用户名: 密码: 验证码:
锌电积用铅基多孔节能阳极的制备、表征与工程化试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿法炼锌工业中,高浓度H_2SO_4电解液体系使得Zn电积过程一直采用铅基合金阳极。但铅基合金阳极析氧过电位高(约860mV),增加无用电耗近1000kWh/t-Zn(约占Zn电积总能耗的30%),同时存在抗蠕变性能差以及Pb被腐蚀进入电解液并降低电Zn品质等问题。针对上述问题的Ti基电催化涂层阳极尽管可有效降低阳极过电位,但较短寿命与高昂成本使其难以取代铅基合金阳极。因此,开发新型节能阳极仍是湿法炼Zn领域的重要课题。
     在大量文献调研的基础上,作者率先提出铅基多孔节能阳极的概念,通过增大阳极导电面积,降低阳极电流密度,从而在保持Pb-Ag阳极优势的同时,降低阳极过电位,减少阳极腐蚀并提高Zn品质。论文研究开发了铅基多孔材料的反重力渗流铸造设备及工艺,系统评价了Pb-Ag(0.8%)(质量百分数,下同)多孔阳极的电化学性能,深入研究了表观电流密度对Pb-Ag(0.8%)平板阳极电化学行为的影响,开展了Pb-Ag(0.8%)多孔阳极的工程化电解试验;在此基础上,进一步研究了电催化活性金属元素掺杂的铅基多孔节能阳极。论文主要研究结果如下:
     (1)设计并开发了Pb基多孔合金的反重力渗流铸造设备与工艺。铅基熔体在可控压力下充型和结晶,可有效避免渗流不足和渗流过度,解决了铅基熔体和填料粒子的润湿性与补缩问题,建立了孔径可控、结构均匀的铅基多孔合金的制备技术,制备了尺寸为250.0mm×160.0mm×30.0mm的Pb-Ag(0.8%)多孔材料。
     (2)系统研究了不同孔径Pb-Ag(0.8%)多孔合金阳极的电化学行为,揭示了多孔阳极的电化学行为与特征。结果表明,不同孔径多孔阳极的相对稳定的析氧电位(以下简称析氧电位)、腐蚀速率均明显低于平板阳极,当阳极孔径为1.60~2.00mm时,其阳极析氧电位比Pb-Ag(0.8%)平板阳极降低了100mV左右,相对腐蚀速率减少50%左右,阴极产品含铅量显著降低,且多孔阳极减少了Mn~(2+)的贫化,有利于减少阳极泥的生成,而电流效率与平板阳极相当,均介于91%—92%之间。
     (3)以阐明Pb-Ag(0.8%)多孔阳极的电化学行为与特征为目的,系统研究了不同电流密度下Pb基合金阳极电化学行为,揭示了电流密度对Pb-Ag(0.8%)平板阳极析氧电位、腐蚀速率、氧化膜的物相组成与微观结构、电流效率、阳极泥生成量及阴极Zn品质的影响规律。在纯ZnSO_4-H_2SO_4体系中,当电流密度分别由500A/m~2降低到100A/m~2时,其相对稳定的阳极电位(简称稳定电位)由1.835V(相对饱和甘汞电极,以下同)降低到1.742V,腐蚀速率由1.620g/m~2·h降低到0.652g/m~2·h;在ZnSO_4-MnSO4-H_2SO_4体系中,阳极析氧电位与腐蚀速率随电流密度降低的规律不变,100A/m~2和500A/m~2电流密度下的稳定电位则分别为1.704V和1.792V。
     (4)Pb-Ag(0.8%)多孔阳极的工程化电解试验取得了良好效果。采用尺寸为200.0mm×100.0mm×6.0mm的Pb-Ag(0.8%)多孔阳极在工业电解条件下进行了为期24天的工程化电解试验。结果表明,与现行Pb-Ag(0.8%)平板阳极比较,多孔阳极析氧过电位降低约100mV,腐蚀率降低80%;使得吨Zn能耗降低78kWh,阳极泥减少80%,阴极锌产品中Pb含量降低60%。
     (5)将Pb蓄电池电极中的有害杂质Bi作为合金元素引入锌电积用Pb-Ag(0.8%)阳极。揭示了Bi添加对Pb-Ag(0.8%)阳极析氧电位、腐蚀速率、合金及其氧化膜组织结构的影响规律,确定Bi的最佳添加量为0.8~1.0%,开发出具有电催化活性金属元素掺杂的电催化多孔节能阳极。
The anode of lead-based alloy is always used in industrial production of zinc owing to high concentration of H_2SO_4 in the electrolyte.However,there are several problems on the lead-based anode such as high oxygen evolution overpotential(about 860mV) which can increase the energy consumption about 1000 kWh/t-Zn(about 30%of the total energy consumption),low corrosion resistance and decrease of zinc quality due to lead dissolution in the electrolyte.Although titanium-based electro-catalytic coating anode can effectively reduce the oxygen evolution potential,it still cannot replace the lead-based anode due to its short life and high cost.Therefore,it still is an important subject to develop new energy-saving anode in the zinc hydrometallurgy.
