用户名: 密码: 验证码:
铅锌烧结配料过程的智能集成建模与优化控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密闭鼓风烧结是铅锌冶炼ISP工艺中的一个重要流程,配料过程作为其首道工序,直接影响到铅锌烧结生产的成本、质量产量和能源消耗。目前,铅锌烧结配料过程作为稳定和优化生产的首要环节,其作用尚未得到充分发挥,存在着配料准确率和经济性不高的问题。同时由于铅锌烧结配料过程控制水平较低,导致了生产成本高、烧结块质量差、产量低,一方面造成了能源浪费,另一方面造成了环境污染。针对上述问题,本文主要围绕铅锌烧结配料过程智能集成建模与优化控制策略开展研究,取得的研究成果主要包括以下五个方面:
     (1)烧结块成分智能集成预测模型
     针对复杂的烧结块成分预测问题,提出一种基于过程神经网络和灰色系统理论的烧结块成分智能集成预测模型。该模型首先利用过程神经网络可充分表达时间序列中时间累积效应、灰色系统可弱化数据序列波动性的优点,分别对铅锌烧结块成分进行预测,然后从信息论的观点出发,提出一种熵值方法,重新定义预测误差序列的变异程度,从而获得各个预测模型的加权系数,通过对两个预测模型的预测结果进行加权集成,获得更加准确的铅锌烧结块成分预测结果。结果表明,智能集成模型的预测精度高于单一预测模型,能有效地对烧结块成分进行预测,满足了配料计算对预测精度和数据完备性的要求。
     (2)烧结返粉量智能集成预测模型
     针对烧结返粉量变化趋势复杂,受多个因素影响,难以用单一预测模型进行有效预测的问题,提出一种基于改进灰色系统和支持向量机的智能集成预测模型。首先利用改进灰色系统和支持向量机两个单一预测模型分别对烧结返粉量进行预测;然后基于预测精度的数学期望和标准差,以其数学期望最大化和标准差最小化为目标函数,通过求取最优加权系数,建立烧结返粉量智能集成预测模型进行返粉量预测。结果表明,该集成预测模型能够获得更高的的预测精度,能有效地对返粉量进行预测,预测结果为确定烧结返粉配比提供了数据支持。
     (3)一次配料定性定量智能集成优化算法
     针对传统配料方法中存在的成本高和准确率低的问题,提出一种定性定量智能集成优化算法。在对烧结主要原料特性和经济性进行分析以及建立烧结块成分集成预测模型的基础上,首先以成本最小为目标建立烧结配料优化模型,分别采用专家推理策略和免疫遗传算法对烧结配料进行优化;然后,在对免疫遗传算法进行改进的基础上,从系统论的观点出发,采用定性定量综合集成方法,把过程神经网络技术、灰色系统理论与专家推理策略、改进免疫遗传算法有机结合,实现了烧结配料的进一步优化,提高了配料的准确率,降低了烧结成本,取得了可观的经济效益。
     (4)基于烧结工况综合评价的二次配料智能优化策略
     在对烧结生产全流程各参数间关系进行分析的基础上,提出了基于烧结工况综合评价的二次配料智能优化策略,建立了烧结生产工况综合评价模型,并提出了基于聚类分析的操作参数匹配优化算法。首先,通过建立烧结返粉量、烧结块含铅量、含锌量以及含硫量预测模型,将这些模型的输出作为烧结生产工况优劣的综合评价因素,利用烧结生产工况综合评价模型,采用模糊综合评价法,实现对烧结生产工况的综合评价;其次,根据对烧结生产工况综合评价的结果,在利用加权模糊C均值聚类算法对优化样本数据集进行聚类的基础上,通过操作参数匹配优化算法,获得二次配料过程具体的操作参数优化值,作为实现二次配料过程过程优化控制的操作指导。结果表明:该方法可显著改善工况波动,减少了由于操作盲目性造成的生产工况不稳定,进而提高了烧结块的产量和质量。
     (5)烧结配料过程智能集成控制策略
     由于烧结配料过程中的物料流量受许多不确定因素的影响而波动很大,具有很强的非线性和大滞后等特性,难以建立确切的数学模型,其控制问题很难用传统的控制理论和方法解决。为了提高配料的准确度和稳定性,结合模糊控制和PID控制的特点,提出一种基于加权因子的烧结配料模糊自适应PID智能集成控制策略,分别设计了模糊控制器和自适应PID控制器。利用加权因子将模糊控制器的输出和自适应PID控制器的输出进行加权集成,使得控制器在误差较大时,主要由模糊控制器起作用,具有较快的响应能力;而在误差较小时主要由自适应PID控制器起作用,具有较高的控制精度,实现了模糊控制器和自适应PID控制器输出的连续平滑切换。
The imperial updrafted-sintering is an important loop of the Lead-Zinc Imperial Smelting Process. As the first working procedure of the Lead-Zinc sintering process, the blending process plays an important role, which exerts an influence on the sintering production cost, quantityt-quality and energy sources waste. As the chief tache for stabilization and optimization production, the role of Lead-Zinc sintering blending process has not been played at present and there are problems of low economics and accuracy in the sintering blending process. At the same time, high cost and low quantity-quality have resulted from the low level of the Lead-Zinc sintering blending process control, which result in energy sources squander and environment pollution. Amied at the above problems, the intelligent integrated modeling and optimization control strategy in the Lead-Zinc sintering blending process have been mainly studied and the main achievements in this dissertation include several aspects as follows:
     (1) Intelligent integrated prediction model for component of Pb-Zn agglomerate
     To deal with the problem of the component prediction for Pb-Zn agglomerate, an intelligent integrated prediction model based on process neural network (PNN) and grey system theory (GST) was presented. First, the component of agglomerate was predicted by PNN and GST models. Then, from the viewpoint of the information theory, a kind of entropy method was proposed and the deviation of forecasting error series was defined renewal, then the optimal weightling coefficient of each prediction model was obtained. The exact prediction results for component of Pb-Zn agglomerate were acquired by integrating the reaults of two prediction models. The results show that the integrated model has high prediction precision, it predicts the component of agglomerate effectively, and it meets the requirements of the data completeness for proportioning computation.
