用户名: 密码: 验证码:
辐射热波特性及其在间接驱动激光聚变中应用的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间接驱动激光聚变中,激光转换的X射线与黑腔腔壁作用,会发射X射线,形成一个均匀的辐射场。再发射的X射线一方面被黑腔腔壁吸收损耗,一方面与靶丸作用驱动靶内爆。这两个作用过程均可用辐射热波来描述。通过辐射热波传播过程的研究,可寻求提高靶丸耦合效率的可能途径,降低点火需要的激光能量,对间接驱动激光聚变具有重要意义。本文研究了辐射热波在高Z腔壁材料、低Z靶材料中的传播及辐射热波驱动的多冲击波与靶丸作用的过程,主要工作和研究成果如下:
     1.采用量纲分析法求得Au中亚声速热波的自相似解,得到烧蚀质量、烧蚀压与时间的定标公式,与文献及模拟结果均符合较好,且具有普适性。
     2.辐射热波在黑腔腔壁中传播时,稀疏波引起的边界扩散运动损耗了相当大部分的X射线能量。针对这一问题,我们令腔壁初始径向密度符合ρ0分布,来抑制边界扩散运动。利用Hyades模拟计算发现,这种设计在2(5r0) e=V k的r恒的温源下能够降低腔壁能量损失30%,从而增加腔壁再发射率,提高靶丸耦合效率。低密度泡沫腔壁和密度梯度分布的腔壁都能够有效抑制稀疏波带来的扩散,减少腔壁等离子体向中心的膨胀,使激光顺利到达腔壁附近。为此我们用Multi模拟了激光与泡沫腔壁的作用,结果表明泡沫腔壁和密度梯度分布的腔壁都抑制了激光吸收面向柱腔中心的移动,可成为提高对称性控制的另一种途径。
     3.本文工作对比分析了辐射热波对Be、CH、BC三种低Z材料的一维平面烧蚀特性,以及球一维时三种材料作为烧蚀层的内爆聚变情况。兼顾能量耦合效率、预热以及对称性等因素,Be都具有优势,而BC由于反照率过高带来的负面效应被排除。我们还模拟计算了含M带的非平衡谱对低Z物质一维平面烧蚀特性的影响,高能份额会使得物质的烧蚀压、烧蚀速率增加,反照率降低,但热波波前温度升高,引起预热,会对等熵压缩不利。X射线烧蚀泡沫-固体靶时界面失配会使得泡沫与固体靶中冲击波压力增加,我们分析了泡沫增压的发生机制,得到强冲击波近似下增压倍数的定标公式,指出了增压现象的脉冲特点。
     4.整形辐射源烧蚀靶表面会驱动多次冲击波向靶丸内部传播,靶壳层在冲击波作用下运动。本文讨论了壳层加速、减速、阻滞阶段的运动特点,研究了冲击波调谐精度对内爆的影响,结果表明:50ps的脉冲时间精度足以满足点火要求;冲击波的对齐位置很重要,偏向DT冰内对内爆影响大于偏向DT气体。
A laser delivers energy to the interior of a high Z hohlraum and is converted toX-rays in laser indirect-drive confinement fusion experiments. Thermal wave describethe ablative drive of target implosion by X-rays. Also radiation confinement inhohlraum targets is controlled by thermal wave, diffusing energy into the containingwall. Here we study on the interaction of thermal wave with high Z and low Z materialto find ways of improving capsule coupling efficiency, which is very important forinertial confinement fusion. The main research work and results are listed as follows:
     1. A self-similar solution of the radiation diffusion equation is admitted forradiation ablative heat wave. In this thesis we get the solution by dimensional analysis.The scaling relations of ablated mass and ablative pressure with time are given.Comparisons with numerical simulations and the work before show excellentagreement.
     2. Most of the X-rays energy is absorbed by hohlraum wall because of rarefactiondiffusion when thermal wave propagates. We find low density foam wall could restrainrarwith Hy akdre.s T choed es iimn urlaadtiivatei orens tuelmts psehroawtu rteh iTsr d=e n2s5it0y epVro cfilollne srad isdtaiiovanel. d~eT3nh0se%ity re i endm itshtribution toρ0
     (erf)a c=tion diffusion. Then we adjust initial hohlraum waite r awtiaoll rliosesssand capsule coupling efficiency can be improved by graded wall density profiles. Laserheat foam wall is also simulated with Multi code. The results show that the movementof laser absorption position is tamped in foam wall conditions, which is another way forsymmetric controlling.