     The concept of porous lead-based anode was firstly put forward by the author based on numerous literature investigation.By increasing the anode conductive area to reduce the anodic current density,the porous lead-based anode can reduce the anodic overvoltage,lower the anode corrosion rate and improve the product quality while maintaining the advantages of Pb-Ag alloy anode.In this paper,the equipment and technics of counter-gravity infiltration was developed,the electrochemical properties of porous Pb-Ag(0.8%) anode was evaluated systematically,the effect of current density on the electrochemical behavior of traditional flat anodes was studied thoroughly and a pilot scale electrolysis experiment of porous Pb-Ag(0.8%) was carried out. Based on that,the porous lead-based anode doping metal of electro-catalytic activity was further studied.The main conclusions and results are summarized as follows:
     (1) The equipment and technics of counter-gravity infiltration for the fabrication of porous lead-based alloy are designed and developed.Filling and crystallization under controllable pressure can effectively avoid the lack and excess of infiltration and solve the problem of wettability and feeding between the lead-based melt and filler particles.The technics for the preparation of porous lead-based anode with controllable pore size and uniform pore structure is set up and the porous materials of Pb-Ag (0.8%) with dimension of 250.0mm×160.0mm×30.0mm are prepared.
     (2) The electrochemical behavior of porous Pb-Ag(0.8%) anode with different pore diameter is studied systematically and the electrochemical behavior and characteristics of porous anode are revealed. Results show that the oxygen evolution overvoltage and corrosion rate of porous anode are obviously lower than that of flat anode.When the pore diameter is 1.60-2.00mm,its anodic potential is 100mV lower than flat anode and its corrosion rate is about 50%of the flat anode.The lead content of cathode Zn is decreased remarkably by using porous anode. The current efficiency for porous anode is almost same as that for flat anode which is 91%-92%while the porous anode is beneficial for reducing anode slime because the phenomenon of Mn~(2+) dilution is less obvious.
     (3) In order to illustrate electrochemical behavior and characteristics of porous anode.The electrochemical behavior of lead-based anode is studied systematically under different current densities and the effect of current density on the anodic potential,the corrosion rate,the composition and microstructure of anodic oxidized layer,the current efficiency,the quantity of anode slime and the quality of cathode zinc is analyzed.In electrolyte of pure ZnSO_4-H_2SO_4,when current density is decreased from 500 A/m~2 to 100 A/m~2,the anodic potential(VS SCE) decreases from 1.835V to 1.742V and the corrosion rate decreases from 1.620g/m~2·h to 0.652g/m~2·h.In the electrolyte of ZnSO_4-MnSO_4-H_2SO_4, the anodic potential and corrosion rate also decrease with the decrease of current density,the stabilized anodic potential is 1.704V and 1.792V at the current density of 100 A/m~2 and 500 A/m~2 respectively.
     (4) The porous Pb-Ag(0.8%) anode with dimension of 200.0mm×100.0mm×6.0mm is tested in pilot scale experiment for 24 days and the anode is found to perform well in industrial electrolysis conditions.The results show that compared with the flat anode,the anodic potential is decreased about 100mV,the corrosion rate is reduced by 80%,the energy consumption is lowered 78kWh/t-Zn,the quantity of anode slime is reduced by 80%and the lead content of cathode Zn is 60%.
     (5) Bi which is harmful for the electrode of lead-acid battery is introduced to Pb-Ag(0.8%) anode of zinc electrowinning and its effect on anodic potential,corrosion rate and the structure and composition of anodic oxidized layer is analyzed.The optimum content of Bi is found to be 0.8-1.0%.The porous lead-based anode doping metal of electro-catalytic activity is developed.
引文
[1]蒋继穆.我国锌冶炼现状及近年来的技术进展.中国有色冶金,2006,(5):19-23
    [2]彭容秋.有色金属提取冶金手册(锌铅秘).北京:冶金工业出版社,1992.
    [3]董英,王吉昆,冯桂林.常用有色金属资源开发与加工.北京:冶金工业出版社,2005.
    [4]杜德军.竖罐炼锌炉的改进.有色矿冶,2004,20(1):43-46
    [5]帅群芳,吴志平.电炉炼锌的生产实践及技术改进.中国有色冶金,2005,34(4):36-38
    [6]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展.有色金属(冶炼部分),2003,(2):20-23
    [7]王志刚.密闭鼓风炉炼铅锌技术改进及展望.湖南有色金属,2003,19(6):19-22
    [8]李夏林.韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践.有色冶炼,2001,(5):12-15
    [9]孙德堃.国内外锌冶炼技术的新进展.中国有色冶金,2004,6(3):1-4
    [10]梅光贵,王润德,周敬元,等.湿法炼锌学.长沙:中南大学出版社,2001.
    [11]高保军.锌冶炼技术现状及发展探讨.中国有色冶金,2008,(3):12-16
    [12]铅锌冶金学编委会编.铅锌冶金学.北京:科学出版社,2003.
    [13]魏昶编著.湿法炼锌理论与技术.昆明:昆明理工大学,2002.