     (2) Intelligent integrated prediction model for quantity of sintering return powders
     Based on the fact that the complexity of return powders is affected by various factors and it is hard to predict accurately with a single prediction model, an intelligent integrated prediction model based on improved grey system (IGS) and support vector machine (SVM) was proposed. Firstly, the quantity of sintering return powders was respectively predicted by using IGS prediction model and SVM prediction model. Then an intelligent integrated prediction model based on two precision indicators of mean and deviate, was introduced to predict the quantity of sintering return powders by calculating optimal weighting coefficient. The prediction results show that the prediction precision of the integrated model is higher than that of single prediction model and it can predict the quantity of sintering return powders effectively. The prediction results can offer data support to the determination of blending ratio of return powders.
     (3) Qualitative and quantiative synthetic optimization algorithm for the primary blending
     To deal with the problem of high cost and low accuracy existed in conventional methods for the primary blending process in lead-zinc sintering, a kind of qualitative and quantiative synthetic optimization algorithm was proposed. First, based on the analysis for the characteristic and economy of the sintering material and establishment for the intelligent integrated prediction model for the agglomerate component, a blending optimization model was established for the purpose of minimizing the costs. The mixture ratios were optimized respectively by using the expert reasoning strategies and the immune genetic algorithm. Then, from the viewpoint of the system theory, the mixture ratios were optimized ulteriorly by using the qualitative and quantiative synthetic methodology integrated the process neural network technology, grey system theory, expert reasoning strategy and improved immune genetic algorithm. The blending accuracy was enhanced, the sintering cost was reduced and the considerable economic benefit was procured.
     (4) Intelligent optimization strategy for the secondary blending process based on comprehensive evaluation for sintering status
     Based on the analysis of the relationship between parameters in the whole sintering process, the intelligent optimization strategy for the secondary blending process based on comprehensive evaluation for sintering status was proposed. The comprehensive evaluation model for sintering production status was established and the optimization algorithm for the operation parameters matching based on clustering analysis was presented. Firstly, based on the establishment of the models for sintering return powder, Pb, Zn and S component prediction, the outputs of these models were considered as factors for sintering status evaluation. The comprehensive evaluation for sintering status was implemented by using the fuzzy evaluation method. Secondly, according to the results of comprehensive status evaluation model, the optimum operation parameters were acquired by using matching optimization algorithm based on weighting fuzzy C-means clustering. The results show that the fluctuation of status can be meliorated efficiently and the quantity and quality of agglomerate were improved.