     3. We present one dimensional (1D) plane radiation ablating characters of Be, CHand BC in this thesis. And the yields of capsule with three materials as ablator arecompared by1D spherical implosion simulation. Considering of energy couplingefficiency, preheat and symmetry, Be is the best. BC is not chosen because of the highalbedo. Non-Planckian frequency dependent radiation ablates low Z1D plane materialis calculated to compare with Planckian radiation. The results show the high frequencyof M-band increases the ablation pressure and mass ablation velocity, reduces thealbedo, and improves the temperature before thermal wave. The material is preheated, that is detrimental to nearly isentropic compress. A strong pressure increase is producedwhen x ray heated foam-solid target due to impedance mismatch at the foam-solidinterface. We evaluate the shock pressure amplified as a function of the density andadiabatic exponent based on strong wave assumption, and point out that the amplifiedpressure is a short high pressure pulse.
     4. The shock waves driven by thermal wave make fuel shell moving. We discussthe shell movement stage of acceleration, deceleration and stagnation with time, and theeffects of shock timing on implosion. We can conclude that a timing precision of50psis enough for ignition. Also the shock merger position is very important. The influenceto implosion of offsetting to DT ice is worse than to DT gas.
引文
[1] Lindl J. Development of the Indirect-Drive Approach to Inertial Confinement Fusion and theTarget Physics Basis for Ignition and Gain. Phys Plasmas,1995,2(11):3933-4024.
    [2] Tabak M, Callahan-Miller D. Design of a distributed radiator target for inertial fusion drivenfrom two sides with heavy ion beams. Phys Plasmas,1998,5:1895-1900.
    [3] Hammer J H, Tabak M, Wilks S C, et al. High yield inertial confinement fusion target designfor a z-pinch-driven hohlraum. Phys Plasmas,1999,6:2129-2136.
    [4]黄天晅.黑腔X光辐射的模型分析及辐射温度的实验研究[博士学位论文].绵阳:中国工程物理研究院.2001.
    [5] Basov N G, Krohkin O N. Conditions for heating up of a plasma by the radiation from anoptical generator. Sov Phys JEPT,1964,19:123-125.
    [6]张钧,常铁强.激光核聚变靶物理基础.北京:国防工业出版社,2004.
    [7] Thierry M. FCI in France status and perspective. Fusion Power Associates. Washington DC,2010.12.
    [8] Nuckolls J H, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities:thermonuclear (CTR) applications. Nature,1972,239:139-142.
    [9] Lindl J D, Mead W C. Two-dimensional simulation of fluid instability in laser-fusion pellets.Phys Rev Lett,1975,34:1273-1276.
    [10] Speck D R, Bliss E S, Glaze J A, et al. The Shiva laser fusion facility. IEEE J QuantumElectron,1981,9:1599-1619.
    [11] Simmons W W, Speck D R, Hunt J T. Argus Laser system: performance summary. Appl Opt,1978,17;999-1005.
    [12] Auerbach J M, Campbell E M, Ceglio N M, et al.10X and100X Cairn experiment on Shiva:Laser Program Annual Report,1979, Lawrence Livermore National Laboratory, Livermore,CA, UCRL-50055-79:5-1-5-31.
    [13] Sakabe S, Sigel R, Tsakiris G D, et al. X-ray generation in a cavity heated by1.3or0.44mm laser light. I. Time-integrated measurements. Phys Rev A,1988,38:5756-5768.
    [14] Campbell E M, Hunt J T, Bliss E S, et al. Nova experimental facility. Rev Sci Instrum,1986,57:2101-2106.
    [15] Phillion D W, Weber S V. Radiation drive scaling at2ω and4ω: Laser Program AnnualReport,1983, LLNL, Livermore, CA, UCRL-50055-83:4-7-4-21.
    [16] Lindl J D, McClellan G E. Reactor target gain and symmetry calculations: Laser ProgramAnnual Report,1979, LLNL, Livermore, CA, UCRL-50055-79:2-10-2-22.
