用户名: 密码: 验证码:
微尺度燃烧及其热电转化基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微尺度燃烧是随着MEMS技术的发展,为了满足可携带电子设备的长时间供电和国防上微小型高性能动力源和电源的需求而开展研究的。由于开展研究时间较短,还有许多科学和技术难题需要去攻克。
     本文的研究主要是围绕着微尺度燃烧的燃烧特性和产生能量的利用转化而展开的。首先考虑熄火距离的影响建立了火焰燃烧模型;然后对微尺度下的燃烧进行了相关实验研究以了解其燃烧特性;接着对微尺度下数值模拟方法在燃烧方面的应用给出了作者的看法;随后对微尺度燃烧产生能量的利用进行了实验性研究;最后给出了设计新型微尺度燃烧器的思路并给出了一种新型微尺度燃烧器的MEMS加工工艺。
     在考虑熄火距离影响的基础上建立了二维火焰燃烧模型,通过对模型的定性分析,表明在微尺度燃烧中容易发生熄火和吹熄,不容易发生回火。考虑熄火距离的影响,对火焰传播速度通过两种方法进行了理论分析。给出了考虑熄火距离后火焰传播速度的表达式,分析表明在微尺度下熄火距离是影响火焰传播的重要因素,同时熄火距离和火焰传播速度在微尺度下相互作用,使燃烧向着不利于稳定的方向发展。
     对微尺度下燃烧进行了实验性研究,采用具有稳定燃烧的T型微细管道研究了预混氢气—空气在微尺度条件下的燃烧。在适当的当量比下,预混气在T型管道中一定的混合气流速下可维持长时间稳定燃烧。燃烧中最高温度发生在空气稍微过量的条件下。在一定当量比、能够稳定燃烧情况下,火焰温度随燃料气流量的增大而升高。由于散热的影响,氢气或空气流量小时容易发生熄火。管道散热比例很高,一定条件下只考虑水平管道部分外壁的散热就占反应放热的1/3左右。与大尺度燃烧相比,管道中的燃烧着火浓度范围下限影响不太大,而上限降低。在氢气流量一定时,燃烧效率在完全燃烧当量比附近存在峰值,最高燃烧效率接近100%。
     在实验条件下,混和气流速较高时燃烧会发声,随着流量的增加,管内燃烧对应的最大声级有逐渐增强的趋势,而且较大的波峰的数量随流量的增加而减少。同时时域分析显示声音的波动振幅在较大的流量下一般较大。
     在针对热电转化设计的三种燃烧器中,氢气—空气都能在其中稳定燃烧,相同材料的不同燃烧器,容积热负荷高的壁面温度较高。不同材料的燃烧器,其材料的导热能力较强的,散热较强。同一种燃烧器中,预混燃烧比扩散燃烧温度高,但扩散燃烧易于控制火焰位置,而且不易发生回火。由于丙烷的体积能量密度较高,相同燃料流量的丙烷—空气要比氢气—空气燃烧的温度高。
     在微尺度管道内对烷烃加氢及催化燃烧进行了实验,甲烷和乙烷在管道内不
With the development of MEMS, micro-combustion is studied to meet the demand of the portable electronic equipment and the need of efficient drive and electric power for the micro-system in military field. At the beginning of its study from the middle of the 1990's, there are still a number of scientific and technical problem needs to be resolved.
    This thesis focuses on the micro-combustion characteristic and its energy transformation. Some work was developed with experimental and academic methods. First, the flame combustion model was established in consideration of the quenching distance; secondly, some experiment reseaches were described; thirdly, the thermoelectric micro-combustor was studied; fourthly, the author described the micro-combustion numerical simulation; and finally, some suggestion were put forword the design of the new micro-combustor.
    In order to study the characteristic of micro-combustion, a two-dimensional flame-burning model was established, in which the quenching distance is considered. The conclusion is that the flame is easy to quench and blowout but difficult to backfire on the microscale. The laminar flame propagation speed was analyzed theoretically with two methods and the expression of the laminar flame propagation speed was described when the quenching distance is under consideration. The analytic results showed that the quenching distance is the important factor which effects the laminar flame propagation. Both the quenching distance and the flame propagation speed interact and they make the flame stabilization deteriorate on the microscale.