    [14]吕少祥,戴曦.降低锌电积直流电耗生产实践.有色金属:冶炼部分,2001,(6):13-15
    [15]Cachet C,Rerolle C,Wiart R.Kinetics of Pb and Pb-Ag anodes for zinc electrowinning.Electrochemical Acta,1996,41(1):83-90
    [16]王钧扬.锌电积的节电探讨.湖南冶金,2003,31(2):45-48
    [17]王彦军,谢刚,杨大锦,等.降低电积锌直流电耗的现状分析.湿法冶金,2005,24(4):208-211
    [18]Gurmen S,Emre M.A laboratory-scale investigation of alkaline zinc electrowinning.Minerals Engineering,2003.16(6):559-562
    [19]梅光贵,王润德,周敬元,等.湿法炼锌学.长沙:中南大学出版社,2001.340-402
    [20]Ivanov I,Stefanov Y,Noncheva Z,et al.Insoluble anodes used in hydrometallurgy.Part I.Corrosion resistance of lead and lead alloy anodes. Hydrometallurgy,,2000,57(2):109-124
    [21]Ivanov I,Stefanov Y,Noncheva Z,et al.Insoluble anodes used in hydrometallurgy.Part Ⅱ.Anodic behaviour of lead and lead-alloy anodes.Hydrometallurgy,2000,57(2):125-139
    [22]陈康宁.金属阳极.上海:华东师范大学出版社,1989.
    [23]张招贤,赵国鹏,胡耀红.应用电极学.北京:冶金工业出版社,2005.146-326
    [24]张招贤.钛电极工学(第二版).北京:冶金工业出版社,2003.
    [25]李松瑞.铅及铅合金.长沙:中南工业大学出版社,1996.329-330
    [26]张玉萍.锌电积用阳极的研究与发展.湿法冶金,2001,20(4):169-171
    [27]周雍茂.电积用阳极.长沙:中南工业大学出版社,1991.93-102
    [28]Moskalyk R R,Alfantazib A,Yombalakianc A S,et al.Anode effects in electrowinning Minerals Engineering,1999,12(1):65-73
    [29]Newnham R H.Corrosion rates of lead based anodes for zinc electrowinning at high current densities Journal of Applied Electrochemistry,2005,22(2):116-124
    [30]潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状.云南冶金,2004,33(6):31-35
    [31]刘良绅,柳松,刘建中,等.Pb-Ag-Ca三元合金机械性能研究.矿冶工程,1995,15(4):61-64
    [32]杨光棣,林蓉.低银铅钙合金阳极在锌电解工业中的应用.中国有色冶金,1992,21(2):20-24
    [33]苏向东,汪大成,谭春生,等.不溶性铅合金阳极的环境材料化设计.贵州工业大学学报,1997,26(6):5-10
    [34]王恒章.四元合金阳极板在湿法炼锌中的应用.有色冶炼,2001,30(6):18-20
    [35]张淑兰.锌电积铅基四元合金阳极的研究与应用.有色冶炼,1997,(3):21-23
    [36]Siegmund A,Prengaman D.Zinc electrowinning using novel rolled Pb-Ag-Ca anodes.In:Young C A,eds.Hydrometallurgy 2003:Proceedings of the 5th International Symposium.Vancouver,BC,Canada:Minerals,Metals and Materials Society,2003.1279-1288
    [37]Prengaman R D,Siegmund A.New wrought Pb-Ag-Ca anodes for zinc electrowinning to produce a protective oxide coating rapidly.In:Dutrizac J,E,eds.LEAD-ZINC 2000.Pittsburgh,PA,USA:Warrendale,PA,USA,2000.589-597
    [38]Takasaki Y,Koike K,Masuko N.Mechanical properties and electrolytic behavior of Pb-Ag-Ca ternary electrodes for zinc electrowinning.In:Dutrizac J,E,eds.LEAD-ZINC 2000.Pittsburgh,PA,USA:Warrendale,PA,USA,2000.599-614
    [39]Petrova M,Noncheva Z,Dobrev T,et al.Investigation of the process of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc Ⅰ.Behaviour of Pb-Ag,Pb-Ca and Pb-Ag-Ca alloys.Hydrometallurgy,1996,40(3):293-318
    [40]Umetsu,Yoshiaki,Nozaka,et al.Anodic behavior of Pb-Ag-Ca tertiary alloys in sulfuric acid solution.Journal of the Mining and Material Processing Institute of Japan,1989,105(3):249-254
    [41]Adolfvon R,罗尧谦.达特伦电锌厂的改建.中国有色冶金,1988,(3):18-23
    [42]Stefanov Y,Dobrev T.Potentiodynamic and electronmicroscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning.Transactions of the Institute of Metal Finishing,2005,83(6):296-299
    [43]Rashkov S,Doberev T,Noncheva Z,et al.Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes.Hydrometallurgy,,1999,(52):223-230
    [44]Hrussanova A,Mirkova L,Dobrev T,et al.Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co_3O_4,Pb-Ca-Sn,and Pb-Sb anodes for copper electrowinning:Part Ⅰ.Hydrometallurgy 2004,72(3-4):205-213
    [45]Hrussanova A,Mirkova L,Dobrev T.Influence of additives on the corrosion rate and oxygen overpotential of Pb-Co_3O_4,Pb-Ca-Sn and Pb-Sb anodes for copper electrowinning:Part Ⅱ.Hydrometallurgy,2004,72(3-4):215-224
    [46]Hrussanova A,Russanova A,Mirkoval L,et al.Electrochemical properties of Pb-Sb,Pb-Ca-Sn and Pb-Co_3O_4 anodes in copper electrowinning.Journal of Applied Electrochemistry,2002,32(5):505-512
    [47]Petrova M,Stefanov Y,Noncheva Z,et al.Electrochemical behaviour of lead alloys as anodes in zinc electrowinning.British Corrosion Journal,1999,34(3):198-200
    [48]衷水平,赖延清,蒋良兴,等.锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为.中国有色金属学报,2008,18(7):1342-1346
    [49]刘漫博.铅基阳极在锌电积中的应用试脸研究:[硕士学位论文].西安:西安建筑科技大学,2008
    [50]李松瑞.铅及铅合金.长沙:中南工业大学出版社,1996.17-18
    [51]李鑫,王涛,魏绪钧,等.稀土在铅基合金中的应用.有色金属(冶炼部分), 2003,55(2):15-17
    [52]刘业翔.功能电极材料及应用.长沙:中南工业大学出版社,1996.
