用户名: 密码: 验证码:
铅、锑还原造铳熔炼新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国铅、锑、铋冶炼生产中,产生大量低浓度二氧化硫烟气,难以制酸,造成严重的环境污染。作者用富含氧化铁的黄铁矿烧渣作固硫剂,提出了一种无二氧化硫排放的铅、锑、铋硫化矿精矿的还原造锍熔炼新方法,对还原造锍熔炼的原理、硫化铅精矿及脆硫锑铅矿精矿的还原造锍熔炼工艺及铁锍的处理进行了较系统的深入研究,得出了有意义的结论。
     首次对以氧化铁作固硫剂的还原造锍反应进行了热力学分析,确定硫化铅、脆硫铅锑矿、硫化锑及硫化铋的还原造锍反应是可以自发进行的。根据捷姆金(JIEMUJIN)模型,得出了杂质金属在铁锍及金属之间的分配比例的计算公式:D=r_M~OKP_S_2~(0.5y)/1,按此公式的计算结果与实验情况相符合。另外,测定了1373K及1473K温度下铅在FeS-Na_2S系中溶解度,这对控制铁锍含铅量具有重要意义。
     首次用富含氧化铁的黄铁矿烧渣替代纯氧化铁作固硫剂进行铅、锑硫化矿的无二氧化硫一步熔炼---还原造锍熔炼试验,试验包括硫化铅精矿和脆硫锑铅矿精矿的实验室试验和半工业性试验。这对解决迫在眉睫的大量低浓度二氧化硫和黄铁矿烧渣的污染问题以及含金黄铁矿烧渣黄金资源的开发利用具有重要意义。同时大大降低了还原造锍熔炼的成本,使其应用于工业生产成为可能。
     在硫化铅精矿的还原造锍熔炼试验研究中,熔炼时间、添加剂及烧渣加入量、熔炼温度等因素对还原造锍熔炼的影响较大。实验室试验表明在最佳条件下的结果为:铅和银的直收率分别>8%及70%,固硫率≥96%。硫化铅精矿1m~2反射炉矿还原造锍熔炼半工业试验结果说明,在熔炼规模放大1200倍后,铅直收率87.13%,总回收率96.44%,固硫率≥96%和烟气中二氧化硫含量全部达标;另外,粗铅质量好,含铅≥98%,含铜、锌≤0.05%,并在熔炼过程中完成配锑。因此,粗铅可直接电解精炼。但反射炉传热传质效果差,热效率低,生产效率低,不适于还原造锍熔炼。
     在脆硫铅锑矿的还原造锍熔炼中,首次采用锑酸钠渣及含砷碱渣作为含钠添加剂,以代替苏打和无水芒硝,不仅可以降低生产成本,而且对粗铅和粗锑在碱性精炼过程中产生的精炼渣的无污染处理具有重要意义。在用苏打和无水硫酸钠作添加剂的小型试验中,铅和锑的直收率可分别达到68.50%和83.26%,银的直收率为70%,金属总回收率>95%,固硫率≥96%。在锑酸钠渣与脆硫铅锑矿精矿混合熔炼
    
    的小型试验中,铅和锑的直收率分别达到了78.24%和90.43%。在砷
    碱渣与脆硫铅锑矿精矿混合熔炼的小型试验中,砷与大量的锑、铅和
    铁形成黄渣,造成金属直收率大幅降低。烧渣加入量为理论量的70%
    时,金属直收率最高:Sb 6 1 .42%,Pb52.93%O
     首次用短回转窑(。1.4、2.0m)作为脆硫铅锑精矿和碱渣、锑酸钠
    渣还原造硫熔练半工业试验的设备,与反射炉比较,短回转窑具有热效
    率高,熔炼强度大的优点。短回转窑熔炼试验取得了较好结果:熔炼
    能力为反射炉的6倍以上,铅和锑的直收率分别)63.50%及88.02%,
    固硫率在95%以上。但铅和银在铁毓中分配比例较高,铅约占总铅的
    巧%,银为30%,铁梳中的铅和银必须经济有效地回收。
     提出了湿氧化法和焙烧制酸法两种处理铁硫的方法。湿法氧化过
    程动力学分析表明,铁梳的氧化受反应物通过产物硫膜层的扩散过程
    控制。因此,元素硫的转化率最高也只有79.14%。在800℃及2h的
    条件下氧化焙烧,铁梳完全氧化成氧化铁和二氧化硫,而铅、锑的挥
    发率低,银不挥发,都留于氧化铁渣中,便于返回利用。因此,焙烧制
    酸法是有希望用于工业生产的铁毓处理方法。
     本文提出和研究开发的铅、锑、锡的还原造梳熔炼新方法处理这
    些金属硫化矿精矿时不产生低浓度二氧化硫烟气,同时又能顺便处理
    硫酸工业产生的黄铁矿烧渣及铅锑碱性精炼过程产生的锑酸钠渣和
    碱渣,这对环境污染的治理以及烧渣中黄金和碱性精炼渣中铅锑的回
    收具有重要意义。这种冶炼方法己申请了国家发明专利(申请
    号:001 1 3284.9),并与三家单位开展了共同开发该专利(申请)技术的合
    作。
In our country, the low concentration of sulfur dioxide smoke, which produced in the smelting of lead and antimony sulfides concentrates, is hard to make acid, and it caused serious environment pollution. In the thesis, a new smelting process of lead, antimony ,and bismuth sulfides concentrates with free sulfur dioxide- reducing-matting smelting by use of pyrite cinder as a fixed sulfur agent has been proposed. In the process, the matting reactions should occur in strong reducing atmosphere. The principle and technics of this process for smelting lead sulfide and Jamesonite concentrates and the treating ferrous matte has been researched, and some valuable conclusions is obtained.
    The thermodynamic calculation of reducing-matting reactions with ferric oxide as a fixed sulfur agent has been done. It is firstly found that the reducing-matting reactions of lead sulfide, antimony sulfide, Jamesonite, and bismuth sulfide are feasible, but is infeasible for zinc sulfide. To be based on JIEMUJIN model the formula for calculating distribution coefficients of impurity elements between metals phase and