    This thesis describes the premixed combustion of hydrogen and air in microscale T style tube and finds this structure helpful for stable burning. Some conclusions were drawn about flame temperature, flux, hydrogen-air equivalence ratio, and combustion efficiency. The stable burning can be observed when the premixed gas velocity changed from 0.57m/s to 18.4m/s in a suitable hydrogen-air equivalence ratio. It is easy to flameout for the heat loss influence distinctly when the premixed gas flux is small. In a certain hydrogen flux, there exists the highest combustion efficiency near to the complete combustion equivalence ratio, and the combustion efficiency about 100%. In a certain condition, the heat loss for the level part of the T style tube is one third of the reaction heat. In comparation with the macroscale combustion, the high fuel concentration limit decreases but for low limit there is no obvious difference.
    In the experiment, when the premixed gas velocity was high, some flame noise could be heard. With the increase of the flux, the maximum sound level will be
引文
[1] J. Warnatz, U. Maas, R. W. Dibble, Combustion: Physical and Chemicai Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation: Springer, 2001.
    [2] A. H. Epstein, S. D. Senturia, O. Al-Midani, G. Anathasuresh, A. Ayon, K. Breuer, K-S Chen, P. P. Ehrich, E. Esteve, L. Frechette, G. Gauba, R. Ghodssi, C. Groshenry, S. A. Jacobsen, J. L. Kerrebrock, J. H. Lang, C-C Lin, A. London, J. Lopata, A. Mehra, J. O. Mur Miranda, S. Nagle, DJ. Orr, E. Piekos, M. A. Schmidt, G. Shirley, S. M. Spearing, C. S. Tan, Y-S Tzeng, LA. Waitz, "Micro-Heat Engines, Gas Turbines and Rocket Engines," presented at the 28th AIAA Fluid Dynamics Conference, Snowmass Village, CO, 1997.
    [3] A. H. Epstein and S. D. Senturia, "Microengineering- Macro power from micro machinery," Science, vol. 276, pp. 1211-1211, 1997.
    [4] Alan H. Epstein, Stuart A. Jacobson, Jon M. Protz, Luc G. Frécbette, "SHIRTBUTTON-SIZED GAS TURBINES: THE ENGINEERING CHALLENGES OF MICRO HIGH SPEED ROTATING MACHINERY," presented at Proceedings of the 8th Int' l Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMC'8), Honolulu, Hawaii, 2000.
    [5] Groshenry C., "Preliminary Study of a Micro-Gas Turbine Engine." Cambridge: Massachusetts Institute of Technology, 1995.
    [6] D. H. Lee, D. E. Park, J. B. Yoon, S. Kwon, and E. Yoon, "Fabrication and test of a MEMS combustor and reciprocating device," Journal of Micromechanics and Microengineering, vol. 12, pp. 26-34, 2002.
    [7] G. J. Snyder, J. R. Lim, C. K Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process," Nature Materials, vol. 2, pp. 528-531, 2003.
    [8] C. H. Lee, K C. Jiang, P. Jin, and P. D. Prewett, "Design and fabrication of a micro Wankel engine using MEMS technology," Microelectronic Engineering, vol. 73-74, pp. 529-534, 2004.
    [9] 胡宇群,“微型飞行器中的若干动力学问题研究.”南京:南京航空航天大学,2002.
    [10] 吴怀宇,周兆英,熊沈蜀,王晓浩,叶雄英,李勇,“微型飞行器的研究现状及 其关键技术,”武汉科技大学学报(自然科学版),vol.23,pp,170-174,2003.
    [11] 崔尔杰,“生物运动仿生力学与智能微型飞行器,”力学与实践,vol,26,PP.1-8.2004.
    [12] S. Ashley., "Palm-size spy plane," Mechanical Engineering, vol. 120, pp. 74-78, 1998.
    [13] T. N. Pornsin-Sirirak, Y. -C. Tai, C. -M. Ho, et al., "Microbat: a palm-sized electrically powered ornithopter," presented at The NASA/JPL Workshop on Biomorphic Robotics, Pasadena, California, USA., 2000.
    [14] P. Scott, "A bug's lift - the Defense Department is looking for a few good mechanical insects," Scientific American, vol. 280, pp. 51-52, 1999.
    [15] http://jczs.sina.com.cn 2004年05月20日15:35《国际航空》杂志社,(吴敏编译自《AW&ST》2003/6/2)
    [16] J. Fleming, W. Ng, S. Ghamaty., "Thermoelectric-based power system for UAV/MAV applications.," presented at American Institute of Aeronautics and Astronautics, 2002.
    [17] I. A. Waitz, Gautam, G., Tzeng, Y. -S., "Combustors for Micro GasTurbine Engines," ASME J. Fluids Eng., vol. 20, pp. 109-117, 1998.
    [18] A. Mehra, X. Zhang, A. A. Ayon, I. A, Waitz, M. A. Schmidt, and C. M. Spadaccini, "A six-wafer combustion system for a silicon micro gas turbine engine," Journal of Microelectromechanical Systems, vol. 9, pp. 517-527, 2000.