    [53]刘业翔,吴良蕙.锌电解节能惰性阳极的研究-惰性阳极上的析氧超电压.有色金属(冶炼部分),1984(4):30-33
    [54]张招贤.钛电极工学(第二版).北京:冶金工业出版社,2003.173-302
    [55]Smith C G,Okinaka Y.High speed gold plating anodic bath degration and search for stable low polarization anodes J Electrochem Soc,1983,30(11):2149-2157
    [56]Hrussanova A,Guerrini E,Trasatti S.Thermally prepared Yi/RhO_x electrodes Ⅳ:O_2 evolution in acid solution.Journal of Electroanalytical Chemistry,2004,564(1-2):151-157
    [57]鞠鹤,潘会波.钽处理对钛基IrO_2电极组织及放氧行为的影响.稀有金属材料与工程,1993,22(1):59-63
    [58]Hu J M,Zhang J Q,Cao C N.Oxygen evolution reaction on IrO_2-based DSA type electrodes:kinetics analysis of Tafel lines and EIS.International Journal of Hydrogen Energy,2004,29(8):791-797
    [59]Kim K W,Lee E H,Kim J S,et al.A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction Electrochimica Acta 2002,47(15):2525-2531
    [60]汪文兵,龙晋明,郭忠诚.钛基金属氧化物涂层电极的研究进展.电镀与涂饰,2006,25(7):46-48
    [61]张招贤.Ir,Ta氧化物涂层钛阳极恶化原因的分析.稀有金属快报,2004,23(10):17-22
    [62]张招贤,唐仁衡,张建华.IrO_2·Ta_2O_5涂层钛阳极的研究和应用.广东有色金属学报,2002,12(2):102-106
    [63]张招贤,伍超群.IrO_2·Ta_2O_5涂层钛阳极失效前后形貌的研究.广东有色金属学报,2003,13(1):37-40
    [64]张招贤,张建华.IrO_2·Ta2O_5涂层钛电极电化学性能的研究.广东有色金属学报,2004,14(2):97-100
    [65]Hu J M,Meng H M,Zhang J Q,et al.Degradation mechanism of long service life Ti/IrO_2-Ta_2O_5 oxide anodes in sulphuric acid.Corrosion Science,2002,44(8):1655-1668
    [66]胡吉明,张鉴清,曹楚南.Ti基IrO_2+Ta2O_5阳极的电化学特性.材料研究学报,2002,16(4):365-370
    [67]胡吉明,张鉴清,孟惠民,等.Ti基IrO_2+Ta_2O_5阳极的析氧电化学特性.金属 学报,2001,37(6):628-632
    [68]胡吉明,张鉴清,孟惠民,等.Ti基IrO_2+Ta_2O_5阳极在H_2SO_4溶液中的电解时效行为.物理化学学报,2002,18(1):14-20
    [69]张招贤.电解提取有色金属中活性涂层钛电极的研究.氯碱工业,2001,5:46
    [70]张招贤.电解冶金中新型涂层钛阳极的研究和应用.广东有色金属学报,1997,7(2):117-124
    [71]曾曙,王新民,李金洋.湿法冶金中钛基二氧化锰阳极的研究.广东有色金属学报,1996,6(1):27-32
    [72]史艳华,孟惠民,孙冬柏,等.SbO_x+SnO_2中间层对Ti/MnO_2电极性能的影响.物理化学学报,2007,23(10):1553-1559
    [73]倪永乐,孟惠民,孙冬柏,等.SbO_x+SnO_2中间层对Ti/MnO_2阳极性能的影响.材料科学与工程学报,2007,25(4):529-532
    [74]梁镇海,张福元,孙彦平.耐酸非贵金属Ti/mnO_2阳极SnO_2+Sb_2O_4中间层研究.稀有金属材料与工程,2006,35(10):1605-1609
    [75]梁镇海,王森,孙彦平,等.Ti/RuO_2+Sb_2O_3+MnO_x/MnO_x阳极的性能研究.稀有金属材料与工程,1995,24(4):46-48
    [76]梁镇海,王森,孙彦平,等.Ti/MnO_x型阳极的中间层研究.贵州科学,1994,12(4):33-36
    [77]梁镇海,孙彦平.钛基二氧化锰电催化剂的制备及性能研究.燃料化学学报,2001,29(z1):218-221
    [78]梁镇海.Ti/RuO_2+SnO_2+Sb_2O_3/MnO_x阳极的性能研究.化工冶金,1995,16(2):139-142
    [79]Liang Z H,Wang R P,Fan C M.Preparation and Characterization of Cerium Doped Ti/SnO_2-Mn_2O_3/PbO_2Electrode.JOURNAL OF RARE EARTHS,2007,25(Spec):91-96
    [80]Shi Y H,Meng H M,Sun D B,et al.Effect of SbO_x+SnO_2 Intermediate Layer on the Properties of Ti-based MnO_2 Anode.Wuli Huaxue Xuebao,2007,23(10):1553-1559
    [81]Munichandraiah N,Sathyanarayana S.Insoluble anode of Porous lead dioxide for electrosynthesis:Preparation and characterization.Journal of Applied Electrochemistry,1987,17(1):22-32
    [82]Serdar A,Kadir P,Attila Y.The influence of nonstoichiometry on the electrocatalytic activity of PbO_2 for oxygen evolution in acidic media.Electrochemistry Communications,2005,7(4):325-332