    ferrous matte phase was got: D = and the calculated results are
    met with experimental data. The solubility of lead in the system of FeS-Na2S was determined at temperature of 1373K and 1473K. It is important for controlling content of lead in the ferrous matte.
    In the experiments of the new process smelting with lead and antimony sulfide concentrates without sulfur dioxide, pyrite cinder rich in ferric oxide was firstly used for a fixed sulfur agent in stead of purity ferric oxide, and which is important for solving problems on the pollution of low concentration of sulfur dioxide smoke and recovery of gold in the pyrite cinder containing gold and decreases the cost of the process, so that its industrial application becomes feasible.
    In the experiment of the reducing-matting smelting of lead sulfide concentrates the influence of the technics conditions such as smelting time and temperature, the addition of pyrite cinder and additive on the reducing-matting smelting is notable. Under the optimum condition of the table experiments, the direct recovery of lead and silver is higher than 88% and 70%, respectively, and the ratio of sulfur fixed is higher than 96%. The pilot test of the new process was conducted in a reverberator furnace with area of 1m2. In the case of the smelting scale being enlarged 1200 factors the new process is also feasible. A good result of the experiment was abtained that the direct and sum recovery of lead is 87.13%and 96.44%,respectively, the ratio of sulfur fixed is more than 96% and the content of sulfur dioxide in dust smoke is lower than the
    
    
    
    country standard. The content of copper and zinc in rude lead is lower than 0.05%, so the rude lead can be directly electrolyted for refining. But reverberator furnace has the disadvantage of lower heat efficiency and productivity and it is infeasible for this process.
    In the experiments of the reducing-mattig smelting on Jamesonite concentrate, sodium antimonate slag or alkali slag containing arsenic was firstly used as additive instead of soda and sodium sulfate, that is not only decreased the cost of the process, but also has great significance for treating alkali slag produced in alkali refining of rude lead ,rude antimony and their alloy. In the table experiment using soda and sodium sulfate as additive, the direct recovery of lead, antimony ,and silver is 68.50%,83.26%,and70%, respectively, and the sum recovery of metals and the ratio of sulfur fixed is more than 95% and 96%, respectively. In the experiment using sodium antimonite slag as additive, the direct recovery ratio of lead and antimony is 78.24%and 90.43%, respectively.