    [19] 周俊虎,刘茂省,杨卫娟,张永生,岑司法,“微燃烧发动机应用于微型飞行器的性能分析,”,燃烧科学和技术接受投稿
    [20] M.A.Dornheim,“21世纪士兵的新装备--微型无人,”国际航空,vol,8,pp.63-65,1889.
    [21] A. P. London, A. A. Ayon, A. H. Epstein, S. M. Spearing, T. Harrison, Y. Peles, and J. L. Kerrebrock, "Microfabrication of a high pressure bipropellant rocket engine," Sensors and Actuators a-Physical, vol. 92, pp. 351-357, 2001.
    [22] D. H. Lewis, S. W. Jansen, R. B. Cohen, and E. K. Antonsson, "Digital micropropulsion, "Sensors and Actuators a-Physical, vol. 80, pp. 143-154, 2000.
    [23] S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, "Solid acids as fuel cell electrolytes, "Nature, vol. 410, pp. 910-913, 2001.
    [24] A. Mehra, and Waitz, I. A., "Development of a Hydrogen Combustor for a Microfabricated Gas Turbine Engine," presented at the Solid-State Sensor and Actuator Workshop, Hilton Head, SC, 1998.
    [25] S. A. Jacobson, S. Das, N. Savoulides, J. L. Steyn, J. Lung, H. Q. Li, C. Livermore, M. A. Schmidt, C. J. Teo, S. D. Umans, A. H. Epstein, "PROGRESS TOWARD A MICROFABRICATED GAS TURBINE GENERATOR FOR SOLDIER PORTABLE POWER APPLICATIONS," presented at 24th Army Science Conference Proceedings, Transformational Science and Technology for the Current and Future Force, Orlando, Florida, 2004.
    [26] Kelvin Fu, Aaron J. Knobloch, Fabian C. Martinez, David C. Walther, Carlos Fernandez-Pello, AI P. Pisano, Dorian Liepmann£-Kenji Miyaska£-Kaoru Maruta, "design and experimental results of small-scale rotary engines," presented at Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, New York, NY, 2001.
    [27] F. Ochoa, C. Eastwood, P. D. Ronney, B. Dunn, "thermal transpiration based microscale propulsion and power generation devices," presented at 7th International Microgravity Combustion Workshop, Cleveland, OH, 2003.
    [28] Kaoru Maruta, Koichi Takeda, Jeongmin Ahn, Kevin Borer, Lars Sitzki, Paul D. Ronney, Olaf Deutschmann, "extinction limits of catalytic combustion in microchannels," presented at The 29th Symposium on Combustion, Sapporo, Japan, 2002.
    [29] S. B. Schaevitz, A. J. Franz, K. F. Jensen, M. A. Schmidt., "A Combustion-Based MEMS Thermoelectric Power Generator," presented at The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, 2001.
    [30] G. N. -Hatsopoulos, E. P. Gyftopoulos, Thermionic Energy Conversion, vol. Volume Ⅰ and Volume 11: the MIT Press, 1973.
    [31] Chunbo Zhang, Khalil Najafi, Luis P. Bemal, Peter D. Washabaugh, "Micro Combustion-Thermionic Power Genera tion: Feasibility, Design and Initial Results," presented at The 12th International Conference on Solid State Sensor Actuators and Microsyslems, Boston, 2003.
    [32] W. M. Yang, S. K. Chou, C. Shu, H. Xue, Z. W. Li, D. T. Li, and J. F. Pan, "Microscale combustion research for application to micro thermophotovoltaic systems," Energy Conversion and Management, vol. 44, pp. 2625-2634, 2003.
    [33] W M Yang, S K Chou, C Shu, H Xue, Z W Li, "Development of a prototype micro-thermophotovoltaic power generator," JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 37, pp. 1017-1020, 2004.
    [34] Ole M. Nielsen, Leonel R. Arana, Chelsey D. Baertsch, Klavs F. Jensen, and Martin A. Schmi dt, "A Thermophotovoltic Mticro-generator for Portable Power Applications, "presented at The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, 2003.
    [35] C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, and I. A. Waitz, "High power density silicon combustion systems for micro gas turbine engines, "Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, vol. 125, pp. 709-719, 2003.
    [36] M. K Orost, C. Call, J. Cuta, and R. Wegeng, "Microchannel combustor/evaporator thermal processes," Microscale Thermophysical Engineering, vol. 1, pp. 321-332, 1997.
    [37] N. Chigier, Energy, Combustion an d Environment. New York: McGraw-Hill, 1981.