    [83]Serdar A,Kadir R Tuncer H,et al.Investigation of some parameters influencing electrocrystallisation of PbO_2.Power Sources,2000,88(2):232-236
    [84]许学敏,张秋香,丁平.析氧体系阳极制备及性能.化学世界,1998,39(1):26-29
    [85]杨建朝,潘会波,陈风云,等.Ti/PbO_2电极的研制.稀有金属材料与工程,1994,23(1):50-56
    [86]张招贤.铁基二氧化铅电极的改进和应用.氯碱工业,1996,(6):17-23
    [87]梁镇海,孙彦平.Ti/SnO_2+Sb_2O_3+MnO_2/PbO_2阳极的性能研究.无机材料学报,2001,16(1):183-187
    [88]孙凤梅.含氧化铱中间层的钛基二氧化铅阳极.云南大学学报,2005,27(5A):371-373
    [89]孙凤梅,潘建跃,罗启富.含铂中间层二氧化铅阳极的制备及其性能.材料保护,2005,39(1):53-54
    [90]王雅琼,童宏扬,许文林.热分解法制备的Ti/SnO_2+Sb_2O_3/PbO_2电极性质研究.无机材料学报,2003,18(5):1033-1038
    [91]王雅琼,童宏扬,许文林.SnO_2+Sb_2O_3中间层的制备条件对Ti/SnO_2+Sb_2O_3/PbO_2阳极性能的影响.应用化学,2004,21(5):437-441
    [92]王雅琼,童宏扬,许文林.不同前驱体制备的锡锑中间层对Ti/SnO_2+Sb_2O_3/PbO_02电极性能的影响,稀有金属材料与工程,2004,33(9):976-979
    [93]王雅琼,童宏扬,许文林.硫酸溶液中Ti/SnO_2+Sb_2O_3/PbO_2阳极在电解过程中的结构变化及失活行为.化工学报,2004,55(9):1560-1563
    [94]王雅琼,童宏扬,许文林.超声对Ti/SnO_2+Sb_2O_3/PbO_2电极材料结构及电极性能的影响.无机材料学报,2004,19(6):1307-1312
    [95]王雅琼,王鹏,沙红霞,等.RuO_2含量对Ti/SnO_2+Sb_2O_3/RuO_2+PbO_P2阳极性能的影响.稀有金属材料与工程,2007,36(3):424-427
    [96]薛彩霞,梁镇海.Ti/SnO_2+Sb_2O_4+CF/PbO_x电极的制备及其性能研究.太原理工大学学报,2007,38(5):431-434
    [97]Kawagoe K T,Johnson D C.Electrocatalysis of anodic oxygen-transfer reactions.Oxidation of phenol and benzene at bismuth-doped lead dioxide electrodes in acidic solutions.Journal of the Electrochemical Society 1994,141(12):3404-3409
    [98]LaCourse W R,Hsiao Y L,Johnson D C,et al.Electrocatalytic oxidations at electrodeposited bismuth(Ⅲ)-doped beta-lead dioxide film electrodes Journal of the Electrochemical Society,1989,136(12):3714-3719
    [99]Monahov B,Pavlov D,Petrov D.Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/PbO_2 electrode.J.Power Sources,2000,85(1):59-62
    [100]Mondal K,VMandich N,Lalvani S B.Regeneration of hexavalent chromium using a Bi-doped PbO_2 anode.J.APPl.Electrochem,2001,31(2):165-173
    [101]Pamplin K L,Johnson D C.Electrocatalysis of anodic oxygen-transfer reactions:Oxidation of Cr(Ⅲ) to Cr(VI) at Bi(V)-doped PbO_2-film electrodes Journal of the Electrochemical Society 1996,143(7):2119-2125
    [102]Popovic N D,Cox J A,Johnson D C.Mathematical model for anodic oxygen-transfer reactions at Bi(V)-doped PbOP_2-film electrodes Journal of Electroanalytical Chemistry,1998,456(1-2):203-209
    [103]Sandro C,Isabelle F,Paolo G,et al.Electrodeposition of PbO_2+CoO_x composites by simultaneous oxidation of Pb~(2+) and Co~(2+) and their use as anodes for O_2 evolution.Electrochimica Acta,2000,45(14):2279-2288
    [104]Velichenko A B,Amadelli R,Zucchini G L,et al.Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts.Electrochimica Acta,2000,45(25-26):4341-4350
    [105]Yeo I H,Lee Y S,Mho S,et al.Electrocatalytic oxidation of Fe/EDTA complexes at lead dioxide electrodes.Journal of the Electrochemical Society 1992,139(5):49-50
    [106]梁镇海,边书田,任所才,等.硫酸中钛基二氧化铅阳极研究.稀有金属材料与工程,2001,30(3):232-234