    In the experiment using alkali slag containing arsenic as additive, arsenic reacted with antimony and iron to produce a great amount of slag containing As, Fe , Sb and Pb,thereby, the recovery of metals decreased greatly. In the case of addition pyrite cinder being 70% of the theory amount the most high direct recovery of lead a
引文
[1] 彭容秋.重金属冶金学.长沙:中南工业大学出版社,1990.1~3
    [2] 莫友怡.世界镍业与中国镍业简况.有色矿山,2001,30(01):35~37
    [3] 李树枝.我国短缺矿产的问题与对策.中国资源综合利用, 1999(10):36~38
    [4] 曹异生.世界铜工业进展及前景展望.云南冶金, 1998,27(05):1~6
    [5] 刘世友.镍工业资源、应用与发展.有色矿冶,1998,(06):54~56
    [6] 梅光贵.湿法炼锌学.长沙:中南大学出版社,2001.11~15
    [7] 张乐如,陈邦俊.我国铅锌工业可持续发展战略刍议.有色冶炼,2001,(1):1~4
    [8] 蒋继穆.我国锌冶炼现状.世界有色金属,2001,(10):8~11
    [9] 刘志宏.国内外锌冶炼技术的现状及发展动向.世界有色金属,2000,(01):23~26
    [10] 王云坤.有色冶炼,2000,(04):57
    [11] 刘世友.锌及锌合金的应用与开发.有色矿冶,1997,(02):39~40
    [12] 郑树荣.世界锡资源形势预测.昆明理工大学学报,2000,25(02):1~4
    [13] 云南锡业公司,昆明工学院《锡冶金》编写组.锡冶金.北京:冶金工业出版社,1997.1~3
    [14] 宋东明,王云坤.铅在非蓄电池领域中的应用.云南冶金.1998,(27)S1:4~7
    [15] 徐传华.铅在现代工业中的应用.矿冶,1995,4(03):127~130
    [16] Lambert, Doug W.H. Advances in gelled-electrolyte technology for valve-regulated lead-acid batteries, Journal of Power Sources, 2002, 107(2): 173-179
    [17] Jolly.R, Rhin,C.Recycling of lead-acid batteries: production of lead and polypropylen, Resources, Conservation and Recycling,, 1994, 10(1): 137-143
    [18] Winekel,J.W, Rice, D.M. Lead market trends-technology and economics. Journal of Power Sources, 1998, 73 (1): 3-10
    [19] Margulis, Etim V. low temperature smelting of lead metallic scrap. Journal for Exploration, Mining and Metallurgy, 2000, 53(2): 85-89
    [20] 唐谟堂.国内外锑制品的最新开放动态及建议.中国有色金属协会,2002年中国高峰锑业会议文集,井岗山:2002.10
    [21] 赵天从.锑.北京:冶金工业出版社,1990.56~59
    [22] 胡林轩.我国锑产品深度加工发展战略研究.有色金属(冶炼部分),1999,(04):45~48
    [23] 刘世友.锑工业生产应用与发展.有色矿冶,1998,(01):33~37
    [24] Themelis, Nickolas. Copper smelting in the 21st century, 4th International Conference COPPER 99-COBRE 99, 1999, v4:3-13
    [25] 徐志宏.近期世界铜工业的发展分析.世界有色金属.1998,(08):11~15
    [26] 崔和涛,周鸣.我国铜冶金生产技术的进展.矿冶,1995,4(03):124~126
    [27] 陈世珀.铜、锌、铅火法冶金现状及21世纪初展望.上海有色金属,1997,18(03):135~141
    [28] 陈世珀.铜、锌、铅火法冶金现状及21世纪初展望(续).上海有色金属,1997,18(04):48-52
    [29] Grund, S.C; et.al. Optimization of a fin-lead-smelting furnace with the aid of statistical modelling techniques. TMS Annual Meeting, 1999, p851-864
    [30] 胡新.铅锌密闭鼓风炉熔炼技术10年来的进展.有色冶炼,1994,(4):11~14
    [31] 黄书泽.云锡公司锡冶炼技术概况及近年进展.有色金属,(1996),(01):23~25
    [32] 唐仲民.提高锡冶炼反射炉粗炼指标.有色金属(冶炼部分),1997,(06):31
    
    
    [33] 李华安.锡精矿氧化还原焙脱除砷硫半工业性试验.湖南有色金属,1997,13(04):35~37
    [34] 周敬元,游力辉.国内外铅冶炼技术进展及发展动向.世界有色金属,1999,(6):7-10
    [35] 何蔼平等.面向21世纪我国铅冶炼技术的改造和发展思考.有色金属(冶炼部分),2000,(06):2~6
    [36] 李贵.铅烧结工艺改造的思路.有色冶炼,2001,(01):6~9
    [37] 殷德洪等.丹麦托普索WSA法回收硫技术进展.有色金属(冶炼部分),1998,01:19-22
