用户名: 密码: 验证码:
气体穿过固定阀的流体力学性能及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对开发塔设备新类型的需要,从实验和CFD模拟两方面对新型的固定阀塔板-带折边矩形固定阀塔板以及普通的矩形固定阀塔板进行了研究。
     在实验中,利用测速管等仪器对在不同速度下的单阀和双阀固定阀周围的流场进行了点压力测量,然后把点压力转化为点速度后绘出固定阀周围流场的二维流线图,同时测定了塔板的干板压降,来考察新型固定阀带折边后对流场分布和压降的影响,为随后的数值模拟提供对比和依据。
     同时,采用商业计算流体力学软件FLUENT软件包对固定阀进行几何建模和网格划分,采用RNGκ-ε湍流模型,计算了固定阀单阀和双阀塔板的二维和三维流场。通过对数值模拟得出的单阀和双阀塔板的干板压降及流场速度分布分析对比后发现,固定阀周围流场存在较强的湍动,阀侧孔与塔板壁面区域以及阀体的上方空间存在明显的涡流区,使气体穿阀后的行为变得复杂,并对气液传质过程产生重大影响;模拟结果表明,为防止和削弱固定阀间的对冲造成的“死区”对传质带来的不利影响,通过折边来改变气体的气路是非常有效的,模拟值与实验值基本得到吻合。
     本文研究为新型固定阀塔板的设计及开发提供了依据,并为今后进一步的研究打下基础。
In this paper, according to the need of developing new style column, new style fixed-valve tray - rectangular fixed-valve tray with fold edges and common rectangular fixed-valve tray were studied from experiments and CFD simulation.
    At first, in the process of experiments, it were measured that dry plate pressures drop and point pressures in the flow fields around the single fixed-valve and double fixed-valves under different velocities by using of Pitot tube. After that point pressure was transformed to point velocity, two dimensions flow plane of flow fields around fixed-valve were plotted to observe the difference between of the fixed-valve tray with fold edges and the common rectangular fixed-valve tray on the distributions of flow fields and pressures, to provide comparisons and refer-rence for CFD simulation.
    Secondly, with commercial CFD code - FLUENT, Three dimensions turbulence flow fields of fixed-valve trays with single valve and double valves were computeed by means of RNG k-e turbulence model in the system of Lagrange. By comparing the dry plate pressures drop and distributions of velocities simulated on single valve with those of double valves, it was found that there was intense turbulence in the flow fields around fixed-valve, there were eddy areas between valve side orifices and tray wall, there were eddies above the valves too, these led to the complex behaviors of gas perforating valve, these had a great effect on the gas-liquid mass transfer process.At the same time, in order to prevent the disadvantageous effect of gas between one valve with another on the gas-liquid mass transfer, it was very effective to change the fields of gas perforating valve by folding the edges of valve.
    The study provides gists for the design and development of new style fixed-valve trays and establishs bases for further studies.
引文
[1]化学工程手册编辑委员会.化学工程手册(第13篇)-气液传质设备.北京:化学工业出版社,1979
    [2]王树楹.现代填料塔技术指南.北京:中国石化出版社,1998
    [3]计建炳,谭天恩.我国塔器技术的进展.化工进展.2001,(1):43-48
    [4]袁孝竞,余国琮.填料塔技术的现状与展望.化学工程.1995,23(3):5-15
    [5]李鑫钢,孙津生,姜斌,赵汝龙,于爱华,曹连生.规整填料蒸馏塔技术在常减压蒸馏中的应用.石油炼制与化工.1995,26(7):1-6
    [6]Brara Jose L. Column Internal. Chemical Engineering. 1998, 105(2):7e
    [7]袁孝竞.塔器技术的最新进展.石油化工设计.1994,11(4)
    [8]徐孝民.炼油厂蒸馏技术发展的若干问答.炼油设计.1998,28(2):68-69
    [9]计建炳,谭天恩.我国塔器技术的进展.化工进展.2000,(6):51-57
    [10]黄洁,曾爱武,吴剑华,张雅芝.高弹性浮阀塔板的性能.石油化工.1995,24(3):183-187
    [11]李好管,温卫东,张贵明.新型板式塔开发及工业应用.煤化工.11 2000,93(4):12-16