    [17] Bunkenberg J, Boles J, Brown D, et al. The Omega high-power phosphate-glass system:Design and performance. IEEE J. Quantum Electron,1981,9:1620-1628.
    [18] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drivetargets on the National Ignition Facility. Phys Plasmas,2004,11(2):339-491.
    [19] Wilks S C, Kruer W L, Denavit J, et al. Nonlinear theory and simulations of stimulatedBrillouin backscatter in multispecies plasmas. Phys Rev Lett,1995,74:5048-5051.
    [20] Williams E A, Cohen B I, Lasinski B F, et al. Ion wave saturation and stimulated Brillouinscattering. Am Phys Soc, DPP,1997.
    [21] Cobble J A, Fernandez J C, Kurnit N A, et al. The spatial location of laser-driven,forward-propagating waves in a National-Igntion-Facility-relevant plasma. Phys Plasmas,2000,7:323-332.
    [22] MacGowan B J, Berger R L, Cohen B I, et al. Laser beam smoothing and backscattersaturation processes in plasmas relevant to National Ignition Facilit hohlraums. inProceedings of the IAEA,17th International Conference on plasma physics and controllednuclear fusion,1999,3:1107–1110.
    [23] Rothenberg J E. Comparison of beam-smoothing methods for direct-drive inertialconfinement fusion. J Opt Soc Am B,1997,14:1664-1671.
    [24] Boehly T R, Smalyuk V A, Meyerhofer D D, et al. Reduction of laser imprinting usingpolarization smoothing on a solid-state fusion laser. J Appl Phys,1999,85:3444-3447.
    [25] Nishimura H, Endo T, Shiraga H, et al. X-ray emission from high-Z mixture plasmasgenerated with intense blue laserlight. Appl Phys L,1993,62(12):1344-1346.
    [26] Orzechowski T J, Rosen M D, Kornblum H N, et al. The Rosseland mean opacity of amixture of gold and gadolinium at high temperatures. Phys Rev Lett,1996,77:3545-3548.
    [27] Haan S W, Pollaine S M, Lindl J D, et al. Design and modeling of ignition targets for theNational Ignition Facility. Phys Plasmas,1995,2:2480-2487.
    [28] Krauser W J, Hoffman N M, Wilson D C, et al. Ignition target design and robustness studiesfor the National Ignition Facility. Phys Plasmas,1996,3:2084-2093.
    [29] Wilson D C, Bradley P A, Hoffman N M, et al. The development and advantages ofberyllium capsules for the National Ignition Facility. Phys Plasmas,1998,5:1953-1959.
    [30] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular totheir plans. Proc R Soc London, Ser A,1950,201:192-196.
    [31] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids. CommunPure Appl Math,1960,13:297-319.
    [32] Meezan N B, Atherton L J, Callahan D A, et al. National Ignition Campaign Hohlraumenergetics. Phys Plasmas,2010,17:056304.
    [33] Michel P, Divol L, Williams E A, et al. Tuning the Implosion Symmetry of ICF Targets viaControlled Crossed-Beam Energy Transfer. Phys Rev Lett,2009,102:025004.
    [34] Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, andrequirements for the2010ignition campaign on the National Ignition Facility. Phys Plasmas,2011,18:051001.
    [35] Scott H A, Hansen S B. Advances in NLTE modeling for integrated simulations. HighEnergy Density Phys,2010,6:39-47.
    [36] Michel P. Application of a third laser wavelength option to optimize mega-joule laserhohlraum coupling on the National Ignition Facility.52nd DPP.
    [37] Kruer W L. The Physics of Laser Plasma Interactions. America: Addison-Wesley PublishingCompany,1988.
    [38] Olson R E, Hicks D G, Meezan N B, et al. Design calculations for NIF convergent ablatorexperiments. Inertial Fusion Sciences and Applications, France.2011.9.
    [39]2009-2010年NIC主要物理研究进展.惯约国际动态(专刊),2011.4.
    [40] Tabak M, Hammer J, Glinsky Me, et al. Ignition and High-Gain with Ultrapowerful Lasers.Phys Plasmas,1994,1:1626-1634.
    [41] Betti R, Zhou C D, Anderson K S, et al. Shock Ignition of Thermonuclear Fuel with HighAreal Density. Phys Rev Lett,2007,98:155001.