    [38] Ole Rud Bendixn, Hans Killerich Hansen. 托普索WSA法湿烟气制酸技术.硫酸工业,1997,(02)28~31
    [39] 1990,(5):19-24
    [40] 1990,(12):30~36
    [41] Kulenov, et al.Mining and Metallurgy, 1998, 51(4):273~279
    [42] 1993,(2):41~47
    [43] Tan pengfu. Computer simulation of direct lead smelting. Proc Int Conf Modell Simul Metall Eng Miner Sci, 1996:515
    [44] Whiteway, Patrick. Canadian Mining Journal, 1996, 117(5): 10-17
    [45] 叶国萍.有色金属(冶炼部分),2000,(4):20~23
    [46] 孙月强哈萨克斯坦基夫赛特冶.炼技术考察报告.有色金属(冶炼部分),1994,(2):13-17
    [47] Cho K G, et al. Metall Processes for the Early Twenty-First Century ,Vol.11. Technology and Practice Proc ConfJSan Diego CA ,USA, 1994:317-331
    [48] Kim, Myung Bae. Et; al. QSL lead slag fuming process using an ausmelt furnace, Proceedings of the TMS Fall Extraction and Processing Conference, 2000:331-343
    [49] Choi, Keuncheol; Lee, Yonghack. Proceedings of the 1996 International Symposium on Injection in Pyrometallurgy Jul 1-3 1996 Sponsored by: TMS Minerals, Metals & Materials Soc(TMS)p73-81
    [50] Queneau, Paul E; Siegmund. JOM, 1996,48 (4): 38-44
    [51] Puellenberg, R. Rohkohl, A. Modern lead smelting at the QSL-plant BERZELIUS metall in Stolberg, Germany, Proceedings of the TMS Fall Extraction and Processing Conference, 2000:127-148
    [52] Themelis, Nicholas J.Mineral Processing and Extractive Metallurgy Review ,1994,15(1-4):10-14 1995 Gordon & Breach Science Publ
    [53] 黄作仁.QSL法炼铅工艺的新进展.湖南有色金属,1997,13(1):34-36
    [54] 黄兴东.韩国锌公司温山QSL炼铅厂.有色冶炼,1995,(02):8-11
    [55] 张信德.跨入21世纪的铅工业.有色设备,1994,(05):26-29
    [56] J.M. Floyd. Institute of Fuels Conference, Adelaide, Nov, 1974:15
    [57] J.M. Floyd, et al.The AusIMM Melbourne Branch Symposium on Extractive-Metallurgy,Nov, 1984,p25
    [58] J.M. Floyd, Sirosmelt. The emerging role of new bath smelting technology in non-ferrous metals, Proceedings of the Savard/Lee International Symposium on Bath Smelting, 1992, p103
    [59] J.M. Floyd. Converting mattes with the Ausmelt furnace, TMS Annual Meeting, Converting, Fire Refining and Casting, 1994:131
    [60] J.M. Floyd.Proceedings of Savard-Lee International Symposium on Bath smelting, TMS, 1992, p103
    [61] J.M. Floyd. The Howard International Symposium on Injection in Pyrometallurgy, the
    
    University of Melbourne, Australia. July. 1996:447
    [62] Vernon, P.N.; Burks, S.F. Journal of The South African Institute of Mining and Metallurgy, May-June 1997.89-98
    [63] Sofra, J, et al.TMS Annual Meeting, TMS Minerals, Metals & Materials Soc (TMS), Feb, 1997.339-348
    [64] Mounsey, et al. Lead smelting in a submerged arc furnace, JOM, Metals & Materials Soc(TMS), 1994,46(8): 58-60
    [65] Ducret, A.C.et al. Ausmelt Ltd Source: Spectrum Series, Australasian Institute of Mining and Metallurgy 5 1997:41-43
