用户名: 密码: 验证码:
电弧炉冶炼过程行进控制方法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧炉炼钢是用来生产特殊钢和高合金钢的主要方法。同转炉炼钢相比较,电弧炉具有钢液温度能灵活掌握、热效率高、炉内气氛可以控制、设备简单、工艺流程短等优点,再加上充足的废钢资源以及环保意识的加强,因而世界各国都在稳步地发展电炉炼钢。有效地操作、高效、优质、节能降耗、低成本的运行对钢铁工业是至关重要的。冶炼过程的自动控制系统是电弧炉的一个重要组成部分,直接影响产品的质量和产量。本文以经济指标和工艺指标两条主线,研究了先进控制技术在电弧炉过程控制中的应用,主要内容如下:
     (1) 基于经济指标的电弧炉冶炼过程优化设定
     为了实现质量稳定可靠和低成本的系统控制目标,围绕终点控制这一基本主线,提出了基于经济指标的生产过程中工艺设定值优化操作思想。对过程参数进行了分析,提出了冶炼工艺优化目标并确定了优化设定值。通过对冶炼过程的能量需求与损失的分析与计算,通过对需氧量、冶炼周期、能量平衡等的分析,建立了以工序效益最大化为目标的工艺模型,对废钢、铁水、吹氧量、电能输入量以及喷碳量等进行优化。通过建立基于模糊数的优化配料计算模型、基于整数混合非线性规划的供电模型,以及基于灰色合金元素收得率校正的合金控制模型,实现了以降低冶炼成本为目标的终点控制的优化设定。
     (2) 利用案例推理方法对电弧炉炼钢进行终点预报
     采用案例推理的方法建立终点预报的模型。文中给出了求解案例相似度的方法、案例重用的方法。为弥补案例推理方法的不足,结合增量模型终点预报的方法,给出了基于多支持向量机的补偿建模方法,以提高案例推理终点预报的精度。仿真结论表明,基于案例推理和多支持向量机补偿的终点预报方法具有较为理想的预报精度。
     (3) 利用分段控制策略对电弧炉炼钢进行终点控制
     依据电弧炉冶炼工艺上的阶段划分,建立了分段控制的方法。熔化期采用静态控制方法,以追求冶炼成本的降低;氧化期为提高冶炼钢水的质量,采用智能控制方法,采用T-S模型建立供电量和吹氧量的预设定模型,为提高精度,在终点预报的基础上,采用模糊技术建立了校正模型,提高了终点控制的命中率。
The electric arc furnace (EAF) steelmaking is the main method used to produce special steel and alloy steel. Compare with basic oxygen furnace (BOF) steelmaking, the EAF have advantages such as the temperature of steel liquid can be grasped flexibly, thermal efficiency is high, the atmosphere in the furnace can be controlled, the equipment is simple and the technological process is short. In addition, because of the rich craft resources and the enhanced environmental consciousness, the countries all over the world are developing steelmaking of the electric stove steadily. The effectively operation, high efficiency and high quality, saving energy and reducing the cost are essential to the steel and iron industry. The automatic control system, that influences the quality and output of the products directly, is an important part of an EAF process. The key research of this thesis is the application of advanced control technology in the EAF, and the main content is as follows:
    (1) Economic objective-based optimizing setting for the smelting process of EAF
    In order to realize the systematic control goal of reliable and steadily quality and lowest cost, an optimal method of process parameters setting values during production has been proposed based on the economic objective in this thesis. Analyzed to the process parameters of EAF, We propose the smelting optimizing goal and determine the optimization setting value. A technological model aimed at the maximum of the process benefit is established based on the analysis of the energy demanded by EAF and the lost, the demand for oxygen and the period of smelt process. The quantity of craft, molten iron, oxygen, powdered carbon and electric power can be optimized by this model, In addition, the linear programming model based on the fuzzy number for craft mating optimization, the power supply model based on the Mixed Integer nonlinear programming and the alloy component control model based on the grey model which is used for correcting the element yield are established to decrease the cost of the smelting process.
