用户名: 密码: 验证码:
登陆台风暴雨的数值模拟与诊断分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用MM5模式模拟了2005年登陆福建的台风暴雨过程,取得了较好的效果。模拟得到的台风降水中心强度和位置以及降水分布与实况基本相符。本次福建沿海地区降水产生的主要物理机制有:(1)台风登陆福建前后福建沿海地区上空层结相当不稳定;(2)由于台风环流非对称性,在中低层上台风中心北侧有较强的急流及相对湿度、正涡度、辐合、垂直速度中心;(3)台风流场的非对称结构,使涡度、散度、垂直速度、位涡等分布也是非对称的,加上福建沿海地形分布特征,直接影响了雨带分布的非对称性。采用不同地形高度来模拟该时段台风降水过程,试验结果显示福建东部沿海的特殊地形对登陆福建中部沿海的台风降水有明显的增幅作用。(a)地形可以增加台风中心及其附近的降水量。对于登陆福建中部沿海的台风,福建东部沿海两大山脉太姥山、戴云山山脉对当地台风暴雨具有明显的增幅作用。(b)地形与地形增高可以使雨量分布更加不均匀。(c)除了西侧的台风外围,特别是海面上的降水增幅与台风中心及其附近的降水变化呈反位相变化关系。(d)台风降水受地形影响呈现出类重力波列式的正负相间的变化分布。
     最后采用不同对流参数化方案对台风登陆前后台风降水过程的影响,试验表明不同参数化方案对台风暴雨过程的模拟存在差异。当无引入积云对流参数化方案时,因地形抬升作用引起对流性降水的增幅作用就不存在,导致模拟降水的明显减少和位置偏离。不同分辨率模拟出的降水效果存在不同,粗细网格的降水模拟结果非常类似,只不过细网格模拟的降水分布能够更准确、更详尽的描述台风暴雨过程,细网格模拟的降水分布具有更详细的中—β尺度的雨团信息。
Firstly, The process of landing Fujian of Typhoon "LongWang" is simulated byusing of MM5v3.6 in this paper. It is showed that MM5v3.6 can simulated mainrainstorm belt and its' distribution characteristic well. The formation of rainstorm inthe coastland of Fujian province has several main mechanisms:(1) the layer above theFujian coastland quite unsteady before and after typhoon landing;(2)because oftyphoon's unsymmetrical circumfluence, at the north of typhoon's heart, there werestrong wind speed, relative humidity, positive vorticity、convergence and verticalvelocity;(3) the higher and lower layers of rainstorm exists positive and negativehelicity column. The result showed that the model made a good effect on eithersimulating Fujian inland or seashore storms. The simulation experiment by controllingterrain showed that it was a great difference between the reinforcement results toinland seashore storm caused by the Fujian local terrain and the terrain made a moreoutstanding reinforcement effect to inland storm.
     Secondly, the terrain sensitivity test indicated that the special terrain in Fujianeastern coast could enhance the typhoon rainstorm distinctly. (a)The increase ofrainfall near the center of the typhoon has a close relation with the terrain;(b) Terraintendency and height can result in more uniformity of the precipitation distribution ;(c)Expect for the precipitation on the west of periphery of the typhoon. The precipitationenhancement extent appears counter of phase relationship with that of the typhooncenter or near the typhoon, especially on the region of the East Sea;(d) Thedistribution of typhoon precipitation presents the positive ad negative change as thegravity wave column wise under the influence of terrain.
     Finally, Simulation experiments of precipitation prediction with MM5v3.6'sdifferent parameterization schemes over Fujian. In order to test the forecast capabilityof MM5v3.6, four combinations of two different physical parameterization schemesare used in simulation tests of precipitation prediction. It is discovered that thecombinations of Grell cumulus parameterization and Mixed ice-phase in the secondnested grids are superior to the others, especially the center of downfall andrainstorm. The strongest rainstorm center was resulted in the unsymmetrical structureof typhoon "LongWang" through the structure sensitivity test.