    [38] D. G. Vlachos, Schmidt, L. D., & Aris, R., "Ignition and extinction of flames near surfaces: Combustion of CH4 in air. A. I. Ch. E," A. I. Ch. E. Journal, vol. 40, pp. 1005-1017, 1994.
    [39] D. G. Norton and D. G. Vlachos, "Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures," Chemical Engineering Science, vol. 58, pp. 4871-4882, 2003.
    [40] D. G. Vlachos, L. D. Schmidt, R. Aris, "ignition and extinction of flames near surfaces: combustion of CH4 in air," AIChE Journal, vol. 40, pp. 1005-1017, 1994.
    [41] 傅维镳,燃烧学.北京:高等教育出版社,1989.
    [42] 【美】,F.A.威廉斯著,庄逢辰,杨本濂译,燃烧理论——化学反应流动系统的基础理论(第二版).北京:科学出版社,1990.
    [43] C. L. Hackert, J. L. Ellzey, and O. A. Ezekoye, "Effects of thermal boundary conditions on flame shape and quenching in ducts," Combustion and Flame, vol. 112, pp. 73-84, 1998.
    [44] M. Bellenoue, T. Kageyama, S. A. Labuda, and J. Sotton, "Direct measurement of laminar flame quenching distance in a closed vessel," Experimental Thermal and Fluid Science, vol. 27, pp. 323-331, 2003.
    [45] K. Fu, Knobloeh, A. J., Cooley, A. Walther, Fernandez-Pello, C., Liepmann, D., Miyasaka, K., "Microseale Combustion Research for Applica tions to MEMS Rotary IC Engine," presented at Proc. 2001 National Heat Transfer Conference, Anaheim, CA, 2001.
    [46] D. H. Lee and S. Kwon, "Scale effects on combustion phenomena in a microcombustor," Microscale Thermophysical Engineering, vol. 7, pp. 235-251, 2003.
    [47] 赵怡钦,许家睿,陈冠邦,“现阶段微尺度燃烧科技发展简介,“燃烧季刊,vol.11.pp.2-10,2002.
    [48] 丸田薰,藤森俊朗“具有释放辐射热的加热表面的微燃烧加热器,”中华人民共和国知识产权局.中国,2004.
    [49] 周力行,燃烧理论和化学流体力学.北京:科学出版社,1986.
    [50] D. G. Norton, D. G. Vlachos, "Combustion characteristics and fame stability at the microscale: a CFD study of premixed methane/air mixtures," Chemical Engineering Science. vol. 58, pp. 4871-4882, 2003.
    [51] 【美】,A.S.坎贝尔,葛贤康,张正举,曾利权译,燃烧发动机热力学分析,(Thermodynamic Analysis of Combustion EngineS).北京:中国农业机械出版社,1983.
    [52] 袁德,李明,“高温空气无油点火技术研究与应用,”presented at中国科学2004年学术年会电力分会场暨中国电机工程学会,2004年学术年会论文集,中国:海南,2004.
    [53] Phelan P E, Niemann R C., "Effective thermal conductivity of a thin, randomly oriented composite materia," ASME Journal of Heat Transfer, vol. 120, 1998.
    [54] C. N. Zhang, K., Bernal, L. P., Washabaugh, P. D., "An Integrated Combustor-Thermoelectric Micro Power Generator," presented at 11th Int. Conference on Solid State Sensors & Actuators, Munich, Germany, 2001.
    [55] P. O. Ronney, "Analysis of non-adiabatic heat-recirculating combustors," Combustion and Flame, vol. 135, pp. 421-439, 2003.
    [56] C. Jensen, Masel, R. L, Moore, G. V, Shannon, M., "Burner designs for microcombustion," Combustion Science and Technology, vol. In Press, 2003.
    [57] 李俊明,王补宣,彭晓峰,“气体在微圆管内层流换热的壁面效应的研究,”工程热物理学报,vol.19,pp.596~600,1998.
    [58] 周俊虎,刘茂省,杨卫娟,张永生,周志军,岑司法,“2mm圆管内H2/air预混燃烧数值模拟,”内部资料,2005.
    [59] 【英】,A.G.盖顿,H.G.伍法德著,王方编译,火焰学.北京:中国科学技术出版社,1994.
    [60] 薛元,陈剑波,姚强,“超微型燃烧器的研究现状及进展,”燃气轮机技术,vol.15,pp.23~26,2002.
    [61] G. L. Borman, Ragland, K. W., Combustion Engineering. Boston: McGraw-Hill, 1998.