    (2) Endpoint prediction of EAF smelting process based on the case-based reasoning (CBR)
    An endpoint prediction model based on the CBR technology is established in this thesis. A case similarity measuring method and a case utilization method are proposed. In order to remedy the deficiency of the CBR, combining the advantages of the increment model, a compensation modeling method of multiple support vector machines (SVM) is proposed to correct the prediction result of CBR which can improve the precision of the endpoint prediction. The emulation conclusion shows that the CBR model compensated by multiple
引文
1.徐匡迪,洪新.电炉短流程回顾和发展中的若干问题[J].中国冶金,2005,15(7):1-8
    2.邱绍岐,祝桂华.电炉炼钢原理与工艺[M].北京,冶金工业出版社,2001:6-8
    3.阎立懿,电炉炼钢学[M].沈阳东北大学,2000:58-65
    4.刘锟,何平,刘浏.电弧炉工艺模型及其应用现状[J].钢铁研究学报,2004,16(2):1-5
    5.李京社,李士骑,季淑娟,等.超高功率电弧炉炼钢工艺模型[J].钢铁,1995,30(3):16-22
    6.季淑娟,李士骑,李京社,等.UHP EAF工艺软件的开发[J].北京科技大学学报,1994,16(3):220-225
    7. Johannes G B, Ian K C, Petrus C P. Modeling and simulation of an Electric Arc Furnace Process[J]. ISlJ IntErnational, 1999, 39(1): 23-32
    8. Nyssen P, Marique C, Bintner P, Etal. A New Metallurgical Model for the Control of EAF Operations[A]. German Iron and Steel Institute, eds. 6th European Electric Steel making Conference[C]. Dusseldirf, Germany: METEC Congress, 1988: 43-50
    9. Euan J E, Howard D. Energy Optimization and Continuous Fume Analysis at CO-STEEL LASCO, Expert Furnace System Optimization Process(EFSOPTM), Goodfellow[A]. Electric Furnace Division of the Iron & Steel Society, eds. Proceedings of 55th Electric Furnace Conference[C]. Chicago, UAS: David L Kanagy publisher, 1997. 435-453
    10. Euan J E, Michael JK. Neural Network Modeling and Heuristic Control for Electric Arc Furnace Process Optimization[A]. Iron and Steel Society, eds. Proceedings of 56th Electric Furnace Conference and 16th Process Technology Conference[C]. New orleans, Louisiana, UAS: David L Kanagy publisher, 1998. 675 687
    11. Evenson E J, Goodfellow H D, Kempe M J. EAF Process Optimization through OFF-Gas Analysis and Closed-Loop Process Control at Deacero, Saltillo, Mexico[A]. Iron and Steel Society, eds. Proceedings of 58th Electric Furnace Conference and 17th Process Technology Conference[C]. Orlando, Florida, UAS: David L Kanagy publisher, 2000. 58: 39 48
    12, Sam A M, Fred W R. Dynamic Modeling of an Electric Arc Furnace[J]. Electric Furnace Conference Proceedings, 1997, 55: 675 685
    13. Sam A M, Fred W R. Optimal Operation of an Electric Arc Furnace[J]. Electric Furnace Conference Proceedings, 1999, 57: 719 730
    14. Matson S A. Dynamic Modeling and Optimization of an Electric Arc Furnace[D]. America: University of Colorado, 2001. 83-90
    15.高宪文,电弧炉炼钢过程建模与智能优化控制[M].沈阳,东北大学出版社,1999:4-16
    16. Vapnik VN. Estimation of Dependencies Based on Empirical Data[M]. Berlin: Springer-Verlag, 1982
    17. Vapnik VN. The Nature of Statistical Learning Theory[M], NY: Springer-Verlag, 1995
    18. Cherkassky V, Mulier F. Learning from Data: Concepts, Theory and Methods[M]. NY: John Viley & Sons, 1997
    19.张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    20.陆汝钤.知识科学与计算科学[M].北京,清华大学出版社,2003,1
    21. Anthony M. Probabilistic Analysis of Learning in Artificial Neural Networks: The PAC Model and Its Variants[J]. Neural Computing Surveys, 1997, 1: 1-47
    22. V. Cherkassky and F. Mulier. Learning from data-concepts, theory and methods[M]. John Wiley Sons, New York, 199823. V. Chercassky, X. Shao, F. Mulier, and V. Vapnik, Model complexity control for regression using VC generalization bounds[J], IEEE transactions on Neural Networks 1999, 10(5): 1075-1090
    24. Vapnik, V. N., An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999
    25. Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., Structural risk minimization over data dependent hierarchies[J]. IEEE Transactions on Information Theory, 1998, 44(5): 1926-1940
    26. Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers[J], Fifth Annual Workshop on Computational Learning Theory. Pittsburgh: ACMPress, 1992
    27. Cortes C, Vapnik V. Support-vector networks[J],. Machine Learning, 1995, 20: 273~297
    28. Vapnik V, Golowich S, Smola A, Support vector method for function approximation, regression estimation, and signal processing[M]. In: Mozer M, Jordan M, PetscheT (eds). Neural Information Processing Systems, MIT Press, 1997, 9
    29. MullerK-R, Smola A J, Ra tsch Getal. Predicting time series with support vector machines[J]. In: Proc. of ICANN'97, Springer Lecture Notesin Computer Science, 1997, 999~1005
