用户名: 密码: 验证码:
微波辅助溶剂热条件下烟酸锌配位聚合物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究烟酸锌金属-有机配位聚合物的微波合成与结构表征,旨在研究微波加热与传统加热方式相比的高效性。本论文首次利用微波辅助溶剂热法在10min的时间内合成出形貌规则的烟酸锌配合物,并对所合成配合物进行了性质的表征。同时讨论了温度、反应时间、反应物初始浓度、加热方式以及溶剂对产物结晶情况的影响。
     微波辅助溶剂热法虽具有晶体成核均匀、对产物具有很好选择性等一系列优点,但由于反应时间短,导致产物的晶粒度较小。本文尝试采用微波溶剂热与传统溶剂热相结合的方法进行烟酸锌配位聚合物的合成。首先由微波溶剂热法制取晶种,接着在传统溶剂热条件下实现晶体的二次生长。所合成产物既具备了微波加热的各种优点,同时又在较短的反应时间里生成了较大的单晶体,这对于新结构及新产物的确定具有非常重要的意义。
Coordination polymers is one of top topics in the field of materials chemistry due to their applications in a large number of different aspects, such as electrical, optical, magnetic, catalytic and adsorption-desorption. As we known that the structure of coordination polymers determines the characteristic performance, therefore, it is a great challenge for scientific workers to fastly synthesize the coordination polymers for required functionality. Most of zinc complexes have good photoluminescence and nonlinear optical properties, so the study of zinc complexes will have a great significance.
     At present, hydro(solvo)thermal method is widely used in synthesis of coordination polymers which have high stability. But the conventional hydro(solvo)thermal method requires so much time that it extends the reaction periods. In recent years, microwave technology is widely used in preparing products quickly, so it could overcome this shortcoming. Microwave heating not only shorten the reaction time significantly and improve the yield and purity of product, but also has good reproducibility and stability of the amplification. Therefore, our laboratory use microwave as the heating means. We were succeeded in synthesis of bis(nicotinate)zinc under microwave-assisted solvothermal condition. Also, we obtained bis(nicotinate)zinc which has particle size of about 0.5mm by the combination of microwave-assisted solvothermal method and conventional solvothermal method. The specific descriptions are as follows:
     We used nicotinic acid as the ligand to coordinate with zinc(Ⅱ) to build the 2D chiral coordination polymer of [Zn(nicotinate)2]n under microwave-assisted solvothermal condition, while dimethylformamide (DMF) was used as the solvent, and the reaction time was only 10min. This method not only shortened the reaction time significantly, but also decreased the temperature of the reaction. The compound were characterized by means of X-ray powder diffraction (XRD), polarized light microscopy, scanning electron microscopy (SEM), fluorescent spectrometry and TG-DTA. The complex has strong fluorescence emission property at room temperature, also the complex has high thermal stability, while TG-DTA showed that the complex has onset decomposition temperature of 400℃.
     In addition, we also disscussed the influences of reaction time, temperature, solvent, substrate concentration and heating method on the crystallization of the complexes. It was found that the particle size of the crystal would be gradually larger and the shape of the crystal would transit from plate to octahedral when reaction conditions were changed, such as the extension of reaction time, the increase of temperature and substrate concentration. In contrast to conventional solvothermal method, we found that microwave heating can obtain pure [Zn(nicotinate)2]n in 10min, while conventional solvothermal method obtain the mixture of [Zn(nicotinate)2]n and other products. That was noted that microwave heating can not only reduce the reaction time, but also have a better selectivity for the reaction. When we used other solvents, the reaction could not take place under the same reaction conditions, it was noted that DMF was irreplaceable for this reaction.
     Although microwave-assisted solvothermal method have many advantages, the partical size of crystals obtained from microwave heating was always so small that we couldn’t get the structure information of the crystal. So we combined the microwave-assisted solvothermal method and the conventional solvothermal method. Firstly the crystal quickly nucleated under microwave-assisted solvothermal condition; secondly the nucleus got secondary growth under conventional solvothermal condition. The product we obtained not only has the advantages of microwave heating, but also has a larger partical size that suitable for structural analysis. This successful attempt for new synthesis method will have great significance on the synthesis of new compound and the determination of new structure.