     (5) Intelligent integrated control strategy for sintering blending process
     The material flow in the sintering blending process was impacted by many uncertain factors and fluctuates greatly with characters of high nonlinear and large lag. It is hard to solve the sintering blending control problem by conventional control theory and methods since the mathematic model is difficult to be established. In order to improve the accuracy and stability of the sintering blending, a fuzzy adaptive PID intelligent integrated control strategy for sintering blending based on weighing coefficients was proposed by combining with the features of the fuzzy control and PID control. The fuzzy controller and the adaptive PID controller were designed respectively. The outputs of the fuzzy controller and the adaptive PID controller were integrated by using the weighting coefficients. When the error of the material flow is greater, the fuzzy controller mostly determines the output so that fast response ability can be shown, and when the error is smaller, the adaptive PID controller mostly determines the output, so that a higher control precision can be obtained. The switch of the output between fuzzy controller and adaptive PID controller is continuous.
引文
[1]林岚.提高韶冶ISP铅锌冶炼原燃料经济性途径的探讨[J].有色冶金设计与研究,2005,26(2):12-15.
    [2]叶军乔,何静,曾令成.ISP烧结工艺的特点及发展趋势[J].有色冶金设计与研究,2004,25(1):3-5.
    [3]袁祥旦.提高Pb-Zn烧结工艺对原料适应性的生产实践[J].南方金属,2004,2(3):33-36.
    [4]王志刚.密闭鼓风炉炼铅锌技术改进与展望[J].湖南有色金属,2003,19(6):19-22.
    [5]仝一喆.铅锌烧结技术的新进展[J].工程设计与研究,2006,6(2):6-9.
    [6]蒋继穆.我国铅锌冶炼现状与持续发展[J].中国有色金属学报,2004,14(专辑1):52-62.
    [7]王成.工业生产自动化[M].北京:科学出版社,2003.
    [8]S.Obayashi,D.Sasaki,Takeguchi.Multiobjective evolutionary computation for supersonic wingshape optimization[J].IEEE Transaction on Evolutionary Computation,2000,4(2):182-187.
    [9]D.Sbarbaro,A.Johansen.Analysis of Artificial Neural Networks for pattern-based adaptive control[J].IEEE Transaction on Neural Network,2006,17(5):1184-1193.
    [10]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2003.
    [11]B.Lin,B.Recke,J.K.H.Knudsen,S.B.Jorgensen.A systematic approach for soft sensor development[J].Computers and Chemical Engineering.2007,31(5):419-425.
    [12]Y.H.Kim,F.L.Lewis,D.M.Dawson.Intelligent optimal control of robotic manipulators using neural networks[J].Automatica,2000,36(9):1355-1364.
    [13]M.Wu,J.H.She,M.Nakano.An expert control system using neural networks for the electrolytic process in Zinc hydrometallurgy[J].Engineering Applications of Artificial Intelligence.2001,14(5):589-598.
    [14]S.P.Moustakidis,G.A.Rovithakis,J.B.Theocharis.An adaptive neuro-fuzzy tracking control for multi-input nonlinear dynamic systems[J].Automatica,2008,44(3):851-856.
    [15]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].北京:科学出版社,2006.
    [16]H.J.Pil,K.Euntai.Robust tracking control of an electrically driven robot:Adaptive fuzzy logic approach[J].IEEE Transactions on Fuzzy Systems,2006,14(2):232-247.
    [17]李保国,宗光华.未知环境中移动机器人实时导航与避障的分层模糊控制[J].机器人,2005,27(6):481-485.
    [18]T.S.Chan Felix,K.C Au,P.L.Y Chan.A decision support system for production scheduling in an ion plating cell[J].Expert Systems with Applications,2006,30(4):727-738.
    [19]郝东,蒋昌俊,林琳.基于Petri网与GA算法的FMS调度优化[J].计算机学报,2005,28(2):201-208.
    [20]M.A.Awadallah,M.M.Morcos.Automatic diagnosis and location of open-switch fault in brushless DC motor drives using wavelets and neuro-fuzzy systems[J].IEEE Transactions on Energy Conversion,2006,21(1):104-111.
    [21]李明华,屈彦明,周孟戈,等.基于多Agent及Petri网的变压器故障诊断系统[J].西安交通大学学报,2006,40(2):223-227.
    [22]J.H.Taylor,Sayda.An intelligent architecture for integrated control and asset management for industrial processe[C].IEEE International Symposium on Intelligent Control and 13th Mediterranean Conference on Control and Automation(IEEE Cat.No.05CH37647),2005,2:1397-1404.
    [23]A.Grancharova,J.Kocijan,Tor A.Johansen.Explicit stochastic predictive control of combustion plants based on Gaussian process models[J].Automatica,2008,44(1):1621-1631.