    [62] H. T. Aichlmayr, "Cinsiderations, Mideling, and Analysis of Micro-Homogeneous Charge Compression Ignition Combustion Free-Piston Engines, "University of Minnesota, 2002.
    [63] K. B. Sitzki, S. Wussow, E. Schuster, PD Ronney, A. Cohen, "Combustion. in Microscale Heat Recirculating Burners," presented at 39th AIAA Aerospace Sciences Meeting, Reno, NV, 2001.
    [64] B. Cooley, D. Walther, A. C. Fernandez-Pello, "Exploring the Limits of Microscale Combustion," presented at Fall Technical Meeting, Western States Section/Combustion Institute, Irvine, CA, 1999.
    [65] C. M. Spadaccini, X. Zhang, C. P. Cadou, N. Miki, and I. A. Waitz, "Preliminary development of a hydrocarbon-fueled catalytic micro-combustor," Sensors and Actuators a-Physical, vol. 103, pp. 219-224, 2003.
    [66] Y. S. Seo, S. J. Cho, S. K Kang, and H. D. Shin, "Experimental and numerical studies on combustion characteristics of a catalytically stabilized combustor," Catalysis Today, vol. 59, pp. 75-86, 2000.
    [67] P. Vernoux, F. Galliard, L. Bultel, E. Siebert, and M. Primer, "Electrochemical promotion of propane and propene oxidation on Pt/YSZ," Journal of Catalysis, vol. 208, pp. 412-421, 2002.
    [68] Yuji SUZUKI, Yuya HORII, Nobuhide KASAGI, "micro catalytic combustor with tailored Pt/Al203 films," presented at 3rd Int. workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications(Power MEMS 2003), Makuhari, Japan, 2003.
    [69] Y. SUZUKI, Y. HORII, N. KASAGI, S. Matsuda, "micro catalytic combustor with tailored porous alumina, "presented at 17th IEEE Int. Conf. MEMS 2004, Maastricht, 2004
    [70] A. J. Zarur and J. K Ying, "Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion," Nature, vol. 403, pp. 65-67, 2000.
    [71] 钟北京,洪泽恺,“甲烷微尺度催化燃烧的数值模拟,”工程热物理学报,vol.24,pp.173-176.2003.
    [72] 钟北京,洪泽恺,“微燃烧器内甲烷催化燃烧的数值模拟,”热能动力工程,vol.18,pp.584-588,2003.
    [73] 曹彬,陈光文,袁权,“微通道反应器内氢气催化燃烧,”化工学报,vol.55,pp.42-47,2004.
    [74] 汪映,周龙保,蒋德明,“均质充量压缩燃烧力式的研究进展及存在问题,”车用发动机,vol,141,pp.6~9,2002.
    [75] 王大兴,张欣,刘建华,“均质压燃式(HCCI)燃烧的研究,“内燃机工程,vol.23,PP.77~81,2002.
    [76] Kaili Zhang, S. K. Chou, and Simon S. Ang, "MEMS-Based Solid Propellant Microthruster Design, Simulation, Fabrication, and Testing," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 13, pp. 165-175, 2004.
    [77] Dae Hoon Lee and Sejin Kwon, "Heat transfer and quenching analysis ofcombustion in a micro combustion vessel," JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 12, pp. 670-676, 2002.
    [78] S. Y. Yang, S. H. Chung, and H. J. Kim, "Effect of pressure on effectiveness of quenching meshes in transmitting hydrogen combustion," Nuclear Engineering and Design, vol. 224, pp. 199-206, 2003.
    [79] 胡国新,王明磊,“微细通道内司燃气体预混燃烧实验与微型发动机燃烧力案,”热能动力工程,vol.18,pp.352-355,2003.
    [80] W. M. Yang, S. K. Chou, C. Shu, H. Xue, Z. W. Li. D. T. Li and J. F. Pan, "Microscale Combustion Research for Application to Microthermophotovoltaic Systems, "Energy Conversion and Management, vol. 44, pp. 2625-2634, 2003.
    [81] 邓军,李德桃,潘剑锋,唐维新,杨文明,薛宏,“微型火焰管中的研究,”工程热物理学报,vol.25,PP.537-539,2004.
    [82] 邓景发,范康年,物理化学.北京:高等教育出版社,1993.
    [83] 焦树建,“测定效率的燃气分析法,”航空动力学报,vol.3,pp.7,1988.
    [84] I. A. Waitz, G. Gauba, and Y. S. Tzeng, "Combustors for micro-gas turbine engines, "Journal of Fluids Engineering-Transactions of the Asme, vol. 120, pp. 109-117, 1998.