    [107]曹建春,郭忠诚,潘君益,等.新型不锈钢基PbO_2/PbO_2-CeO_2复合电极材料的研制.昆明理工大学学报,2004,29(5):38-41
    [108]曹梅.Al基SnO_2+Sb_2O_3、SnO_2+Sb_2O_3+MnO_2涂层二氧化铅电极的制备及其应用:[硕士学位论文].昆明:昆明理工大学,2005
    [109]常志文,郭忠诚,潘君益,等.Al/Pb-WC-ZrO_2-Ag和Al/Pb-WC-ZrO_2-CeO_2复合电极材料的性能研究.昆明理工大学学报,2007,32(3):13-17
    [110]潘君益.锌电积用Al基Pb-WC-ZrO_2复合电极材料的研究:[硕士学位论文].昆明:昆明理工大学,2005
    [111]苗治广.电沉积法制备SS/PbO_2-WC-ZrO_2/聚苯胺复合惰性阳极材料的研究与应用:[硕士学位论文].昆明:昆明理工大学,2006
    [112]叶匀分,王志宏,李承瑞.采用高过电位阳极处理废水中酚的研究.上海化工程设计与研究,1999,24(11):18-21
    [113]Feng J,Johnson D C.Electrocatalysis of anodic oxygen-transfer reaction, Alpha-lead dioxide electrodeposited on stainless steel substrates.Journal of Applied Electrochemistry,1990,20(1):116-124
    [114]王桂清,刘敏娜.塑料基体上化学镀二氧化铅.电镀与环保,1995,15(3):20-21
    [115]王桂清,刘敏娜.聚丙烯塑料板基体二氧化铅电极的制备.材料保护,1995,28(3):18-19
    [116]王桂清,刘敏娜.ABS塑料板基体PbO_2电极的制备.无机盐工业,1995,(4):31-32
    [117]周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试.表面技术,2000,29(2):15-16
    [118]陈振方,蒋汉瀛.PbO_2-ABS塑料电极的研制及其性能.材料保护,1992,25(1):6-7
    [119]李晓龙.硫酸体系中锌一二氧化锰同时电解的研究:[硕士学位论文].西安:西安建筑科技大学,2005
    [120]张文山,梅光贵,钟竹前.Zn-MnO_2同槽电解工业生产试验研究.中国锰业,2006,24(4):38-41
    [121]钟竹前,梅光贵,蔡传算,等.Zn-MnO_2同时电解工业试验研究(上).中国锰业,1994,12(3):45-50
    [122]刘业翔.功能电极材料及应用.长沙:中南工业大学出版社,1996.221-245
    [123]苏毅,金作美,代祖元.电解锌的SO_2阳极反应动力学.中国有色金属学报,2001,11(3):495-498
    [124]Wesselmark M,Lagergren C,Lindergh G.Methanol Oxidation as Anode Reaction in Zinc Electrowinning.Journal of The Electrochemical Society,2005,152(11):D201-D207
    [125]魏昶,王俊中,姜琪.喷射床电解法在锌电积中的应用.矿冶工程,2001,21(3):56-58
    [126]Sosnick B.Process for making foaming mass of Metal.US Patent 2434773,1948
    [127]Ellioty J C.Method of producing metal foam.US Patent 2751289,1956
    [128]Davies G J,Zhen S.Metallic Foams:their production,properties and applications.Journal of Materials Science,1983,18(7):1899-1911
    [129]赵维民,马彦东,侯淑萍,等.泡沫金属的发展现状研究与应用.河北工业大学学报,2001,30(3):50-55
    [130]上野英俊,秋山茂.增粘在制备泡沫铝中的作用.轻金属,1987,37(1):42
    [131]Jin I,Kinny L D,Sang H.气泡法制备配置泡沫铝.US Patent 4973358,1990
    [132]Banhart J.Manufacture,Characterisation and Application of Cellular Metals and Metal Foams.Progress in Materials Science,2001,46(6):559-632
    [133]Gergely V,Curran D C,Clyne Y W.The FOAMCARP process:foaming of aluminum MMCs by the Chalk-aluminum reaction in precursors.Composites Science & Technology,2003,63(16):2301-2310
    [134]Han F S,Wei J N,Cheng H F,et al.Effects of process parameters and alloy compositions on the pore structure of foamed aluminum.Journal of Materials Processing Technology,2003,138(1-3):505-507
    [135]Hanssen A G,Hopperstad O S,Langseth M,et al.Validation of constitutive models applicable to aluminum foams.International Journal of Mechanical Science,2002,44(2):359-406
    [136]Kennedy A R.The effect of TiH_2 heat treatment on gas release and foaming in Al-TiH_2 preforms.Scripta Materialia,2002,47(11):763-767
    [137]Lu T J,Ong J M.Characterization of close-celled cellular aluminum alloys.Journal of Materials Science,2001,36(11):2773-2786