    [66] Anon. Mining Magazine, Aug 1995,173(2): 80-82
    [67] 朱烨,刘万灵.卡尔多炉处理废杂铜技术.有色金属,2000,52(01):72-75
    [68] Hedlund, Lennart. Proceedings of the TMS Fall Meeting, TMS, Nov, 1995.155-162
    [69] Ye, G, et al. Proceedings of the International Symposium on Non Ferrous Pyrometallurgy-Trace Metals Furnace Practices and Energy Efficiency. CIM Publ by Canadian Institute of Mining, Metallurgy and Petroleum, Aug 23-27 1992.149
    [70] 刘万灵.卡尔多炉炼铅技术.有色金属(冶炼部分),1999,(04):13-16
    [71] 谭宪章.玻利登隆斯卡尔冶炼厂技术考察及其简要评述.有色冶炼,1999,04:53-57
    [72] 陈汉荣等.“水口山炼铅法”的实践与展望.有色冶炼,1990,(4):1-6
    [73] 薛革文.“水口山炼铜法”简介.有色冶炼,1994,(4):40
    [74] 张训鹏,彭容秋.熔池熔炼的发展.有色冶炼,1995,(04):20-25
    [75] 李东波.论我国中型炼铅厂的技改途径.有色金属(冶炼部分),1997,(04):12-15
    [76] 杨天足等.焦锑酸钠生产工艺及研究进展.无机盐工业,1999,(1)
    [77] 唐谟堂等.新氯化—水解法的原理及工艺.中南工业大学学报,1993,23(4):411-416
    [78] 杨维琅.锡锑汞年会论文集(第三卷).柳州:中国有色金属学会锡锑汞专业委员会,1982.75-76
    [79] 《重有色金属冶炼设计手册》编辑委员会.重有色金属冶炼设计手册.北京:冶金工业出版社,1994.258-260
    [80] 锡矿山矿务局.硫化锑浮选精矿制粒焙烧试验小结(内部资料),1963年4月
    [81] 邬建辉,张传福.浮选硫化锑精矿小型鼓风炉挥发熔炼生产超细氧化锑.有色金属(冶炼部分),2001,(5):14-17
    [82] 孙克萍,先晋聪.锑的低温冶炼新工艺.有色金属(冶炼部分),1996,(1)
    [83] 戴伟明.中低度硫化锑矿平炉挥发焙烧生产实践.有色金属(冶炼部分),1995,(04):12-15
    [84] 陈世明等.巍山氧化锑矿石处理方法研究.云南冶金,1994,(4):43-47
    [85] 王成彦,邱定蕃,江培海.国内锑冶金技术现状及进展.有色金属(冶炼部分),2002,(5):6-9
    [86] Kadlee F.Humicke Listy, 1972,27(12)
    [87] Lavrila A, Anderson B. Energy and waste in the Nonferrous Metals Industry, 1975
    [88] 1981, (3): 29
    [89] 吕勇明.脆硫铅锑矿生产精锑的工艺总结.有色金属(冶炼部分),2001,(02):23-26
    [90] 1932, (7-8): 23
    [91] Zhang Chuafu, Asakura, Ogawa, Osamu. Directly reduction of zinc concentrate with coal and calcium carbomate. Journal of the and metallurgical institue of Japan. 1988, 103(11):837-841
    [92] 张传福,朝仓岩三,小川 修.石炭酸化硫化铅精鉱直接还元.日本鉱业会志.1988,1054(7):469-474
    [93] 景治熙.硫化矿直接冶炼制取金属工艺.中国发明专利中请公开说明书,94119758,1996年
    
    6月12日
    [94] T.R.Mankhand, P.M.Prasad,.Transactions of Indian Institute of Metalls, 1982,(35):281-288
    [95] T.R.Mankhand, P.M.Prasad. Transactions of Indian Institute of Metalls, 1982, (32):253-285
    [96] T.R.Mankhand, P.M.Prasad. Metallurgical Transactions B, 1982, (138):275-282
    [97] A.E.Torma, O.T.Inal.Journal oft he Less-Common Metalls, 1979, (64):107-114
    [98] Mustaev, A.K., et al. Precipitation method for obtaining Sb, Izv.Akad. Nauk Krig. SSR, Ser. Estestven. I Tekh Nauk, part 2, 1960,(3):55
    [99] Wendt.W. Metall Industry, 1950, (77):276
    [100] 徐盛明,吴延军.碱性直接炼铅法的应用.矿产资源与保护,,1997,12(6):36
    [101] 周正华.从废旧蓄电池中无污染火法冶炼再生铅及合金.上海有色金属,2002,(4):56-59
    [102] 乐颂光,鲁君乐.再生有色金属生产.长沙:中南工业大学出版社,1990.210~218
    [103] 曾毅红,何深思.发达国家的废旧电池处理及其对我们的启示.环境保护,2002,(7):31-35
    [104] 傅从说.有色冶金原理.北京:冶金工业出版社,1993.160-163
    [105] 叶大伦.冶金热力学.长沙:中南工业大学出版社,1987.251