    30. Vapnik V N. The Nature of statistical Learning Theory[M]. New York: Springer-Verlag, 1999. Second Edition.
    31. Suykens J A K, Vandewalle J. Least squares support vector machines classifiers[J]. Neural Network Letters, 1999, 19(3): 293-300
    32.阎威武,朱宏栋,邵惠鹤.基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003,15(10):1494-1496
    33. B. Hammer, K. Gersmann, A note on the universal approximation capability of support vector machines[J]. Neural Processing Letters 2003, 17: 43-53
    34.张铃基于核函数的SVM机与三层前向神经网络的关系[J],计算机学报.2002, 25 7:696-699
    35.张浩然.支持向量机算法及应用研究[D].上海交通大学,2003,9
    36. Schank R, Abelson R R. Goals and Understanding[M]. Erlbanum: Eksevier Science, 1977
    37. Watson I, Marir F. Case based reasoning: a review[J]. Knowledge Engineering Review, 1994, 9(4): 355-381
    38. Rainer S, Stefania M, Riccardo B, etal. Cased based reasoning for medical knowledge based systems[J]. International Journal of Medical Informatics, 2001, 64: 355-367
    39. Elina P, Timo S, Tuomas K, etal. Synthesis of separation processes by using case based reasoning[J]. Computers and Chemical Engineering, 2001, 25: 775-782
    40. Myung KP, Inbom L, Key MS. Using case based reasoning for problem solving in a complex production process[J]. Expert Systems with Applications, 1998, 15: 69-75
    41. Paul H, Ronan M, Felix C. Using case based reasoning to evaluate supplier environmental management performance[J]. Expert Systems with Applications, 2003, 25: 141-153
    42.常春光,汪定伟,胡琨元,等.嵌入调整模型的CBR技术的炼钢调度系统[J].东北大学学报(自然科学版),2004,25(6):531-534
    43. Kyoung-jae Kim, Ingoo Han. Maitaining case based reasoning systems using a genetic algorithms approach[J]. Expert systems with application, 2001, 21: 139-145
    44. Luigi Portinale, Diego Magro, Pietro Torasso. Multi-modal diagnosis combining case-based and model-based reasoning: a formal and experimental analysis[J]. Artificial Intelligence, 2004, 158: 109-153
    45. C. Marling, M. Sqalli, E. Rissland, H. Munoz-Avila, D. Aha, Case-based reasoning integrations[J], AI Magazine, 2002, 23 (1): 69-8646. D. C. Wilson, D. B. Leake, Maintaining case-based reasoners: dimensions and directions[J], Computer Intelligence, 2001, 17(2): 196-213
    47. Tsutsui H, Kurosaki A, Sato T. Nonlinear modeling technique using historical data for case, TCBM: topological case based modelling[J].The Japanese Society of Instrument and Control Engineers, 1997, 33(5): 947-954
    48.杨辉,王永富,柴天佑.基于案例推理的稀土萃取分离过程优化设定控制[J].东北大学学报(自然科学版),2005,26(3):209-212
    49. Kolodner J. L. Case-based Reasoning. San Mateo, CA: Morgan Kaufmann Publishers Inc. 1993
    50.徐明,胡守仁.论CBR研究中的若干误区[J].微电子学与计算机,1994,(5):28-30
    51.宋玉银,蔡复之,张伯鹏等.基于实例推理的产品概念设计系统[J].清华大学学报,1998,38(8):58
    52. Leake D. CBR in Context: The Present and Future. In: Leake David (Ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions. Menlo Park, CA. 1996. US: AAAI Press, 1996. 3-30
    53. Aamodt A, Plaza E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches, AICom-Artificial Intelligence Communications, 1994, 7(1): 39-59