    [138]Yang C C,Nakae H.Foaming characteristic control during production of aluminum alloy foam.Journal of Alloys & Compounds,2000,313(1-2):188-191
    [139]陈学广,赵维民,马彦东,等.泡沫铝的发展研究与应用.粉末冶金技术,2002,20(6):356-359
    [140]张国梁,马红军.泡沫铝合金熔融发泡工艺的初步研究.特种铸造及有色合金,1992(2):15-17
    [141]刘培生,李铁潘,傅超,等.多孔金属材料的应用.功能材料,2001,32(1):12-15
    [142]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程,1997,26(1):1-6
    [143]王录才,于利民,王芳,等.多孔泡沫铝的研究及其前景展望.太原重型机械学院学报,2002,23(1):73-76
    [144]周向阳,龙波,刘宏专,等.轻合金泡沫材料制备技术研究进展.材料导报,2005,19(9):61-63
    [145]陈文革,张强.泡沫金属的特点、应用、制备与发展.粉末冶金工业,2005,15(2):37-42
    [146]杨雪娟,刘颖,李梦,等.多孔金属材料的制备及应用.材料导报,2007,21(8):380-383
    [147]刘荣佩,左孝青,杨晓源,等.渗流铸造法制备多孔泡沫金属电极.云南冶金,2000,29(1):37-39
    [148]刘荣佩,左孝青,张林洪.渗流铸造多孔泡沫铅电极的性能测试分析.机械工程材料,2002,26(3):32-34
    [149]宝鸡有色金属研究所.粉末冶金多孔材料(下册).北京:冶金工业出版社,1977.69-79
    [150]曹立宏,马颖.多孔泡沫金属材料的性能及其应用.甘肃科技,2006,22(6):117-121
    [151]刘培生,李铁藩,傅超,等.多孔金属材料的应用.功能材料,2001,32(1):12-15
    [152]李海涛,朱锡,石勇,等.多孔吸声材料的研究进展.材料科学与工程学报,2004,22(6):394-398
    [153]戴长松,王殿龙,胡信国,等.泡沫材料的最新研究进展.稀有金属材料与工程,2005,34(3):337-340
    [154]伊廷锋,戴长松,胡信国,等.铅酸电池泡沫铅板栅材料的研究进展.电池,2006,36(3):229-230
    [155]伊廷锋,霍慧彬,胡信国.铅蓄电池板栅材料的研究发展现状.电池工业,2006,11(4):267-272
    [156]刘荣培,左孝青,杨晓源.泡沫铅的制备及预制快的研究.兵器材料科学与工程,2001,24(4):38-41
    [157]Irretier A,Banhart J.Lead and lead alloy foams.Acta Materialia,2005,53(18):4903-4917
    [158]Gergely V,Clyne B.The FORMGRIP process:foaming of reinforced metals by gas release in precursors.Advanced Engineering Materials & Design,2000,2(4):175-178
    [159]李钧,田庆华,郭学益.泡沫铅的制备、性能及应用研究的现状.电池,2007,37(6):460-462
    [160]邹智敏.镀铅泡沫碳化硅作为铅酸蓄电池正极集流体的研究:[博士学位论文].沈阳:中国科学院金属研究所,2004
    [161]钟发平.一种铅布电池极板板栅的制造方法.CN:02139759·7,2004
    [162]钟发平,陶维正.一种铅酸蓄电池极板板栅的制造方法及设备.CN:02114223·8,2003
    [163]徐宏力,杨光棣,徐晓云.铅酸蓄电池钛基泡沫铅正负电极板栅材料及其制造方法.CN:200610110234·7,2007
    [164]Gyenge E,Jung J,Mahato B.Electroplated reticulated vitreous carbon current collectors for lead-acid batteries:Opportunities and challenges.Journal of Power Sources,2003,112(2):388-395
    [165]Gyenge E,Jung J,Splinter S,et al.High specific surface area,reticulated current collectors for lead-acid batteries.Journal of Applied Electrochemistry,2002,32(3):287-295
    [166]柴艳.反重力铸造液面加压控制技术的研究:[硕士学位论文].西安:西北工业大学,2004
    [167]王英杰.铝合金反重力铸造技术.铸造技术,2004,25(5):361-362
    [168]罗庚生,张志忠,吕有纲,等.低压铸造.北京:国防工业出版社,1989.3-48
    [169]潘增源.低压铸造.北京:机械工业出版社,1974.3-10
    [170]李强.反重力铸造装备PLC控制技术的研究:[硕士学位论文].西安:西北工业大学,2007
    [171]唐多光.21世纪低压铸造技术的展望.特种铸造及有色合金,1998,(4):28-31
    [172]董秀琦.低压及差压铸造理论与实践.北京:机械工业出版社,2003.267-314
    [173]李新雷.大型反重力铸造设备及其控制技术的研究:[硕士学位论文].西安:西北工业大学,2004
    [174]候击波,彭有根,杨晶,等.电磁泵低压铸造技术.铸造,2002,11:723-725
    [175]李建峰.A357合金凝固特性及其充填规律的研究:[硕士学位论文].西安:西北工业大学,2006
    [176]王海滨.泡沫锌铝合金及其复合材料的制备与机械阻尼性能的研究:[硕士学位论文].西安:西安理工大学,2007
    [177]黄笑梅,薛国宪,程和法.渗流法制备开孔泡沫铝的结构与参数的控制.材料与表面处理,2004,(2):43-44
    [178]杨思一.泡沫铝合金的渗流铸造工艺方法研究.粉末冶金技术,2006,24(4):291-294
    [179]李丹.孔连通泡沫铝制备工艺研究:[硕士学位论文].长春:长春光学精密机械学院,1999