    [24]K.Kawanaka,Y.Mori.A study of the changes in the permeability of the sintering bed in the imperial smelting process.In:J.E.Dutrizac,J.A.Gonzalez,D.M.Henke,et al,eds.Lead-Zinc 2000.Pittsburgh:TMS,2000,467-479.
    [25]A.G.Waters.A mathematical model for the prediction of granule size distribution for multi-component sinter feed[J].Transactions of ISIJ,1989,29(4):274-283.
    [26]F.Patission.Study of moister transfer during the strand sintering process[J].Metal Transactions,1990,2(21B):37-47.
    [27]G.S.Upadhyaya.Some issues in sintering science and technology[J].Materials Chemistry and Physics,2001,67(1):1-5.
    [28]G.S.Upadhyaya.Sintering 2000:a report[J].Materials and Design,2001,22(3):239-242.
    [29]N.D.Corte,J.L.Gerbe.Automation and Modelisation of the Process at the Usinor Dunkirk No.3 Sintering Plant[J].Proceedings of the 4th International Symposium on Agglomeration,Toronto,Canada,1985,787-804.
    [30]N.Tamure,M.Konishi.Mathematical Approach for the Optimization of Sintering Process Operation[J].In IFAC Automation in Mining,Mineral and Metal Process,Tokyo,Japan,1986,203-208.
    [31]G.Hanko,A.Lebleu,M.Siboby.Optimization of the New Jersey refining process.In:J.E.Dutrizac,J.A.Gonzalez,D.M.Henke,et al,eds.Lead-Zinc 2000.Pittsburgh:TMS,2000.481-496.
    [32]K.Hamada,Y.Matoba.Systeme de controle de la composition chemique de I'agglomere[J].Revue de metallurgie-CIT,1987,5(2):409-419.
    [33]向齐良,吴敏,侯奔,向婕.基于成分预测模型的矿石烧结配料专家优化方法[J].山东大学学报(工学版),2005,35(4):43-46.
    [34]吴斌秀,刘明海,李仕雄.烧结块成分预测的神经网络模型[J].湖南有色金属,2003,19(6):45-47.
    [35]王雅琳,桂卫华,阳春华,陈晓方,张传福.基于综合建模方法的铅锌烧结块成分预测[J].中南大学学报(自然科学版),2005,36(1):113-118.
    [36]陈晓方,桂卫华,王雅琳,吴敏,阳春华.基于智能集成策略的烧结块残硫软预测模型[J].控制理论与应用,2004,21(1):75-80.
    [37]D.L.Zheng,Z.L.Zhao.Application of gray linear programming in sintering mixing calculation[J].Journal of University of Science and Technology Beijing,2000,7(4):273-276.
    [38]吕学伟,白晨光,邱贵宝,欧阳奇,黄玉明.三种优化烧结配料方法的比较[J].烧结球团,2006,31(2):11-15.
    [39]欧阳奇,白晨光,何木光,文光远.考虑性能指标的烧结机操作优化控制模型[J].烧结球团,2005,30(3):27-29.
    [40]杨东进,陈继国,于忠念,向天德.烧结配料优化分析[J].烧结球团,2000,25(1):14-16.
    [41]王炜,陈畏林,贾斌,徐智慧,杨海林.基于线性规划和神经网络的优化烧结配料系统开发[J].烧结球团,2006,31(1):27-30.
    [42]高清东,袁怀雨.关联规则分析在优化配框结构中的应用研究[J].有色金属,2005,57(2):14-16.
    [43]何苗,刘清,邢晨.烧结矿配料优化计算机系统的开发[J].冶金丛刊,2006,162(2):4-6.
    [44]车蓉,毛小浩,王海峰.烧结矿配料优化计算模型的设计[J].贵州工业大学学报(自然科学版),2006,35(2):10-13.
    [45]李智,姚驻斌,张望兴,贺超武.基于神经网络的混匀配料优化方法[J].钢铁研究,2000,115(4):10-12.
    [46]K.Matsuda.Modeling for control knowledge in sintering process using neural network and fuzzy inference[J].铁と钢,1992,4(7):146-149.
    [47]I.Shigaki.Machine-learning approach for sintering process using a neural network[J].Planning and Control,1999,10(8):727-734.
    [48]J.H.Zhang,A.G.Xie,F.M.Shen.Multi-objective optimization and analysis model of sintering process based on BP neural network[J].Journal of Iron and Steel Research,2007,14(2):1-5.