引文
[1]杨天林,陈育宁主编.配位化学导论[M].宁夏人民教育出版社,2007.
    [2]曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,1994.
    [3]唐雯霞,祝世彤,戴安邦.配位化学近期进展[J].化学通报,1991,11: 1-5.
    [4] Basolo著,高忆慈等译.无机化学前沿[M].兰州大学出版社,1989.
    [5] Li H, Eddaoudi M, Groy T L, et al. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC)(BDC= 1,4-Benzene dicarboxylate) [J]. J. Am. Chem. Soc., 1998, 120: 8571-8572.
    [6] Mooibroek T J, Gamez P. The s-triazine ring, a remarkable unit to generate supramolecular interactions [J]. Inorg. Chim. Acta, 2007, 360: 381-404.
    [7] Hagrman P J, Hagrman D, Zubieta J. Organic-Inorganic Hybrid Materials: From“Simple”Coordination Polymers to Organodiamine-Templated Molybdenum Oxides [J]. Angew. Chem. Int. Ed., 1999, 38: 2638-2684.
    [8] James S L. Metal-organic frameworks [J]. Chem. Soc. Rev., 2003, 32: 276-288.
    [9]王磊.1,2,4-苯三酸及巯基多氮杂环构筑的配位聚合物水热合成、结构与性质表征[D].吉林:吉林大学化学学院,2006.
    [10] Hunter C A. Self-Assembly of Molecular-Sized Boxes [J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 1079-1081.
    [11] Férey G, Serpaggi F. Scale of the dimensions of the pores as a function of time [J]. Chem. Mater., 2001, 13: 3084-3098.
    [12] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: From“simple”coordination polymers to organodiamine-templated molybdenum oxides [J]. Angew. Chem. Int. Ed., 1999, 38: 2638-2684.
    [13] Barton T J, Bull L M, Klemperer W G, et al. Tailored Porous Materials [J]. Chem. Mater., 1999, 11: 2633-2656.
    [14] Bowes C L, Ozin G A. Self-Assembling Frameworks: Beyond microporous oxides [J]. Adv. Mater., 1996, 8: 13-28.
    [15] Eddaoudi M, Li H, Yaghi O M, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylateframeworks [J]. Acc. Chem. Res., 2001, 34: 319-330.
    [16] Zaworotko M J. Nanoporous structures by design [J]. Angew. Chem. Int. Ed., 2000, 39: 3052-3054.
    [17] Wang X L, Qin C, Wang E B, et al. Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting [J]. Angew. Chem. Int. Ed., 2005, 44: 5824-5827.
    [18] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed., 1998, 37: 1460-1494.
    [19] Robson R. A net-based approach to coordination polymers [J]. J. Chem. Soc., Dalton Trans., 2000, 3735-3744.
    [20] Shi X, Zhu G S, Wang X H, et al. From a 1-D Chain, 2-D Layered Network to a 3-D Supramolecular Framework Constructed from a Metal-Organic Coordination Compound [J]. Crystal Growth & Design, 2005, 5(1): 207-213.
    [21] Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, et al. Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Properties [J]. Chem. Mater., 2005, 17: 2568-2573.
    [22] Zheng X J, Li L C, Gao S, et al. Hydrothermal syntheses, structures and magnetic properties of two transition metal coordination polymers with a square grid framework [J]. Polyhedron, 2004, 23: 1257-1262.
    [23] Lin W B, Evans O R, Xiong R G, et al. Supramolecular Engineering of Chiral and Acentric 2D Networks [J]. J. Am. Chem. Soc., 1998, 120: 13272-13273.
    [24] Xiong R G, You X Z, Abrahams B F, et al. Enantioseparation of Racemic Organic Molecules by a Zeolite Analogue [J]. Angew. Chem. Int. Ed., 2001, 113: 4554-4557.