    [85] Dodds W J, Bahr D W, Combustion system design, design of modern gas turbine combustions: A cademic Press Limited, 1990.
    [86] 孔文俊,张孝谦,“预混气体燃烧火焰闪烁现象分析,”工程熱物理学报,vol.21,pp.125-128,2000.
    [87] 马大猷,沈壕,声学手册.北京:科学出版社,1983.
    [88] 盛元生,王克明,吴晓明,“航空发动机环形燃烧室噪声频谱分析及声激劻源识别研究,”航空发动机,vol,29,pp.38-43,2003.
    [89] X. Zhang, A. Mehra, A. A. Ayon, and I. A. Waitz, "Igniters and temperature sensors for a micro-scale combustion system," Sensors and Actuators a-Physical, vol. 103, pp. 253-262, 2003.
    [90] 【苏】克利克苏诺夫,俞福堂译,红外技术原理手册.北京:国防工业出版社,1986.
    [91] 周理,“储氢研究进展与问题,“presented at第六届全国氢能学术会议论文集,上海,2005.
    [92] T. Nejat Veziroglu, Frano Barbir, "Hydrogen Energy Technologies," Prepared for UNIDO(United Nations Industrial Development Organization, VIenna 1998.
    [93] A. J. Kotlar; M. S. Miller; T. P. Coffee, "The Overall Reaction Concept in Premixed, Laminar, Steady-State Flames. I. Stoichiometries," Combustion and Flame, vol. 54, pp. 155-169, 1983.
    [94] K. K. Kuo, Principles of Combustion. New York: John Wiley & Sons, 1986.
    [95] C. G. Bauer and T. W. Forest, "Effect of hydrogen addition on the performance of methane-fueled vehicles. Part Ⅱ: driving cycle simulations," International Journal of Hydrogen Energy, vol. 26, pp. 71-90, 2001.
    [96] 覃川,于越男,傅维标,“催化重整反应加氢对预混气火焰传播速度的影响,“燃烧科学与技术,vol.8,pp.49—54,2002.
    [97] C. J. Tseng, "Effects of hydrogen addition on methane combustion in a porous medium burner," International Journal of Hydrogen Energy, vol. 27, pp. 699-707, 2002.
    [98] Jackson Gregory S, Sai Roxanne, Plaia Joseph M, Boggs Christopher M, Kiger Kenneth T, "Influence of H2 on the response of lean premixed CH4 flames to high strained flows," Combustion and flame, vol. 132, pp. 503-511, 2003.
    [99] Hawkes Evatt R., Chen Jacqueline H, "Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames," Combustion and flame, vol. 138, pp. 242-258, 2004.
    [100] M. Karbasi and I. Wierzba, "The effects of hydrogen addition on the stability limits of methane jet diffusion flame, "International Journal of Hydrogen Energy, vol. 23, pp. 123-129, 1998.
    [101] 阎小俊,“预混层流火焰的计算模型和实验研究,”西安交通大学,1999.
    [102] Markatou P, Pfefferle LD, Smooke MD., "The influence of surface chemistry on the development of minor species profiles in the premixed boundary layer combustion of H2/air mixture," Combust Sci Tech., vol. 79, pp. 37-68, 1991.
    [103] 【日】新井纪男,赵黛青,赵哲石,王昶,吴云影,燃烧生成物的发生与抑制技术.北京:科学出版社,2001.
    [104] 李荣生,甄开吉,王国甲,催化作用基础,北京:科学出版社,1990.
    [105] R. Kikuchi, Y. Tanaka, K. Sasaki, and K. Eguchi, "High temperature catalytic combustion of methane and propane over hexaaluminate catalysts: NOx emission characteristics." Catalysis Today, vol. 83, pp. 223-231, 2003.
    [106] O. Deutschmann, L. I. Maier, U. Riedel, A. H. Stroemman, R. W. Oibble, "Hydrogen Assisted Catalytic Combustion of Methane on Platinum," Catalysis Today, vol. 59, pp. 141-150, 2000.
    [107] Wang Guangrun, Eigenberger G, "The Experimental Investigation of Methane Catalytic Combustion on the Pt-monolit, "Chemical Reaction Engineering and Technology, vol. 13, pp. 94-97, 1997.
    [108] A. Beskok, and Karniadakis, G. E.,, "A Model for Flows in Channels Pipes, and Ducts at Micro and Nano Scales." Microscale Thermophysical Engineering, vol. 3, pp. 43-77, 1999.
    [109] G. N. patterson, Introduction to the kinetic Theory of Gas Flow: University of Toronto Press, 1971.