    [180]何德坪,闻德荪,张勇,等.铝熔体在多孔介质中的渗流过程.材料研究学报,1997,11(2):113-119
    [181]黄松元.散体力学.机械工业出版社,1992.6
    [182]张力勇.开孔泡沫铝孔结构及力学性能研究:[硕士学位论文].合肥:合肥工业大学,2004
    [183]洪润洲.复杂薄壁铝合金精铸件浇铸工艺研究.材料工程,2000,(8):47-48
    [184]闻星火,何丙军,童本行,等.压力条件下缩松判据的研究.清华大学学报,1998,38(8):54-56
    [185]贾万存.蓄电池板栅铅合金腐蚀特性的试验.山东冶金,2006,28(4):81
    [186]Hrussanova A,Mirkova L,Dobrev T.Anodic behaviour of the Pb-Co_3O_4composite coating in copper electrowinning.Hydrometallurgy,2001,60(3):199-213
    [187]刘荣义,张文山,梅光贵.锌电积各种因素对阳极析出MnO_2电流效率的影响.中国锰业,2000,18(4):29-32
    [188]周红华.锌电积阳极析出MnO_2电流效率的探讨.中国有色冶金,2004,33(5):21-22
    [189]Pu Y,Thomas J,O'Keefe.Evaluation of Lead Anode Reactions in Acid SulfateElectrolytes.II.Manganese Reactions.Journal of The Electrochemical Society,2002,149(5):558-569
    [190]Rice D M.Effects of bismuth on the electrochemical performance of lead/acid batteries.Journal of Power Sources,1989,28(1-2):69-83
    [191]lam L T,Lim O V,Haigh N P,et al.Oxide for valve-regulated lead-acid batteries.Journal of Power Sources,1998,73(1):36-46
    [192]Feng J R,Johnson D C.Electrocatalysis of anodic oxygen-transfer reactions.Titanium substrates for pure and doped lead dioxide films.Journal of the Electrochemical Society,1991,138(11):3328-3337
    [193]Kawagoe K T,Johnson D C.Electrocatalysis of anodic oxygen-transfer reactions.Oxidation of phenol and benzene at bismuth-doped lead dioxide electrodes in acidic solutions.Journal of the Electrochemical Society,1994,141(12):3404-3409
    [194]Popovic N D,Cox J A,Johnson D C.Mathematical model for anodic oxygen-transfer reactions at Bi(V)-doped PbO_2-film electrodes.Journal of Electroanalytical Chemistry,1998,456(1-2):203-209
    [195]李建玲,史鹏飞,夏保佳,等.铋对铅钙合金腐蚀行为的影响.电池,1998,28(5):199-201
    [196]林晓东,戴长松,朱承飞,等.铋对铅钙合金的电化学性能影响研究.武汉理工大学学报,2006 28(1):121-127
    [197]Li W S,Chen H Y,Long X M,et al.Oxygen evolution reaction on lead-bismuth alloys in sulfuric acid solution.Journal of Power Sources,2006,158(2):902-907
    [198]Liang J Z,Chen H Y,Tang M C,et al.Properties and application of lead-calcium-tin-aluminium-bismuth alloys for positive grids.Journal of Power Sources,2006,158(2):908-913
    [199]Yeo I H,Kim S,Jacobson R,et al.Electrocatalysis of anodic oxygen transfer reactions.Comparison of structural data with electrocatalytic phenomena for bismuth-doped lead dioxide.Journal of the Electrochemical Society,1989,136(5):1395-1401
    [200]Zhong S,Wang J,Liu H K,et al.Influence of bismuth on hydrogen and oxygen evolution on lead-calcium-tin-aluminium grid alloys Journal of Power Sources,1997,66(1-2):159-164
    [201]龙雪梅,李伟善.铋含量对铅铋合金析氧行为的影响.电源技术,2004,28(9):575-577
    [202]龙雪梅,吕东生,李伟善.铅铋合金在H_2SO_4溶液中析氧反应研究.电池,2003,33(6):371-372
    [203]粱景志.铋对铅酸蓄电池性能影晌:[硕士学位论文].广州:华南师范大学,2007
    [204]Laitinen T,Sundholm G,Vilhunen J K.Comments on sample treatment in the X-ray diffraction analysis of the oxidation products of lead.Journal of Power Sources,1990,32(1):71-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700