    [25] Chen B L, Eddaoudi M. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores Pores [J]. Science, 2001, 291: 1021-1023.
    [26] Eddaoudi M, Kim J, Yaghi O M, et al. Cu2[o-Br-C6H3(CO2)2]2 (H2O)2·(DMF)8 (H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type Pores [J]. J. Am. Chem. Soc., 2002, 124: 376-377.
    [27] Li H, Eddaoudi M, Yaghi O M, et al. Design and Synthesis of an ExceptionallyStable and Highly Porous Metal-Organic Framework [J]. Nature, 1999, 402:276-279.
    [28] Eddaoudi M, Li H, Yaghi O M. Supertetrahedral Sulfide Crystals with Giant Cavities and Channels [J]. Science, 1999, 283: 1145-1147.
    [29] Hoskins B F, Robson R, Slizys D A. The Structure of [Zn(bix)2(NO3)2] centre dot 4.5H2O (bix = l,4-Bis(imidazol-l-ylmethyl)benzene): A New Type of Two-Dimensional Polyrotaxane [J]. Angew. Chem. Int. Ed., 1997, 36: 2336-2338.
    [30] Reinked T M, Eddaoudi M, Moler D. Large Free Volume in Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3 [(CH3)2SO]4·16[(CH3)2SO] [J]. J. Am. Chem. Soc., 2000, 122: 4843-4844.
    [31] Chui S S-Y, Williams I D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283: 1148-1150.
    [32] Abrahams B F, Haywood M G, Robson R, et al. New Tricks for an Old Dog: The Carbonate Ion as a Building Block for Networks Including Examples of Composition [Cu6(CO3)12{C(NH2)3}8]4- with the Sodalite Topology [J]. Angew. Chem. Int. Ed., 2003, 42: 1111-1115.
    [33] Zhang J P, Lin Y Y, Zhang W X, et al. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer [J]. J. Am. Chem. Soc., 2005, 127: 14162-14163.
    [34] Chen B, Ockwig N W, Yaghi O M, et al. Transformation of a Metal-Organic Framework from the NbO to PtS Net [J]. Inorg. Chem., 2005, 44: 181-183.
    [35] Li H, Eddaoudi M, Yaghi O M, et al. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework [J]. Nature, 1999, 402:276-279.
    [36] Eddaoudi M, O’Keeffe M, Yaghi O M, et al. Systematic Design of Pore Size and Functionality in Isoreticular Metal-Organic Frameworks and Application in Methane Storage [J]. Science, 2002, 295: 469-472.
    [37] Yoshizawa M, Nagao M, Kumazawa K, et al. Side Chain-Directed Complementary cis- Coordination of Two Pyridines on Pd(II): Selective Multicomponent Assembly of Square-, Rectangular-, and Trigonal Prism-Shaped Molecules [J]. Organomet. Chem., 2005, 690(23): 5383-5388.
    [38] Huang L H. Novel Vanadium(V) Compounds with a Layer Structure: Synthesis,Crystal Structures and Solid State NMR Spectroscopy of [(VO2)2(4,4’-bpy)0.5 (4,4’-Hbpy)(XO4)]·H2O (X=P and As) [J]. Inorg. Chem., 2002, 41: 2936-2940.
    [39]赵国利,吴英,叶俊伟等.一维链状[Mn(9-AC)2(4,4'-bpy)(H2O)2]n配位聚合物的合成及晶体结构[J].高等学校化学学报,2008,29(4):686-689.
    [40] Lin W B, Evans O R, Xiong R G, et al. Supramolecular Engineering of Chiral and Acentric 2D Networks [J]. J. Am. Chem. Soc., 1998, 120: 13272-13273.
    [41] Lu J, Zhao K, Fang Q R. Synthesis and Characterization of Four Novel Supramolecular Compounds Based on Metal Zinc and Cadmium [J]. Crystal Growth & Design, 2005, 5(3): 1091-1098.