    54. Gavin Finnie, Zhao hao Sun. R5 model for Case-Based Reasoning[J]. Knowledge-Based Systems, 2003, (16): 59-65
    55.张光前,邓贵仁,李朝晖.基于事例推理的技术及其应用前景[J].计算机工程与应用,2002,(20):52-55
    56. Leake D. Acquiring Case Adaptation Knowledge: A Hybrid Approach. AAAI'1996, Menlo Park, CA, 684-689
    57. David W. Patterson, Niall Rooney and Mykola Galushka. Efficient Similarity Determination and Case Construction Techniques for Case-Based Reasoning[J]. ECCBR, 2002, 292-305
    58.武拥军,姜周华等.钢的液相线温度的计算[J],钢铁研究学报,2002,14(6):6-9
    59. D. J. Oosthuizen, I. K. Craig, P. C. Pistorius. Economic evaluation and design of an electric arc furnace controller based on economic objectives[J]. Control Engineering Practice, 2004, 12: 253-265
    60. U Camdali, M Tunc. Exergy analysis and e. ciency in an industrial AC electric ARC furnace[J] Applied Thermal Engineering, 2003, 23: 2255-2267
    61. U Camdall, M Tunc. Modelling of electric energy consumption in the AC electric arc furnace[J]. International journal of energy research, 2002; 26: 935-947
    62. Unal Camdali, Murat Tunc, Ahmet Karakas. Second law analysis of thermodynamics in the electric arc furnace at a steel producing company[J]. Energy Conversion and Management 2003, 44: 961-973
    63. C. S. Adijman etl. Global Optimization of MINLP Problems in Process Synthesis and Design[J]. Computers & Chemical Engineering, 1997, 21(1): 445-450
    64. Dua, V. etl. An. Outer-Approximation Algorithm for the Solution of Multiparametric MINLP Problems[J]. Computers & Chemical Engineering, 1998, 22(1): 955-958
    65. Skrifvars, Hans etl. Comparison of certain MINLP algorithms when applied to a model structure determination and parameter estimation problem[J]. Computers & Chemical Engineering, 1998, 22(12): 1829-1835
    66.尹洪超等.化工过程综合混合离散非线性规划的新算法[J].大连理工大学学报,995,35(5):633-638
    67.李京社.超高功率电弧炉炼钢工艺模型[J].钢铁,1995,30,3:16-22
    68.顾根华.林传兴,郭茂先.电弧炉熔化期合理工作电流的确定[J].钢铁,1994(4):71-74
    69.花皑,粱正敏.炼钢电弧炉的电气设备[M].北京:机械工业出版社,1987:74-103
    70.稻恒悦郎,水古浩.电弧炉运行时电气特性[J].电气制钢,1981(1):9-19
    71. N. J. Cavaghan and T. H. Harris. Use of Pre-Reduced Iron Pellets for Steelmaking in Electric Furnace. JISI, 208, June 1970: 52953772. K. meyer and G. Post. Process. Technology of Steelmaking from Sponge Iron in the Electric Arc Furnace. Stahl und Eisen, 1993: 194-204
    73. LARS HULTIN. The Electric Arc Now More Stable Than Ever[C]. Electric Furnace Conference Proceedings, Washington: Iron & Steel Society Publication, 1993, 303-308
    74. Bergmen K. System Design Characteristics and Experience From Operation EAF s With High Arc Voltages. Electric Furnace Conference Proceedings. 1988, 283-288
    75.武骏,孙彦辉,李京社,李士琦.现代交流电弧炉电气运行合理化的研究[J].钢铁,1999,34(9):19-22
    76.武骏,李士琦,王海润等.炼钢交流电弧炉工作电抗模型[J].北京科技大学学报,1999,21(5):440-443
    77.顾根华,肖维鹏,黄胜等.电弧炉运行电抗与合理供电研究[J].工业加热,2000,5:31-34
    78.顾根华,黄胜,肖维鹏等.考虑运行电抗与热平衡的电弧炉合理供电[J].工业加热,2001,1:36-41
    79.南条敏夫著,李中祥译.炼钢电弧炉设备与高效益运行[M].北京:冶金工业出版社,2000