    [42]江少恩,丁永坤,缪文勇,等.我国激光惯性约束聚变实验研究进展.中国科学G辑:物理学力学天文学,2009,39(11):1571-1583.
    [43] Lindl J, Hammel B. Recent Advances in Indirect Drive ICF Target Physics,20th IAEAFusion Energy Conference,2004.
    [44] Marshak R E. Effect of Radiation on Shock Behavior. Phys Fluids,1958,1(1):24-29.
    [45] Zel'dovich Y B, Raizer Y P. Physics of Shock Waves and High Temperature HydrodynamicPhenomena. New York: Academic,1966.
    [46] Atzeni S, Meyer-ter-Vehn J. The physics of inertial fusion. Oxford: Clarendon Press,2004.
    [47] Barrero A, Sanmartin J R. Self‐similar motion of laser fusion plasmas absorption in anunbounded plasma. Phy Fluids,1977,20(7):1155-1163.
    [48] Sanmartin J R, Barrero A. Self‐similar motion of laser half‐space plasmas. I. Deflagrationregime. Phys Fluids,1978,21(11):1957-1966.
    [49] Pakula R, Sigel R. Self-similar expansion of dense matter due to heat transfer by nonlinearconduction. Phys Fluids,1985,28(1):232-244.
    [50] Kaiser N, Meyer-ter-Vehn J, et al. The X-ray-driven heating wave. Phys Fluids B,1989,1(8):1747-1752.
    [51] Zhang J, Pei W B. Similarity transformations of radiation hydrodynamic equations andinvestigation on laws of radiative conduction. Phys Fluids,1992,4(4):872-876.
    [52] Hammer J H, Rosen M D. A consistent approach to solving the radiation diffusion equation.Phys Plasmas,2003,10(5):1829-1845.
    [53] Garnier J, Malinie G, et al. Self-similar solutions for a nonlinear radiation diffusion equation.Phys Plasmas,2006,13:092703.
    [54]李传莹,李敬宏.边界净流条件下的超声速热波.强激光与粒子束,2007,19(2):267-270.
    [55] Marinak M M, Kerbel G D, Gentileet N A, et al. Three-dimensional HYDRA simulations ofNational Ignition Facility targets. Phys. Plasmas,2001,8:2275-2280.
    [56] Zel'dovich Y B, Raizer Y P.激波和高温流体动力学现象物理学.张树材,译.北京:科学出版社,1985.
    [57] Pomraning G C. The Equations of Radiation Hydrodynamics. Oxford: Pergamon Press,1973.
    [58] Atzeni S, Meyer-ter-Vehn J.惯性聚变物理.沈百飞,译.北京:科学出版社,2008.
    [59] Krall N A, Trivelpiece A W.等离子体物理学原理.郭书印,黄林,邱孝明,译.北京:原子能出版社,1983:184-188.
    [60]常铁强,张钧,张家泰,等.激光等离子体相互作用与激光聚变.长沙:湖南科学技术出版社,1988:186.
    [61] Bell A R. Non-Spitzer heat flow in a steadily ablating laser-produced plasma. Phys Fluids,1985,28:2007-2014.
    [62] Shvarts D. Studies of thermal electron transport in laser fusion plasmas. In Laser PlasmaInteractions, Proceeding of the29thScottish Universities Summer School in Physics, SUSSPPublications, Edinburgh.
    [63] Rosen M D. Origins of the “High Flux” hohlraum Model (“HFM”).52ndAnnual MeetingDivision of Plasmas Physics,2010.11.
    [64]张三慧.大学物理学-波动与光学(第二版).北京:清华大学出版社,2006.
    [65]李维新.一维不定常流与冲击波.北京:国防工业出版社,2003:205.
    [66]张家泰.激光等离子体相互作用物理与模拟.郑州:河南科学技术出版社,1999.
    [67] Lind J D. Inertial Confinement Fusion. New York: AIP Press.1988:88.
    [68] Murakami M, Nishihara K. Efficient shell implosion and target design. Japanese Journal ofApplied Physics,1987,26:1132-1145.
    [69] Ramis R, Schmalz R, Meyer-Ter-Vehn J. Multi-a computer code for one-dimensionalmultigroup radiation hydrodynamics. Comput Phys Commun,1988,49:475-505.