引文
[1] 陶诗言.中国之暴雨[M]。北京:科学出版社,1980.225
    [2] 陈联寿,孟智勇,我国热带气旋研究十年进展[J].大气科学,2001,25:420—432.
    [3] 张喜碧,朱官忠,曹钢锋.华北地区登陆北上热带气旋的暴雨增幅研究[J].南京气象学院学报,1995,18:197-200.
    [4] 李江南等.台风暴雨研究进展[J].热带气象学报,2003,19,152—159.
    [5] 陶祖玉,田佰军,黄伟.9216号台风登陆后的不对称结构和暴雨[J].热带气象学报,1994.10(1):69-77.
    [6] 杨金锡,洪吉.能量锋生与台风倒槽暴雨[J].南京气象学院院报,1986,9:47-54.
    [7] 蒋尚成,林楠.85年9号台风与辽宁特大暴雨的卫星云图分析[J].北京大学学报,1988,24:351-361.
    [8] 钱自强,张德.上海地区台风倒槽暴雨分析[J].大气科学,1985,9:400-405.
    [9] Dang R Q. Recent advances in research on the mechanisms and causes of exceptional rainfall associated with tropical cyclones in China[J]. WMO/TD, 1998.875: 23-26.
    [10] 陈久康,丁治英,陶祖玉等.中低纬环流系统相互作用对登陆台风暴雨突然增幅的影响[A].85-906项目组.台风科学、业务试验和天气动力学理论的研究(第四分册)[C].北京:气象出版社,1996,52-54.
    [11] 丁治英,陈久康.台风中-α尺度重力惯性波的发展与暴雨增幅[J].热带气象学报,1996,12:333—340.
    [12] 安赛斯RA.热带气旋的发展、结构和影响[M].北京:气象出版社,1982.46—47.
    [13] ELSBERY R L.热带气旋全球[M].北京:气象出版社,1994.72~129.
    [14] ONTGOMERY M T. A theory for vortex Rossby—wave and it application to spirial bands and intensity changes in hurricanes[J]. Quart J Roy Meteor Soc, 1997, 123: 453~436.
    [15] MONTGOMERY M T. Tropical cyclone via convectively forced Vortex Rossby-wave in a three-dimensional quasi-geostropic model[j]. J Atmos Sci, 1998, 55: 3176~3207.
    [16] MACDANALDNJ. The evidence for existence of Rossby-like waves in the hurriance Vortex[J]. Tellus, 1968, 20: 138~150.
    [17] LIU Y, ZHANG D L, YAU M K. A multiscale numerical study of Hurricane Andrew(1992). Part Ⅰ: Explicit simulation and verificaton[J]. Mon Wea Rev, 1999, 125: 3073~3093.
    [18] LIU Y, ZHANG D L, YAU M K. A multiscale numerical study of Hurricane Andrew(1992). Part Ⅱ: Kinematics and inner-core structures[J]. Mon Wea Rev, 1999, 127: 2597~2616.
    [19] LIU Y, ZHANG D L, YAU M K. A multiscale numerical study of Hurricane Andrew(1992). Part Ⅲ: Dynamically induced vertical montion[J]. Mon Wea Rev, 2000, 128: 3772~3788.
    [20] LIU Y, ZHANG D L, YAU M K. A multiscale numerical study of Hurricane Andrew(1992). Part Ⅳ: Unbalanced Flows[J]. Mon Wea Rev, 2001, 129: 93~107.
    [21] WANG Y. An explicit simulation of tropical cyclones with a triply nest movable mesh primitive equation model-TCM3. Part Ⅰ: Model description and control experiment[J]. Mon Wea Rev, 2001 129: 1370~1394.
    [22] WANG Y. Vortex Rossby wave in a numerically simulated tropical cyclone. Part Ⅰ: Overall structure, potential vorticity, and kinetic energy budgets[j]. J Atmos Sci, 2002, 59: 1213~1238.