    80.李智等 模拟退火算法在冶炼Mn-Si合金优化配料中的应用[J] 钢铁研究 2000,5:36-39
    81. Cheng C H, Mon D L. Fuzzy system reliability analysis by confiden ceinterval[J]. Fuzzy Sets and Systems, 1993, 56: 23-29
    82. Cheng C H. A new approach for ranking fuzzy numbers by distance method[J]. Fuzzy Sets and Systems, 1998, 95: 307-317
    83. Dubois D, Prade H. Operation on fuzzy numbers[J]. Inter. J. Systems Science, 1978, 9: 613-626
    84. Dubois D, Prade H. Ranking of fuzzy numbers in the setting of possibility theory[J]. Inform. Sci., 1983, 9: 183-224
    85.董颖,唐加福,许宝栋等,集约生产计划的机会约束规划方法[J].系统工程学报,2003,18(3):255-261
    86. Gao Xianw, Li Shuj, Chai Tiany. Modeling and Intelligent Compound Control of Direct Current Electric Arc Furnace[J]. Control theory and applications, 1999, 16(3): 409-414
    87.黄可为,杜斌.电弧炉合金最小成本控制模型[J].冶金自动化,2003,2:11-13
    88.龚伟,姜周华,郑万等.电弧炉冶炼过程中合金成分控制模型[J],东北大学学报(自然科学版),2002,23(12):1155-1157
    89.邓聚龙.灰色系统基本方法[M],武汉:华中理工大学出版社,1987
    90. Yo-Ping Huang, Sheng-Fang Wang. The Identification of Fuzzy Grey Prediction System by Genetic Algorithm[J] lnternational Journal of systems science, 1997, 28(1): 15-24
    91. Yo-Ping Huang, Chi-Chang Huang. The integration and application of fuzzy and grey modeling methods[J]. Fuzzy sets and systems, 1996, 78: 107-119
    92. MoritaH, KaseT, TamuraY etal. Interval prediction of annual maximum demand using grey dynamic model[J]. International Journal of Electrical Power and Energy system, 1996, 18(7): 409-413
    93. John Persson. Analysising Electrical Characteristics of Arc Furnace[J], EFCP, 1989: 269-273
    94.李青,洪新,郑少波.炼钢电弧炉工艺过程的动态模拟[J],工业加热,2001,1:23-26
    95.A.M.彼得耶夫著,宗联枝译.炼钢过程的数学描述与计算[M].北京,冶金工业出版社,1988,9
    96.张鉴,炉外精炼的理论和实践[M].北京:冶金工业出版社,1993
    97. D. R. Sain, O. R. Belton. The influence of sulfur on interfacial reaction kinetics in the decarburization of liquid iron by carbon dioxide[J]. Metallurgical and material transactions B, 1978, 9B(9): 403-407
    98.张俊杰,王顺晃.电弧炉炼钢过程终点自适应预报及专家操作指导系统[J].自动化学报,1993,19(4):463-467
    99. Li Aijun, Li Hejun, Li Kezhi, et al. Applications of neural networks and genetic algorithms to CVI processes in carbon/carbon composites[J], Acta Materialia, 2004, 52: 299-305
    100. P. S. Robi., U. S. Dixit. Application of neural networks in generating processing map for hot??working[J], Journal of Materials Processing Technology, 2003, 142: 289-294
    101. Annika Nilsson. Predicting the mean temperature of the transfer bar after rolling in the rougher using a neural network[J], Journal of Materials Processing Technology, 1998, 80-81: 469-474
    102. Imran Tasadduq, Shafiqur Rehman, Khaled Bubshait. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia[J], Renewable Energy 2002, 25: 545-554
    103.陶钧,柴天佑,李小平.转炉炼钢智能控制方法及应用[J].控制理论与应用.2001,18增刊:129-133
    104.谢书明,陶钧,柴天佑.基于神经网络的转炉炼钢终点控制[J],控制理论与应用,2003,20(6):903-907
    105.杨立红,刘浏,何平.基于自适应模糊神经网络系统的转炉终点磷的预报控制模型[J],钢铁研究学报,2002,14(4):47-51
    106.谢书明,陶钧,柴天佑.转炉炼钢终点磷的智能预报[J],控制理论与应用,2003,20(4):555-559.