    [110] 景思睿,张鸣远,流体力学,西安:西安交通大学出版社,2002.
    [111] 韩占忠,王敬,兰小平,Fluent流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [112] Gravesen P, Branebjerg J, Jensen O S, "Microfludics-a revie," J. Micromech. Microeng., vol. 3, pp. 168-182, 1993.
    [113] W. J. Bowman and D. Maynes," A Review of Micro Heat Exchanger Flow Pbysics, Fabrication Methods and Application, "Proc. ASME IMECE, vol. HTD-24280, 2001.
    [114] N. T. Obot, "Toward a better understanding of friction and heat/mass transfer in microchannels - A literature review," Microscale Thermophysical Engineering, vol. 6, pp. 155-173, 2002.
    [115] P. Wu and W. A. Little, "Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators," Cryogenics, vol. 23, pp. 273-277, 1983.
    [116] P. Wu and W. A. Little, "Measurement of Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators," Cryogenics, vol. 24, pp. 415-420, 1984.
    [117] S. B. Choi, R. F. Barron, and R. O. Warrington, "Liquid Flow and Heat Transfer in Microtubes, Micromechanical Sensors, "Actuators and Systems, ASME DSC, vol. 32, pp. 123-128, 1991.
    [118] B. X. Wang and X. F. Peng, "Experimental Investigation on Liquid Forced-Convection Heat-Transfer through Microchannels," International Journal of Heat and Mass Transfer, vol. 37, pp. 73-82, 1994.
    [119] X. F. Peng, B. X. Wang, G. P. Peterson, and H. B. Ma, "Experimental Investigation of Heat-Transfer in Flat Plates with Rectangular Microchannels," International Journal of Heat and Mass Transfer, vol. 38, pp. 127-137, 1995.
    [120] X. F. Peng and G. P. Peterson, "Forced Convection Heat Transfer of Single-Phase Binary Mixtures through Microchannels, "Exp. Thermal and Fluid Science, vol. 12, pp. 98-104, 1996.
    [121] 【美】徐泰然,(T.-R、Hsu),MEMS和微系统——设计与制造.北京:机械工业出版社,2004.
    [122] G. L. Morini, "Single-phase convective heat transfer in microehannels: a review of experimental results." International Journal of Thermal Sciences, Vol. 43, pp. 631-651, 2004.
    [123] 刘静,微米/纳米尺度传热学.北京:科学出版社,2002.
    [124] 【美】施天谟著,陈越南等译,计算传热学.北京:科学出版社,1987.
    [125] 周力行,“作者和周力行通信,”2005.
    [126] Ivan A. Anchondo and Ahsan R. Choudhuri, "A NUMERICAL INVESTIGATION ON THE MIXING BEHAVIOR OF MICROCOMBUSTORS," presented at Proceedings of DETC? 3 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Chicago, Illinois USA, 2003.
    [127] 陶文铨,数值传热学(第二版).西安:西安交通大学出版社,2001.
    [128] C. L. Hackert, J. L. Ellzey, O. A. Ezekoye, "Efects of thermal boundary conditions on flare e shape and quenching in ducts, "Combustion and Flame, vol. 112, pp. 73-84, 1998.
    [129] T. M. Tritt, "THERMOELECTRIC MATERIALS: Holey and Unholey Semiconductors," Science, vol. 283, pp. 804-805, 1999.
    [130] F. J. DiSalvo, "Thermoelectric Cooling and Power Generation," Science, vol. 285, pp. 703-706, 1999.
    [131] C. B. Vining, "Semiconductors are cool," Nature, vol. 413, pp. 577-578, 2001.
    [132] C. B. Vining, "Condensed-matter physics - Thermopower to the people," Nature, vol. 423, pp. 391-392, 2003.
    [133] Gvazzoni G., "Millitary Thermoelectric Generator," presented at The 1st European Confererce on Thermoelectric, Cardiff: UK, 1987.
    [134] http://www.globalte.com/introduction.html.
    [135] Mastuura K. Rowe DM, Tsvyoshi A, Min G., "Large scale thermoelectric generator's of low grade heat.," presented at Proceeding of 10th International Conference on Thermoelectric, Cardiff. U. K, 1991.
    [136] W. M. Qu, M. Plotner, and W. J. Fischer, "Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems," Journal of Micromechanics and Microengineering, vol. 11, pp. 146-152, 2001.
    [137] J. Vican, B. F. Gajdeczko., "Development of a Microreator as a Thermal Source for MEMS Power Gernration," presented at The 29th symposium (International) on Combustion, New Concepts in Combustion Technology, Sapporo, Japan, 2002.
