法再生设备的开发研究.中国铸机,1990(5):3~6
    [115]石光玉.水玻璃砂干法再生工艺及成套装备的研究和应用.铸造设备研究,1996(1):21~24
    [116]肖波. LGG型滚筒式水玻璃砂机械法再生.中国铸造装备与技术,1997(3):55-56
    [117]朱纯熙,卢晨,季敦生等.水玻璃砂的化学再生.铸造,1998(7):34-36
    [118]冯胜山.水玻璃砂铸造应注意的几个问题.铸造设备研究,2008(6):42-46
    [119]西安理工大学焦作长城铸造机械有限公司研制成功水玻璃旧砂湿法干法联合再生机生产线.铸造技术,2008(4):453-453
    [120] Weiss R, Kleinheryer U.目前旧砂再生和废砂处理的发展趋势.(德)中文版,铸造设备与技术,1989(15):45-49
    [121]王继娜.非常温作用下水玻璃旧砂的性能特征及其再生性研究[D].华中科技大学:2009
    [122]胡贵钱,王国强.铸造业水玻璃自硬砂再生系统的污水处理.工业安全与环保,1997,(12):3-4+14
    [123] OswaldW J.Micro-algal Biotech-nology.NY: Cambridge University Press,1988,305-328
    [124] Sawayama S, RaoK K, HallD O. Nitrate and phosphate ion removal from waterbyPhormidium laminosumimmobilized on hollow fibers in a photobioreactor. App.lMicrobio.l Bio-techno.l,1998,49(4):463-468
    [125] Hernandez J, De-Bashan L E, Bashan Y. Starvation enhances phosphorus removalfrom wastewater by the microalga Chlorella spp. co-immobilized withAzospirillumbrasilense. Enzyme Microb. Tech.,2006,38(1-2):190-198
    [126] Aslan S, Kapdan I K. Batch kinetics of nitrogen and phosphorus removal fromsynthetic wastewater by algae.Eco.l Eng.,2006,28(1):64-70
    [127] Shi J, Podola B, MelkonianM. Removalofnitrogen and phosphorus fromwastewater using microalgae immobilized on twin layers: an experimental study. J.App.l Phyco.l,2007,19(5):417-423
    [128]王绍林.微波加热技术的应用:干燥和杀菌.机械工业出版社.2004
    [129]朱松青,史金飞,刘海宽,张志胜.微波加热湿旧沥青混合料的传热传质研究.中国公路学报,2009,(1):120-126
    [130] F.Torres and B. Jeko. Complete FDTD analysis of microwave heating processes infrequency-dependent and temperature-dependent media, IEEE Trans. MicrowaveTheory Tech.1997,(45):108-117
    [131] Allen Taflove and Morris E.Brodwin.Computation of the electromagnetic fieldsand induced temperatures within a model of the microwave-irradiated human eye,IEEE Trans.Microwave Theory Tech.1975,23(8):888-896
    [132]叶君永,黄卡玛.随机相位和随机频率微波加热效应的数值模拟.强激光与粒子束,2004,(12):1576-1580
    [133]徐苑芝,潘俊,李世孝,焦龙.含水率对非饱砂土热传导系数的影响.沈阳建筑大学学报(自然科学版),2011,(6):1173-1176
    [134]蒋且英,廖正根,赵国巍,黄海静.吸湿原理及中药制剂防潮方法研究概况.中国药房,2007,(33):2626-2628
    [135]钱静波,李丹.硅应变计的氮化硅钝化新技术.传感器技术,2000,19(6):40-41
    [136]赵东林,罗发,周万城.纳米碳化硅、氮化硅和掺杂氮碳化硅粉体的制备及其微波介电特征.硅酸盐学报,2008,(6):783-787
    [137] Liu, Y.C., Furukawa, K., Gao, D.W., Nakashima, H., Uchino, K., Muraoka, K.In-situ infrared reflective absorption spectroscopy characterization of SiN filmsdeposited using sputtering-type ECR microwave plasma.Applied Surface Science,1997,(121-122):233-236
    [138] Okazaki Eisuke, Satoh Mitsuru. Hydrations and water properties in the supersalt-resistive gel probed by FT-IR. POLYMER,2010,51(19):4362-4367
    [139]徐先锋,肖鹏,熊翔,胡艳艳.碳化硅纳米纤维改性C/C复合材料的力学性能.功能材料,2012,(10):1235-1238+1243
    [140]陶慧,陈双俊,张军.改性绢云母对顺丁橡胶导热性能的影响.橡胶工业,2012,(4):201-207
    [141]路锋,聂江涛.甲基硅酸钠(有机硅防水剂)的应用研究.江西化工,1995,(2):31-32
    [142]孙全吉,黄艳华,刘梅,王恒芝,吴娜,范召东.甲基硅油基阻尼液的研究.有机硅材料,2011,(4):253-255
    [143]汤宏伟,朱志红,常照荣,陈中军.低共熔混合锂盐相图的绘制及应用.物理化学学报,2007,23(8):1265-1268
    [144] Mitrovic SM, Chessman BC, Davie A, Avery EL, Ryan N. Development of bloomsof Cyclotella meneghiniana and Nitzschia spp.(Bacillariophyceae) in a shallowriver and estimation of effective suppression flows. HYDROBIOLOGIA,2008,(596):173-185
    [145]李春青,叶闽,普红平.汉江水华的影响因素分析及控制方法初探.环境科学导刊,2007,(02):26-28
    [146] Becker, E. W. Microalgae Biotechnology&Microbiology. Cambridge:Cambridge University Press.1994.
    [147]中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.GB/T4209-2008工业硅酸钠[S].北京:中国标准出版社,2008.
    [148]刘梅,张宪孔.谷皮菱形藻的耐盐适应性.水生生物学报,1992(2):153-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700