    [106] R. Schuhmann, P. C. Chert, et al. Metallurgical Transactions, 1976,(7B):95-101
    [107] O.Kubaschewski, C.B.Alcock, l.Barin. Thermochemical Properties of Inorganic Substances.New York: 1977.824
    [108] Hhamsuddin. Metallurgical Transactions, 1977,(8B):349~352
    [109] Azuma, S. Goto, N. Takebe. Nippon Kogyo Kaishi(Japan). 1970,(86):221-216
    [110] O. Kubaschewski, C. B. Aiocock. Metallurgical Thermochemistry. Pergamon Press. 1979
    [111] J.R. Stubbles. C.E. Brichenall. Transactions of the Metallurgical Society of AIME, 1959,(6):535
    [112] .M.W. Chase. J.L. Cumutt. et al. JANAF Thermochemical tables, 1975,(4):1
    [113] I.Barin. O.Knaeke. Thermochemical Properties of Inorganic Substances. New York: 1973.824
    [114] kubaschewski,o., Evans, E.LL., Alcock, C.B.Metallurgically Thermochemistry, London: Pergamon Press 1967.
    [115] Hultgren, R., Orr, R.L., Anderson, D., Kelley, K.K..Selected Values of Thermodynamic Properties of Metals and Alloys, New York:John Willy&Sons, 1963
    [116] Cox, Wagman, et al. CODATA Key Values for Thermodynamics, New York: Hemisphere Publishing Corp., 1984
    [117] Chase, M.W., Jr, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951 Colin and Drowart
    [118] Hultgren. Et al. Selected Values of the Thermodynamic Properties of Binary Alloys. American Society for Metalls. Metals Park. Ohio. 1973.
    [119] A.K Miedema, et al. Model predications for the enthalpy of formation of transition metal alloys. Galphad. 1974,(4):341
    [120] G.K Sigworth. J.F Elliott. Canda Metall Quarterly. 1974,(3):455-461
    [121] 浙江大学等主编.《硅酸盐物理化学》.北京.冶金工业出版社,1981
    [122] 石野俊夫等.《熔融盐物性表》.Printed in Japan.电气化学学会.1983.:533
    [123] J.R.Tayler. Advances in Sulfide Smelting. TMS. 1983.213-222
    [124] Y. Zhang, T. Nagasaka. et al. Metallurgical Transaction, 1994,(25):306-308
    [125] 彭容秋.有色金属提取冶金手册(铅锌镉铋卷).北京:冶金工业出版社,1990.173
    [126] 王常珍.冶金物理化学研究方法.北京.冶金工业出版社,1982.271-274
    [127] 姚维义等.硫化铅精矿无SO_2排放反射炉一步炼铅半工业试验.中国有色金属学报,
    
    2001.11(6):1127-1130
    [128] 金哲男等.处理炼锑砷碱渣的新工艺.有色金属(冶炼部分),1999,(05):11-14
    [129] 徐利时.刘琼.炼锑砷碱渣浸出液硫化脱砷过程的研究.化工环保,1997,17(5):284-286
    [130] 唐谟堂等.中和水解法处理脆硫锑铅精矿浸出液新工艺.中南工业大学学报,1997,28(3):226-228
    [131] I.Barin. O.Knaeke. Thermochemical Properties of Inorganic Substances. New York:1973
    [132].莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987.283-300
    [133]..严明英.硫化铜矿在酸性氯酸钠溶液中浸出的机理研究.四川有色金属,2001,(2):34-37
    [134] 何捍卫等.硫化锌矿化学浸出技术进展.矿冶工程.,2001,21(3):1-4
    [135].赵中伟等.机械活化对硫化锌精矿浸出动力学的影响.有色金属,1995,47(2)::23-26
    [136] 李凤起,朱书全.精细石油化工.2001.(2):15-17
    [137] 蒋杏芬等.木质素磺酸盐潜在应用.纤维素科学与技术,1996,4(2):31-34
    [138] 汪荣鑫.数理统计.西安:西安:西安交通大学出版社,1986.155-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700