    [49]M.Wu,M.Nakano,J.H.She.A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant[J].Expert Systems with Applications,1999,16(3):271-281.
    [50]吴敏,沈德耀.配煤过程基于神经网络和数学模型的专家系统[J].控制理论与应用,2000,17(6):868-872.
    [51]阳春华,沈德耀,吴敏,刘建勤.焦炉配煤专家系统的定性定量综合设计方法.自动化学报,2000,26(2):262-232.
    [52]牛秦洲,叶恒舟,吴一峰.烧结厂烧结配料专家系统设计[J].桂林工学院学报,2002,22(4):391-395.
    [53]赵德宽,王京,王海,张文宇.基于专家系统的烧结生产质量监督和操作指导控制系统[J].冶金自动化,2004,2(5):26-29.
    [54]X.H.Fan,H.D.Wang.Expert system for sintering process control[J].The Chinese Society for Metals.Asia Steel International Conference-2000,Beijing,China,2000:307-312.
    [55]H.D.Wang,G.Z.Qiu,S.S.Huang.Design and development of expert system for controlling sintering process[J].Transactions of nonferrous Metal Society of China,1999,19(3):78-80.
    [56]吕学伟,白晨光,邱贵宝,欧阳奇,黄玉明.基于遗传算法的烧结配料综合优化研究[J].钢铁,2007,42(4):12-15.
    [57]李智,姚驻斌.粒子群算法在烧结矿配料优化中的应用[J].有色金属,2005,57(3):51-54.
    [58]C.H.Lim,Y.S.Yoon,J.H.Kim.Genetic algorithm in mix proportioning of high-performance concrete[J].Cement and Concrete Research,2004,34(3):409-420.
    [59]S.Cierpisz,A.Heyduk.A simulation study of coal blending control using a fuzzy logic ash monitor[J].Control Engineering Practice,2002,10(4):449-456.
    [60]M.Chakraborty,M.K.Chandra.Multicriteria decision making for optimal blending for beneficiation of coal:a fuzzy programming approach[J].Omega,2005,33(5):413-418.
    [61]C.M.Liu,H.D.Sherali.A coal shipping and blending problem for an electric utility company[J].Omega,2000,28(4):433-444.
    [62]South,Craig.Continual Batch Processing for Liquid Wastes[J].Process and Control Engineering,1995,48(6):26-28.
    [63]罗中良,李先祥,施仁.工业配比过程及系统设计[J].兰州大学学报(自然科学版),2004,40(3):34-37.
    [64]张嘉钰,单根立,袁贵栋,宋海生.动态电子配比系统及其应用[J].自动化与仪表,2000,15(1):29-30.
    [65]莫良智,柳干.涟钢烧结机配料控制系统的改造设计与实现[J].冶金自动化,2007,3(2):62-64.
    [66]李顺增,王志强,吴志华.配料控制系统的自适应称重控制器[J].华北工学院学报,2002,23(3):209-211.
    [67]张玉宏,赵少林,张鸿.一种设定值修正的PID算法在配料控制系统中的应用[J].中原工学院学报,2007,18(2):52-54.
    [68]胡骏,宋晨路,沈锦林.一种适用于配料控制的累积量PID算法[J].材料科学与工程,2002,20(4):517-518.
    [69]李红旗.物料配比系统提前量自适应辨识方法的研究[J].郑州大学学报(理学版),2007,39(1):54-57.
    [70]张海清,李宝安,罗先和.定量下料问题的动态称重解决方案[J].计量学报,1998,19(3):221-224.
    [71]周永铁.烧结配料工序中的精矿总量控制[J].企业技术开发,2005,24(8):44-46.
    [72]李绍铭,孟凡亮.烧结配料过程的模糊控制[J].烧结球团,2007,32(3):31-34.
    [73]杜寿兵,吴付岗.迭代学习控制在配料控制系统中的应用[J].计算机测量 与控制,2006,14(4):479-481.
    [74]胡新.铅锌密闭鼓风炉熔炼技术10年来的发展[J].有色冶金,1994,4(2):11-14.
    [75]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003.
    [76]K.Hornik,M.Stinchcombe,H.White.Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.
    [77]K.Funahashi.On the approximate Realization of continuous mappings by neural networks[J].Neural Networks,1989,2(3):183-192.