    107. I WAMURA K. New endpoint control system with auto-parameter tuning in BOF[A]. Steel-making Conference Proceedings[C]. 1995: 715-719
    108.邹晓红,基于模糊粗糙集理论的信息检索方法的研究[J].燕山大学学报,2005,29(4):356-359
    109.孙翎,张金隆,迟嘉昱.基于粗糙集的CBR系统案例特征项权值确定[J].计算机工程与应用,2003,30:44-46
    110. Lin C F, Wang S D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(3): 466-471
    111. Huang H P, Liu Y H. Fuzzy support vector machines for pattern recognition and datamining[J]. Int J of Fuzzy Systems, 2002, 4(3): 3-12
    112. Tax D M J, Duin R P W. Data domain description by support vectors[A]. Proc of 8th European Symposium on Artificial Neural Networks[C]. Brussels: Facto D, 1999: 251-256
    113.张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2004,20(6):621-624
    114. Chiu, S. Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligent & Fuzzy Systems, 1994, 2(3): 189-196
    115. K. Demirli, S. X. Cheng, P. Muthukumaran. Subtractive clustering based modeling of job sequencing with narametric search[J]. Fuzzy Sets and Systems, 2003. 137: 235-270
    116.阎辉,张学工,马云潜等.基于变异函数的径向基核函数参数估计.自动化学报,2002,28(3):450-455
    117.朱家元,杨云,张恒喜等.基于优化最小二乘支持向量机的小样本预测研究[J].航空学报,2004,25(6):565-568
    118.邓开楠.基于专家系统的电弧炉炉况判断方法研究[D],沈阳,东北大学,2005
    119. K. J. Hunt, D. Sbarbaro. Neural Networks for Nonlinear internal mode control[J]. IEE Proceedings-D, 1991, 138(5): 431-438
    120. Zeng Ke. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators[J]. IEEE Trans Fuzzy Systems, 2000, 8(6): 773-780
    121. T Takagi, M Sugeno. Fuzzy identification of systems and applications to modeling and control[J]. IEEE Transactions on Systems. Man and Cybernetics, 1985, 15(1): 116-132
    122. J. R. Jang, ANFIS: adaptive network-based fuzzy inference system[J], IEEE Transactions on Systems. Man and Cybernetics. 1993, 23(4): 665-684
    123. Chiu SL. Fuzzy Model Identification Based on Cluster Estimation[J]. Journal of Intelligent and Fuzzy System, 1994, 2(3): 567-580
    124. Gelfand Saul B etl. A tree-structured piecewise linear adaptive filter. IEEE Transactions on Information theory, 1993, 39(6): 1907-1922125. Zhang JG. Fuzzy-tree model and its application to complex system modeling[A]. IFAC'99[C]. Beijing, 1999. 121-126
    126. Min-You Chen. Rule-base self-generation and simplication for data-driven fuzzy models[J]. Fuzzy Sets and Systems, 2004, 142: 243-265
    127. Nie JH and Lee TH. Rule based modeling: Fast construction and optimal manipulation[J]. IEEE Trans. Systems, Man and Cybernetics Part A, 1996, 26(6): 728-738
    128. 方开泰.均匀设计数论方法在试验设计的应用[J].应用数学学报,1980,(3):363-371
    129. Lin Zhang etl. Uniform design applied to nonlinear multivariate calibration by ANN[J]. Analytica Chimica Acta, 1998, 370: 65-77
    130. Liang YZ etl. Uniform design and its applications in chemistry and chemical engineering[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58: 43-57
    131. Hui Peng etl. A parameter Optimization method for Radial Basis Function Type Models[J]. IEEE Transactions on Neural Networks, 2001, 14(2): 432-438
    132.傅杰,现代电弧炉冶炼周期综合控制理论及应用[J].北京科技大学学报,2004,26(6):588-595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700