    [23] WANG Y. Vortex Rossby wave in a numerically simulated tropical cyclone. Part Ⅱ: The role in tropical cyclone structure and intensity change[J], J Atmos Sci, 2002, 59: 1239~1262.
    [24] 余志豪.台风螺旋雨带——涡旋Rossby波[J].气象学报,2002,60:502~207.
    [25] 王鹏云.台湾岛地形对台风暴雨影响的数值研究[J].气候与环境,1998.3;235~246.
    [26] WUC C, YEN T H, KUO Y H. Rainfall simulation associated with typhoon Herb(1996) near Taiwan. Part Ⅰ: The topographic effect[J]. Wea Forecasting, 2002, 17: 1001~1015.
    [27] LIN Y L, CHINAO S, WANG T A. Some common ingredients for heavy orographic rainfall[J]. Wea forecasting, 2001, 16: 633~660.
    [28] 骆荣宗.9012号台风中尺度螺旋雨带与暴雨的观测分析[J].热带气象学报,1997,13:173~179.
    [29] 卢家麟,滕卫平,杜惠良.9015号台风登陆后其周围的若干中尺度特征[J].热带气象学报,1994,10:115~121.
    [30] 李江南,王安宇,侯尔滨.台风Fitow降雨的数值预报试验[J].热带气象学报,2004(1):16~25.
    [31] 运源,刘艳群,张录青.强热带风暴“玛莉亚”对韶关大暴雨过程影响的分析[J].广东气象,2001(3):5~7.
    [32] 郑庆林,吴军,蒋平.地形对9216号台风暴雨增幅影响的数值研究[J].南京气象学院学报,1996,19:8~17.
    [33] 郑庆林,吴军,蒋平.我国东南海岸线分布对9216号台民尽而增幅影响的数值研究[J].热带气象学报,1996,12:304~313.
    [34] 严永和.9908号台风强降水分析[J].广东气象,2000(3):31~35.
    [35] 陈联寿,孟智勇.我国热带气旋研究十年进展[J].大气科学,2001,25(3):420~432.
    [36] 陈联寿,罗哲贤,李英.登陆热带气旋研究进展[J].气象学报,2004,62(5):541-548.
    [37] 李江南,王安宁,杨兆礼等.台风暴雨的研究进展[J].热带气象学报,2003,19(增刊):152~158.
    [38] Georg A. Grell, Jimy Dudhia and David R. Stauffer, 1995. A Description of the Fifth-Generation Penn State/NCAR Meso scale Model(MM5). NCAR/NT-39+STR NCAR TECHNICAL NOTE.
    [39] 沈桐立,田永祥,葛孝贞等.数值天气预报[M].北京:气象出版社,2003.383~420
    [40] 寿绍文,励申申,姚秀萍.中尺度气象学[M].北京:气象出版社,2003.300~310
    [41] 李天富.MM5对南海一次特大暴雨过程的模拟[J].气象,1998,29(1):3~6
    [42] 王建捷,胡欣,郭肖容.MM5对模式中不同对流参数化方案的比较试验[J].应用气象学报,2001,12(1):41~53
    [43] 王晨稀.MM5模式中不同对流参数化方案对降水预报效果影响的对比试验.气象科学,2004,24(2):168~176
    [44] 陈瑞闪.台风[M].福州:福建科学技术出版社,2002.535~544
    [45] 陈联寿.热带气旋运动研究和业务预报的现状和发展.台风会议文集,北京:气象出版社,1985.6~30.
    [46] 陈联寿,罗哲贤.非对称结构与台风移动的若干联系.台风科学业务试验和天气动力学理论的研究,第二分册,北京.气象出版社,1996.371~374.
    [47]罗 哲贤,马镜娴,王咏青.SPECTRUM期间目标台风移动的数值试验.气象学报,1996,54(4):166~173.
    [48] 朱乾根等.天气学原理[M].北京:气象出版社,1992:797~840
    [49] 林卫华,沈桐立,康国山.湄洲湾沿海能见度和大气烟尘污染的变化.海洋环境科学,2007,27(1):36~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700