    [42] Zhou X P, Ni W X, Zhan X Z, et al. From encapsulation to polypseudorotaxane: Unusual anion networks driven by predesigned metal bis(terpyridine) complex cations [J]. Inorg. Chem., 2007, 46: 2345-2347.
    [43] Mingos D M, Baghurst D R. Applications of microwave dielectric heating effect to synthetic problem in chemistry [J]. Chem. Soc. Rev., 1991, 20: 1-47.
    [44] Bremberg U, Kaiser N F, Larhed M, et al. Rapid and stereoselective C-C, C-O, C-N and C-S coupling via microwave palladium catalyzed allylic substitutions [J]. Synthesis, 2000, 7: 1004-1008.
    [45] Gedye R N, Wei J B. Rate enhancement of organic reactions by microwave at atmospheric pressure [J]. Can. J. Chem., 1998, 76(5): 525-532.
    [46]朱建华.微波介电加热及其在化学中的应用[J].大学化学,1998,13(6):1-31.
    [47]李永红,李跃明.微波促进有机反应原理及微波有机合成仪[J].化工技术与开发,2006,35(3):14-16.
    [48] Gedye R N, Smith R, Westaway K, et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Lett., 1986, 27: 279-282.
    [49]黄卡玛,刘永清.电磁波对化学反应非致热作用的实验研究[J].高等学校化学学报,1996,17(5):764-7681.
    [50] Roy I, Gupta M N. Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification [J]. Tetrahedron, 2003, 59(29): 5431-5436.
    [51]邵明望.微波化学与工程[M].安徽:安徽大学出版社,1999.
    [52] Dallinger D, Kappe C O. Microwave-Assisted Synthesis in Water as Solvent [J]. Chem. Rev., 2007, 107: 2563-2591.
    [53] Yadav G D, Lathi P S. Intensification of enzymatic synthesis of propylene glycol monolaurate from 1,2-propanediol and lauric acid under microwave irradiation: Kinetics of forward and reverse reactions [J]. Enzyme Microb. Tech., 2006, 38(6): 814-820.
    [54] Giraud A, Provot O, Peyrat J F, et al. Microwave-assisted efficient synthesis of 1,2-diaryldiketone: a novel oxidation reaction of diarylalkynes with DMSO promoted by FeBr3 [J]. Tetrahedron, 2006, 62(33): 7667-7673.
    [55] Kureshy R I, Surendra S, Khan N H, et al. Microwave-assisted asymmetric ring opening of meso-epoxides with aromatic amines catalyzed by a Ti-S-(?)-BINOL complex [J]. Tetrahedron Lett., 2006, 47(30): 5277-5279.
    [56] Ju Y H, Varma R S. Microwave-assisted cyclocondensation of hydrazine derivatives with alkyl dihalides or ditosylates in aqueous media [J]. Tetrahedron Lett., 2005, 46: 6011-6014.
    [57] Timothy B P. Microwave assisted Diels-Alder cycloaddition of 2-fluoro-3- methoxy-1,3-butadicne [J]. J. Fluorine Chem., 2007, 128(7): 710-713.
    [58] Feng J, Liu B, Liu Y, et al. An Efficient One-Pot Synthesis of Nitriles from Carboxylic Acids Without Solvent Under Microwave Irradiation [J]. Synthetic Commun., 1996, 26(24): 4545-4548.
    [59] Zheng Ni, Masel R I. Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis [J]. J. Am. Chem. Soc., 2006, 128: 12394-12395.
    [60] Rajic N, Stojakovic D, Logar N Z, et al. An evidence for a chain to network transformation during the microwave hydrothermal crystallization of an open- framework zinc terephthalate [J]. J. Porous. Mater., 2006, 13: 153-156.
    [61] Choi J Y, Son W J, Kim J, et al. Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered [J]. Micropor. Mesopor. Mat., 2008, 116:727-731.
    [62] Choi J Y, Kim J, Jhung S H, et al. Microwave Synthesis of a Porous Metal- Organic Framework, Zinc Terephthalate MOF-5 [J]. Bull. Korean Chem. Soc., 2006, 27(10): 1523-1524.