    [78]S.N.Moghaddas Tafreshi,G.Tavakoli Mehrjardi.The use of neural network to predict the behavior of small plastic pipes embedded in reinforces sand and surface settlement under repeated load[J].Engineering Applications of Artificial Intelligence,2008,21(6):883-894.
    [79]G.P.Zhang,M.Qi.Neural network forecasting for seasonal and trend time series[J].European J of Operational Research,2005,160(2):501-514.
    [80]何新贵,梁久祯.过程神经网络的若干理论问题[J].中国工程科学,2000,2(12):40-44.
    [81]R.J.Frank,N.Davey,S.P.Hunt.Time series prediction and neural networks[J].Journal of Intelligent and Robotic Systems:Theory and Applications,2001,31(3):91-103.
    [82]X.G.He,J.Z.Liang.Process neural networks[J].In Proceedings of Conference on Intelligent Information Processing,Beijing,2000,143-146.
    [83]G.Ding,S.S.Zhong.Time series prediction by parallel feedforward process neural network with time-varied input and output functions[J].Neural Network World,2005,15(2):137-147.
    [84]丁刚,钟诗胜.基于过程神经网络的时间序列预测及其应用研究[J].控制与决策,2006,21(9):1037-1041.
    [85]刘载文,王正祥,王小艺,杨斌,程志强.过程神经网络学习算法及软测量方法的研究[J].系统仿真学报,2007,19(7):1456-1459.
    [86]许少华,何新贵,尚福华.基于基函数展开的双隐层过程神经元网络及其应用[J].控制与决策,2004,19(1):36-39.
    [87]许少华,刘扬,何新贵.基于过程神经元网络的水淹层自动识别系统[J].控制与决策,2004,19(1):36-39.
    [88]栾圣罡,丁刚,钟诗胜.基于双并联过程神经网络的润滑油金属含量预测[J].润滑与密封,2006,5(177):33-37.
    [89]H.Jeffreys,B.S.Jeffreys.Methods of mathematical physics[M].3~(rd) ed.Cambridge:Cambridge University Press,1988.
    [90]E.W.Cheney.Introduction to approximation theory[M].New York:Mcgraw-Hill,1966.
    [91]J.L.Deng.Introduction to grey theory[J].Journal of Grey System,1989,1(3):1-24.
    [92]J.L.Deng.Control problems of grey systems[J].Systems & Control Letters,1982,1(5):288-294.
    [93]M.Z.Mao,E.C.Chirwa.Application of grey model GM(1,1) to vehicle fatality risk estimation[J].Technogolical Forcasting and Social Change,2006,73(5):588-605.
    [94]C.C.Hsu,C.Y.Chen.Applications of improved grey prediction model for power demand forecasting[J].Energy Conversion and Management,2003,44(14):2241-2249.
    [95]L.C.Hsu,C.H.Wang.Forecasting the output of integrated circuit industry using a grey model improved by Bayesian analysis[J].Technogolical Forcasting and Social Change,2007,74(6):843-853.
    [96]袁基炜,史忠科.一种基于灰色预测模型GM(1,1)的运动车辆跟踪方法[J].控制与决策,2006,21(3):300-304.
    [97]李俊峰,戴文战.GM(1,1)改进模型的研究及在上海市发电量建模中的应用[J].系统工程理论与实践,2005,3:140-144.
    [98]袁明友,肖先勇,杨洪耕,曾立渊,杨兵.基于灰色理论的供电系统负荷中长期预测模型及其应用[J].四川大学学报(工程科学版),2002,34(4):121-123.
    [99]J.Chen.A predictive system for blast furnaces by integrating a neural network with qualitative analysis[J].Engineering Applications of Artifical Intelligence,2001,14(1):77-85.
    [100]王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究[D].长沙:中南大学,2001.
    [101]J.S.Zeng,X.G.Liu,M.Zhao.Mathematical model and its hybrid dynamic mechanism in intelligent control of ironmaking[J].Journal of Iron and Steel Research,International,2007,14(1):7-11.
    [102]M.Saleh.Estimating market shares in each market segment using the information entropy concept[J].Applied Mathematics and Computation,2007, 190(2):1735-1739.
    [103]Themis Palpanas,Nick Koudas,Alberto Mendelzon.Using datacube aggregate for approximate querying and deviation detection[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(11):1465-1477.
    [104]郑德玲,赵志坚,刘顺心.灰色系统理论在烧结返矿量预测中的应用[J].控制与决策,1999,14(3):245-248.