    [70] Jones O S, Schein J, Rosen M D, et al. Proof of principle experiments that demonstrateutility of cocktail hohlraums for indirect drive ignition. Phys Plasmas,2007,14:056311.
    [71] Rosen M D, Hammer J H. Analytic expressions for optimal inertial confinement fusionhohlraum wall density and wall loss. Phys Rev Lett,2005,72:056403.
    [72] Young P E, Rosen M D, Hammer J H, et al. Demonstration of the Density Dependence ofX-Ray Flux in a Laser-Driven Hohlraum. Phys Rev Lett,2008,101:035001.
    [73] Larsen J T, Lane S M. HYADES—A plasma hydrodynamics code for dense plasma studies. JQuant Spectrosc Radiat Transf,1994,51:179-186.
    [74] Batani D, Strati F, Telaro B. Production of high quality shocks for equation of stateexperiments. Eur Phys J D,2003,23:99-107.
    [75] Thiessen A R. Some aspects of LMF hohlraum design.1988Laser Program Annual Report:Target Design, LLNL, Livermore, CA, XDIV-90-0054.
    [76] Froula D H, Divol L, London R A, et al. Experimental basis for laser-plasma interactions inignition hohlraums at the National Ignition Facility. Phys Plasmas,2010,17:056302.
    [77] Callahan-Miller D A, Tabak M. Progress in target physics and design for heavy ion fusion.Phys Plasmas,2000,7:2083-2091.
    [78] Tsakiris G D, Eidmann K. An approximate method for calculating Planck and Rosselandmean opacities in hot, dense plasmas. J Quant Spectosc Radiat Transfer,1987,38:353-368.
    [79] Rosen M D. The physics issues that determine inertial confinement fusion target gain anddriver requirements: A tutorial. Phys Plasmas,1999,6:1690-1799.
    [80] Callahan D A, Hinkel D E, Berger R L, et al. Optimization of the NIF Ignition Point DesignHohlraum. J Physics Conf Ser,2008,112:022021.
    [81] Hatchett S F, Lindl J D. Design Studies of Single-Shell ICF Capsules for Nova. LaserProgram Annual Report1983Excerpts,1984.
    [82] Wilson D C, Bradley P A, Hoffman N M, et.al. The development and advantages ofberyllium capsules for the National Ignition Facility. Phys Plasmas,1998,5(5):1953-1959.
    [83] Dittrich T R, Haan S W, Marinak M M, et al. Reduced scale National Ignition Facilitycapsule design. Phys Plasmas,1998,5(10):3708-3713.
    [84] Haan S W, Herrmann M C, Dittrich T R, et al. Increasing robustness of indirect drive capsuledesigns against short wavelength hydrodynamic instabilities. Phys Plasmas,2005,12:056316.
    [85] Clark D S, Haan S W, Hammel B A, et al. Plastic ablator ignition capsule design for theNational Ignition Facility. Phys Plasmas,2010,17:052703.
    [86] Biener J, Ho D D, Wild C, et al. Diamond spheres for inertial confinement fusion. NuclFusion,2009,49:112001.
    [87] Letts S A, Anthamatten M, Buckley S R, et al. Progress Toward Meeting NIF Specificationsfor Vapor Deposited Polyimide Ablator Coatings. Fusion Sci Technol,2004,45:180-186.
    [88] Michel P, Glenzer S H, Divol L, et al. Symmetry tuning via controlled crossed-beam energytransfer on the National Ignition Facility. Phys Plasmas,2010,17:056305.
    [89] Cherfils-Cle′rouin C, Boniface C, Bonnefille M, et al. Progress on LMJ targets for ignition.Plasma Phys Controlled Fusion,2009,51:124018.
    [90] Yang J M, Sheng J T, Ding Y N, et al. Radiative ablation to low-Z matter. Phys Rev E,2002,66:036410.
    [91]盛家田,杨家敏,李生,等.辐射烧蚀CH薄膜非平衡理论计算与实验比对分析.强激光与粒子束,2002,14:865-868.
    [92] Meyerhofer D D. high Energy Density Physics. Plasma Science,2010.