    [12]刘艳升,段道顺,赵景芳,沈复.HTV船型浮阀排列方式对塔板流体力学及传质的影响.化学工程.1994,22(1):10-13
    [13]成枫,胡忠良,王忠诚,张雅芝,曾爱武,黄洁.JF复合浮阀塔板的开发和应用.石油化工.1995,24(2):118-123
    [14]俞晓梅,徐崇嗣,朱锦忠.MD型塔板及其改进型的研究和应用.化工设计.1994,(6):17-20
    [15]姚克俭,章渊昶,王良华,余晓梅.新型高效大通量DJ系列塔板的研究与工业应用.化工进展.2003,22(3):228-232
    [16]王忠诚,张敏卿,黄洁.Ⅴ型栅板的性能和动量传递.天津大学学报.3 1994,27(2):164-171
    
    
    [17] D E.Nutter. AIChE Symp Ser. 1972, 118(124):73
    [18] D E.Nutter. AIChE Symp Scr. 1979, (56):3.2/47 3.2/62
    [19] Nutter D E. Chem FSymp Ser. 1979, (56):3.2/47-3.2/62
    [20] 黄洁,吴剑华,王平.化学工程.1990,18(3):44-49
    [21] 中国石油化工总公司洛阳石化工程公司设备研究所.天津:第三届全国分离工程会议论文集,1986
    [22] Dale E.Nutter, et al. High Capacity Tray for Gas-Liquid Contact Apparatus. US5360583,1993
    [23] Dale E.Nutter, et al. Closely-Spaced High Capacity Fractionation Trays. US5975504,1998
    [24] 郭天明,田原宇,石秦岭,刘红安.NS导向提馏塔板研究及应用.石油化工设备.2000,29(4):8-11
    [25] 梁治国,亓荣彬,田原宇,段道顺.新型NS导向提馏塔板工业应用.石油化工设备.2001,30(4):38-39
    [26] 章渊昶,王良华,朱菊香,李明波,姚克俭.新型固定阀悬挂降液管塔板的开发及工业应用.石油化工.2003,32(11):896-899
    [27] 叶旭初,胡道和.CFD技术与工程应用.石化技术.2003,(2):29-32
    [28] 陶文铨.计算传热学的近代进展.北京:科学出版社,2000
    [29] A.Meier, J.Ganz, A.Steinfeld. Modeling of a Novel high-Temperature Solar Chemcal Reactor. Chem Eng Sci. 1996, 51(11):3181-3186
    [30] N.K Read, Zhang S X, W.H Ray. Simulations of a LDPE Reactor Using Computational Fluid Dynamics. AIChE J. 1997, 43(1): 104-107
    [31] Hadson J, et al. Chem Eng Symp Ser. 1997, (142):999-1007
    [32] M.Tierney, A.Nasr, G.Quarini. The Use of Proprietary Computational Fluid Dynamics Codes for Flows in Annular Packed Beds. Sep Purif Technol. 1998, 13(2):97-107
    [33] YU K T ZHANG M Q. Simulation of Two Dimensional Liquid Phase Flow on a Distillation Tray. Chinese J of Chem Eng. 1994, 2(2):63-68
    
    
    [34] LIU C J. A Fluid-dynamic Model for Flow Pattern a Distillation Tray. Chem Eng Sci. 2000, (55):2287-2294
    [35] Yoshida H. Lluid Flow over Distillation Column Plates. Chem Eng Comm. 1987, (51):261-275
    [36] 王晓玲.塔板上流体流场的模拟.高校化工工程学报.1998,12(4):339-344
    [37] 袁希钢,尤学一,余国琮.筛孔塔板气液两相流速场模拟研究.化工学报.1995,46(4):511-518
    [38] R.KRISHNA, J M.VAN BATEN, J.ELLENBERGER. CFD Simulation of Sieve Tray Hydrodynamics. Chem Eng Ins. 1999, 77(A7):639-646
    [39] 尹哗东,王运东,费维扬.计算流体力学(CFD)在化学工程中的应用.石化技术.2000,7(3):166-169
    [40] 江体乾.近代传递工程原理.天津:化学工业出版社,2002
    [41] 陶文铨.数值传热学.西安:西安交通大学出版社,2001
    [42] 傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002
    [43] 李炜,傀文信.浮力射流动理论及应用.北京:科学出版社,1997
    [44] 陈克城.流体力学实验技术.北京:机械工业出版社,1983
    [45] 李勇,刘志友,安亦然.介绍计算流体力学通用软件-Fluent.水动力学研究与进展.2001,16(2):255-258
    [46] 赵琴,王靖.Fluent在暖通空调领域中的应用.制冷与空调.2003,(1):15-18
    [47] 刘霞,葛新锋.FLUENT软件及其在我国的应用.能源研究与利用.2003,(2):36-38
    [48] Fluent Inc. FLUENT 6.1 User's Guide. Fluent Inc, 2003
    [49] S.V帕坦卡.传热与流体流动的数值计算.北京:科学出版社,1984
    [50] J.P.Van Doormaal, G.D.Raithby. Enhancement of the SIMPLE Method for predicting Incompressible Fluid Flows. Numerical Heat Transfer. 1984, (7): 147-163
    [51] 方云进,肖文德,戴干策.大孔径筛板的研究评述.石油化工.2000,29(8):613-620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700