    [63] Amo-Ochoa P, Givaja G, Miguel P J, et al. Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF [J]. Inorg. Chem. Commun., 2007, 10: 921-924.
    [64] Jhung S H, Lee J H. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability [J]. Adv. Mater., 2007, 19: 121-124.
    [65] Jhung S H, Lee J H, Forster P M, et al. Microwave Synthesis of Hybrid Inorganic-Organic Porous Materials: Phase-Selective and Rapid Crystallization [J]. Chem. Eur. J., 2006, 12: 7899-7905.
    [66] Lin Z J, Wragg D S, Morris R E. Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions [J]. Chem. Commun., 2006, 2021-2023.
    [67] Yeonshick Yoo, Jeong H K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition [J]. Chem. Commun., 2008, 2441-2443.
    [68] Seo Y K, Hundal G, Jang I T, et al. Microwave synthesis of hybrid inorganic- organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture [J]. Micropor. Mesopor. Mat., 2009, 119: 331-337.
    [69] Liu W L, Ye L H, Liu X F, et al. Rapid synthesis of a novel cadmium imidazole- 4,5-di-carboxylate metal-organic framework under microwave-assisted solvothermal condition [J]. Inorg. Chem. Commun., 2008, 11: 1250-1252.
    [70]冯士明.陶瓷微波烧结技术及其进展[J].陶瓷研究,1995,10(2):80-83.
    [71] Arafat A, Jansen J C, Ebaid A R, et al. Microwave preparation of zeolite Y and ZSM-5 [J]. Zeolite, 1993, 13(3): 162-165.
    [72]金钦汉.微波技术在分析化学中的应用[J].分析化学,1988,16(7):668-674.
    [1]禹良才,梁宏,周春山等.四水二异烟酸锌(Ⅱ)的合成及其晶体结构[J].合成化学,2005,13(5):504-506.
    [2]刘宏,刘博.异烟酸锌(Ⅱ)配合物的合成、晶体结构和荧光性[J].吉林师范大学学报,2005,4:47-48.
    [3]王大庆,周保学,杨兆荷等.烟酸锌(Ⅱ)配合物的合成及热非等温动力学的研究[J].河北师范大学学报(自然科学版),1997,21(3):291-294.
    [4]王庆勇,关莹,孟庆龙.烟酸锌(Ⅱ)配合物的水热合成及晶体结构[J].吉林师范大学学报(自然科学版),2007,2:80-81.
    [5]谢勇平,李清禄.烟酸锌配合物的形成及其表征[J].光谱实验室,2009, 26(4):771-774.
    [6] Wenbin Lin, Evans O R, Xiong R G, et al. Supramolecular Engineering of Chiral and Acentric 2D Networks [J]. J. Am. Chem. Soc., 1998, 120: 13272-13273.
    [7] Lu J, Fang Q R, Xu J Q, et al. Synthesis and Characterization of Four Novel Supramolecular Compounds Based on Metal Zinc and Cadmium [J]. Crystal Growth & Design, 2005, 5(3): 1091-1098.
    [8] Lu Y J, Kohler E E. A new 2-D chiral coordination polymer of [Zn(nicotinate)2]n [J]. Inorg. Chem. Commun., 2002, 5: 600-601.
    [9] Di Y Y, Hong Y P, Kong Y X, et al. Synthesis, characterization, and thermochemistry of the solid state coordination compound Zn(Nic)2·H2O(s) [J]. J. Chem. Thermodyn., 2009, 41: 80-83.
    [10] Kang Y, Zhang Z, Qin Y Y, et al. Twofold parallely interpenetrated 2D polymers of d10 zinc and cadmium based on mixed nicotinate/isonicotinate ligands [J]. J. Mol. Struct., 2007, 827: 126-129.
    [11] Song Y S, Yan B, Chen Z X. Two novel luminescent zinc supramolecular networks with nicotinate derivatives by hydrothermal process [J]. Inorg. Chem. Commun., 2005, 8: 1165-1168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700