    [105]梁开,方康玲.烧结返矿量预测中的灰色-时序组合模型[J].中南大学学报(自然科学版),2005,36(专辑1):639-641.
    [106]袁基炜,史忠科.一种基于灰色预测模型GM(1,1)的运动车辆跟踪方法[J].控制与决策,2006,21(3):300-304.
    [107]Albert W.L Yao,S.C.Chi,J.H.Chen.An improved Grey-based approach for electricity demand forecasting[J].Electric Power Systems Research,2003,67(3):217-224.
    [108]常玉清,邹伟,王福利,毛志忠.基于支持向量机的软测量方法研究[J].控制与决策,2005,20(11):1307-1310.
    [109]董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788.
    [110]V.Vapnik.The nature of satistical learning theory[M].Springer Verlag,1995.
    [111]C.J.C.Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):1913-1920.
    [112]沈继红,尚寿亭,赵希人.舰船纵摇运动函数变换型GM(1,1)模型研究[J].哈尔滨工业大学学报,2001,33(3):291-294.
    [113]刘思峰,郭天榜.灰色系统理论及其应用[M].北京:科学出版社,2000.
    [114]陈华友,侯定丕.基于预测有效度的优性组合预测模型研究[J].中国科学技术大学学报,2002,32(2):172-180.
    [115]鄂加强,王耀南,梅炽,李春生.铜精炼过程能耗模型自适应变权重组合预测模型及其应用[J].矿冶,2005,14(3):46-48.
    [116]胡桥,何正嘉,訾艳阳,张周锁,雷亚国.一种新的混合智能预测模型及其在故障诊断中的应用[J].西安交通大学学报,2005,39(9):928-932.
    [117]钱学森,于景元,戴汝为.一个科学新领域--开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [118]于景元,涂元季.从定性到定量综合集成方法--案例研究[J].系统工程理论与实践,2002,22(5):1-8.
    [119]Y.L Wang,J.Ma,W.H.Gui,C.H.Yang,C.F.Zhang.Multi-objective intelligent coordinating optimization blending system based on qualitative and quantitative synthetic model[J].Journal of Central South Unversity of Technology(English Edition),2006,13(5):552-557.
    [120]X.F.Cheng,W.H.Gui,Y.L.Wang,M.Wu,C.H.Yang.Integrated Modeling Method for Prediction of Sulfur Content in Agglomerate[J].Journal of Central South University of Technology(English Edition),2003,10(2):145-150.
    [121]M.Wu,C.H.Xu,Y.X.Du.Intelligent optimal control for lead-zinc sintering process state[J].Transactions of Nonferrous Metals Society of China,2006,16(4):975-981.
    [122]杜玉晓,吴敏,桂卫华,面向生产目标的铅锌烧结过程智能集成建模与优化控制技术[J].中国有色金属学报,2004,14(1):142-148.
    [123]李仕雄.提高铅锌烧结结块率的工业应用研究[D].长沙:中南工业大学,1999.
    [124]A.Azaron,C.Perkgoz,M.Sakawa.A genetic algorithm approach for the time-cost trade-off in PERT networks[J].Applied Mathematics and Computation,2005,168(2):1317-1339.
    [125]D.R.Lewin,A.Parag.A constrained genetic algorithm for decentralized control system structure selection and optimization[J].Automatica,2003,39(10):1801-1807.
    [126]A.Kalinli,N.Karaboga.Artificial immune algorithm for IIR filter design[J].Engineering Applications of Artificial Intelligence,2005,18(8):963-972.
    [127]M.Zandieh,S.M.T.Fatemi Ghomi,S.M.Moattar Husseini.An immune algorithm approach to hybrid flow shops scheduling with sequence-depent setup times[J].Applied Mathematics and Compution,2006,180(1):111-127.
    [128]马忠丽,王科俊,莫宏伟.免疫遗传算法及其在电力系统EELD中的应用[J].哈尔滨工程大学学报,2006,27(3):408-412.
    [129]Y.S.Dai,Y.Y.Li,L.Wei,J.L.Wang,D.L.Zheng.Adaptive immune-genetic algorithm for global optimization to multivariable function[J].Journal of Systems Engineering and Electronics,2007,18(3):655-660.
    [130]J.D.Farmer,N.H.Packard,A.S.Perelson.The immune system adaptation and machine learning[J].Physica,1986,22(2):187-204.
    [131]L.Jiao,L.Wang.A novel genetic algorithm based on immuneity[J].IEEE Transactions on System,Man and Cybernetics,2000,30(5):552-561.