    [93] Dunne D, Borghesi M, Iwase A, et al. Evaluation of a Foam Buffer Target Design forSpatially Uniform Ablation of Laser-Irradiated Plasmas. Phys Rev Lett,1995,75:3858-3861.
    [94] Willi O, Barringer L, Bell A, et al. Inertial confinement fusion and fast ignitor studies. NuclFusion,2000,40:537.
    [95] Hall T, Batani D, Nazarov W, et al. Recent advances in laser–plasma experiments usingfoams. Laser Part Beams,2002,20:303-316.
    [96] Temporal M, Atzeni S, Batani D, et al. Analysis of the impedance mismatch effect infoam-solid targets compressed by laser-driven shock waves. Eur Phys J D,2000,12:509-511.
    [97]张翼,郑志远,李玉同,等.两个冲击波相互碰撞的演化过程.物理学报,2007,56:5931-5936.
    [98] Smalyuk V A., Betti R., Boehly T R, et al. Cryogenic-target performance and implosionphysics studies on OMEGA. Phys Plasmas,2009,16:056301.
    [99] Goncharov V N, Sangster T C, Boehly T R, et al. Demonstration of the HighestDeuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA.Phys Rev Lett,2010,104:165001.
    [100] Saillard Y. Acceleration and deceleration model of indirect drive ICF capsules. Nucl Fusion,2006,46:1017–1035.
    [101] Betti R, Umansky M, Lobatchev V, et al. Hot-spot dynamics and deceleration-phaseRayleigh–Taylor instabilityof imploding inertial confinement fusion capsules. Phys Plasmas,2001,8:5257-5267.
    [102] Betti R, Goncharov V N, McCrory R L, et al. Deceleration phase of inertial confinementfusion implosions. Phys Plasmas,2002,9:2277-2286.
    [103] Garnier J, Catherine Cherfils-Clerouin. The role of nuclear reactions and α particle transportin the dynamics of inertial confinement fusion capsules. Phys Plasmas,2008,15:102702.
    [104] Levedahl W K, Lindl J D. Energy scaling of inertial confinement fusion targets for ignitionand high gain. Nucl Fusion,1997,37:165-173.
    [105] Herrmann M C, Tabak M, Lindl J D. A generalized scaling law for the ignition energy ofinertial confinement fusion capsules. Nucl Fusion,2001,41:99-111.
    [106] Basko M M. On the scaling of the energy gain of ICF targets. Nucl Fusion,1995,35:87-99.
    [107] Bodner S E. Rayleigh-Taylor Instability and Laser-Pellet Fusion. Phys Rev Lett,1974,33:761-764.
    [108] Sanz J. Self-consistent Analytical Model of the Rayleigh-Taylor Instability in InertialConfinement Fusion. Phys Rev Lett,1994,73:27002703.
    [109] Murakami M, Shimoide M, Nishihara K. Dynamics and stability of a stagnating hot spot.Phys Plasmas,1995,2:3466-3472.
    [110] Boehly T R, Vianello E, Miller J E, et al. Shock-timing experiments using double-pulse laserirradiation. Phys Plasmas,2006,13:056303.
    [111] Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the NationalIgnition Facility. Phys Plasmas,2001,8:2245-2250.
    [112] Edwards M J, Lindl J D, Spears B K, et al. The experimental plan for cryogenic layeredtarget implosions on the National Ignition Facility—The inertial confinement approach tofusion. Phys Plasmas,2011,18:051003.
    [113] Celliers P M., Bradley D K, Collins G W, et al. Line-imaging velocimeter for shockdiagnostics at the OMEGA laser facility. Rev Sci Instrum,2004,75:4916-4929.
    [114] Boehly T R, Munro D, Celliers P M, ea al. Demonstration of the shock-timing technique forignition targets on the National Ignition Facility. Phys Plasmas,2009,16:056302.
    [115] Robey H F, Boehly T R, Olson R E, et al. Experimental validation of a diagnostic techniquefor tuning the fourth shock timing on National Ignition Facility. Phys Plasmas,2010,17:012703.
    [116] Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during theindirect-drive National Ignition Campaign. Phys Plasmas,2011,18:051002.
    [117] Shock Timing Campaign Begins. NIF Newsroom: Project Status, May2011. https://lasers.llnl.gov/newsroom/project_status/2011/may.php

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700