    [138] J. VICAN, B. F. GAJDECZKO, F. L. DRYER, D. L. MILIUS, L A. AKSAY, R. A. YETTER, "DEVELOPMENT OF A MICROREACTOR AS A THERMAL SOURCE FOR MICROELECTROMECHANICAL SYSTEMS POWER GENERATION," presented at Proceedings of the Combustion Institute, 2002.
    [139] F. J. Weinberg, D. M. Rowe, G. Min, and P. D. Ronney, "On thermoelectric power conversion from heat recirculating combustion systems, Proceedings of the Combustion Institute, vol. 29, pp. 941-947, 2003.
    [140] K. Maruta, K. Takeds, J. Ahn, K. Borer, L. Sitzki, P. D. Ronney, and O. Deutschmann, *Extinction limits of catalytic combustion in microchannels, "Proceedings of the Combustion Institute, vol. 29, pp. 957-963, 2003.
    [141] T. F. Caillat, J. -P.; Snyder, G. J.; Borshchevsky, A, "Development of high efficiency segmented thermoelectric unicouples," presented at Proceedings ICT 2001. 20th International Conference on Thermoelectrics, 2001.
    [142] Kang, Y. S.; Niino, M.; Nishida, I. A.; Yoshino, J., "Development and evaluation of 3-stage segmented thermoelectric elements.," presented at 17th International Thermoelectrics Conference., Nagoya, Japan, 1998.
    [143] Omer S A, Infield D G., "Design optimization of thermoelectric devices for soloar power generation," Solar Energy Material&Solar Cells, vol. 53, pp. 67-82, 1998.
    [144] Helmets L, Moller E, Schilz. et al, "Granded and stacked thermoelectric generator numerical description and maximization of output power, Mater. Sci Eng. B., vol. 58, pp. 60-68, 1998.
    [145] R. Y. Nuwayhid, F. Moukalled, and N. Noueihed, "On entropy generation in thermoelectric devices," Energy Conversion and Management, vol. 41, pp. 891-914, 2000.
    [146] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, and T. Caillat, "Recent developments in thermoelectric materials," International Materials Reviews, vol. 48, pp. 45-66, 2003.
    [147] Gang Chert, Bao Yang, Weili Liu, and Taofang Zeng, "Nanoscale Heat Transfer for Energy Conversion Applications, "presented at International Conference on Energy Conversion and Applications, Wuhan, China, 2001.
    [148] D. M. Rowe and G. Min, "Evaluation of thermoelectric modules for power generation," Journal of Power Sources, vol. 73, pp. 193-198, 1998.
    [149] D. M. Rowe, "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, vol. 16, pp. 1251-1256, 1999.
    [150] 王华军,韩刚,“半导体热发电技术,”太阳能,vol.6,pp.17-18,2002
    [151] S. H. Scberer S, Cailiat T, "Recent developments in compound tellurides and their alloys for peltier cooling," presented at Proceedings of the 9th International Conference on Thermoelectries in: Vining Bed, Rasadens, Califonia USA, 1990.
    [152] 刘静,李敬锋,“热电构料的应用及研究进展,”新材料产业,vol.129,pp.49-53,2004.
    [153] 蔡善钰,“空间同位素发电系统的应用现状与展望,“核科学工程,vol.14,pp.373-379,1994.
    [154] Nagai H, "Effects of Mechanical Alloying and Grinding on the Preparation and Thermoelectric Properties of Beta /FeSi2," Materials Transactions JIM, vol. 36, pp. 365-372, 1995.
    [155] L. R. Arana, "High-Temperature Microfluidic Systems for hermally-Efficient Fuel Processing," in Massachusetts Institute of Technology, 2003.
    [156] GARDNER TIMOTHY J; MANGINELLI RONALD P; COLBURN CHRIS; LEWIS PATRICK R; FRYE-MASON GREGORY C, "microcombustor." US, 2004.
    [157] Buckley, S. G. and M. M. Ohadi, "High Temperature Heat Exchangers and Microscale Combustion Systems: Applications To Thermal System Miniaturization," Experimental Thermal and Fluid Science, vol. 25, pp. 207—217, 2001.
    [158] K. Dellimore, and Cadou, C, "Fuel-Air Mixing Challenges In Micro-Power Systems," presented at 42nd AIAA Aerospace Sciences Meeting and Exhibit, Rend NV, 2004.
    [159] 李世波.张立同,“高温新构料Si(B)CN,”构料工程,vol,12,pp.39~41,2000.
    [160] 【德】W.Menz,J.Mohr,O.Paul,王春海,于杰,等译,微系统技术.北京:化学工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700