    [132]F.D.Croce,R.Tadei,G.Volta.A genetic algorithm for the job-shop problem[J]. Computer and Operations Reaearch,1995,22(1):15-24.
    [133]M.Gen,Y.Tsujimura,E.Kubota.Solving job-shop scheduling problem using genetic algorithms[C].Proceedings of the 16~(th) International Conference on Computers and Industrial Engineering,Ashikaga,Japan:Ashikaga Institute of Technology,1994:576-579.
    [134]Z.Y.Sun.A neural network based on mechanism model and it's application in prediction of rolling force[C].Proceedings of the 3~(rd) International World Congress on Intelligent Control and Automation,Hefei,P.R.China,2000,1073-1076.
    [135]Y.L.Wang,W.H.Gui,C.I-I.Yang.Intelligent modeling and optimization on time-sharing power dispatching system for electrolysis process of zinc[J].Transactions of Nonferrous Metals Society of China,2000,10(4):561-565.
    [136]熊刚,许晓鸣,孙优贤.润滑油生产溶剂回收系统的混合优化策略[J].自动化学报,1999,25(2):52-59.
    [137]桂卫华,王雅琳,阳春华.基于改进模拟退火算法的锌电解过程分时供电优化控制[J].控制理论与应用,2001,18(1):127-130.
    [138]R.Krishnapuram,J.M.Keller.A possilistic approach to clustering[J].IEEE Transacitons on Fuzzy Systems,1993,1(2):98-110.
    [139]I.Gath,D.Hoory.Fuzzy clustering ofelliptic ring-shaped clusters[J].Pattern Recognition Letters,1995,16(7):727-741.
    [140]W.L.Hung,M.S.Yang,D.H.Chen.Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation[J].Pattern Recognition Letters,2008,29(9):1317-1325.
    [141]A.M.Bensaid,L.O.Hall,J.C.Bezdek,L.P.Clarke,M.L.Silbiger,J.A.Arrington,R.F.Murtagh.Validity-guided clustering with applications to image segmentation[J].IEEE Transactions on Fuzzy Systems,1996,4(2):112-122.
    [142]吴元修.分布式集散控制技术在烧结配料系统中的应用研究[J].电子测量技术,2007,30(9):180-183.
    [143]S.W.Sung,I.B.Lee.An improved algorithm for automatic tuning of PID controller[J].Chemical Engineering Science.2000,55(10):1883-1891.
    [144]K.K.Tan,T.H.Lee,X.Jiang.On-line relay identification,assessment and tuning of PID controller[J].Journal of Process Control,2001,11(5):483-496.
    [145]W.D.Chang,R.C.Hwang,J.G.Hsieh.A multivariable on -line adaptive PID controller using auto-tuning neurons[J].Engineering Applications of Artificial Intelligence,2003,16(1):57-63.
    [146]D.L.Yu,T.K.Chang,D.W.Yu.A stable self-learning PID control for multivariable time varying systems[J].Control Engineering Practice,2007,15(12):1577-1587.
    [147]T.J.Ren,T.C.Chen,C.J.Chen.Motion control for a two-wheeled vehicle using a self-tuning PID controller[J].Control Engineering Practice,2008,16(3):365-375.
    [148]A.Khodabakhshian,M.Edrisi.A new robust PID load frequency controller[J].Control Engineering Practice,2008,16(9):1069-1080.
    [149]S.G.Cao,N.W.Rees,G.Feng.Analysis and design for a class of complex control systems part Ⅰ:fuzzy modelling and identification[J].Automatica,1997,33(6):1017-1028.
    [150]L.X.Wang.Automatic design of fuzzy controllers[J].A utomatica,1999,35(8):1471-1475.
    [151]C.F.Hsu,P.Z.Lin,T.T.Lee,C.H.Wang.Adaptive asymmetric fuzzy neural network controller dsign via network structuring adaptation[J].Fuzzy Sets and Systems,2008,159(20):2627-2649.
    [152]Z.W.Woo,H.Y.Chung,J.J.Lin.A PID type fuzzy controller with self-tuning scaling factors[J].FuzzySets and Systems,2000,115(3):321-326.
    [153]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355.
    [154]杨巨庆,黄健,段丽华.PID控制技术与应用[J].哈尔滨师范大学自然科学学报,2004,20(2):76-80.
    [155]马晓华,蔡荣海.一类模糊PID控制器的优化设计[J].计算技术与自动化,2005,24(4):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700