用户名: 密码: 验证码:
萍钢烧结烟气脱硫工艺研究及生产实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结工艺是钢铁生产过程中SO2的主要排放源,占钢铁行业SO2排放总量的60%左右。因此控制烧结生产过程SO2的排放是钢铁企业污染控制的重点。加快实施烧结烟气脱硫,减少烧结工序SO2排放是钢铁工业实现可持续发展的必然要求,是钢铁工业环境治理急需解决的重要问题,也是提高我国钢铁企业国际竞争力的有效途径。
     为响应国家关于SO2总量减排的政策、建设环境友好型企业,萍乡钢铁有限责任公司拟对两台90m2烧结机现有烟气系统进行改造,建设烧结烟气脱硫设施。因此,研究萍钢2×90m2烧结烟气特点及与之相应的脱硫工艺,建设合理的烧结烟气脱硫设施,可降低萍钢烧结烟气SO2排放总量,顺应了国家日益严峻的SO2排控形势,可为区域环境空气质量的改善作出贡献,为环境友好型的经济发展提供解决方案。
     通过模拟烧结试验及石灰——石膏法动力波脱硫工艺处理萍钢2×90m2烧结机烧结烟气研究,得到了以下主要结论:
     (1)模拟烧结烟气特征研究表明:烟气中SO2含量在点火保温段,由于点火燃料的燃烧释放出少量的SO2,该阶段烟气中的SO2含量出现一个较小的峰值(达300 ppm)。点火保温之后,烟气中SO2含量下降到150~200ppm,并维持一段时间。随着烧结料层的过湿带厚度开始消失,烟气中SO2含量快速上升,并出现第二个峰值(为1256 ppm)。当烟气温度开始上升,此时过湿带已经完全消失。随着烟气温度的继续上升,烟气中SO2含量也迅速减少至零。
     (2)萍钢烧结烟气特征研究表明:由于烧结工艺自身的不稳定及烧结原料性能的波动,造成了萍钢烧结烟气在烟气量、烟气流量、粉尘浓度和SO2浓度方面均有大幅度变动且变化频率高,且两台烧结机机头烟气的特征并不一致。总烟气流量变化可高达40%以上;SO2季度平均浓度变化范围在889~2240 mg/m3之间,若以单日浓度考量,则变化范围在600~6000 mg/m3之间。
     (3)通过对国内现有脱硫技术的调研,综合考虑萍钢烧结厂烟气特征、现有脱硫工艺的成熟性以及系统运行的安全可靠性,并结合萍钢当地脱硫剂的供应情况等,选择采用石灰-石膏法动力波脱硫工艺处理2×90 m2烧结机烧结烟气,采用单塔配两根逆喷管脱硫系统,设计处理烟气量2×63万m3/h(工况,110℃),SO2浓度1440 mg/m3,设计SO2脱除效率≥93%(保证值≥90%),处理后的烟气经由脱硫系统自带的防腐烟囱(H:70 m,D:4.5 m)排入大气。
     (4)萍钢烧结烟气脱硫系统主要由烟气系统、吸收剂制备系统、氧化系统和脱硫副产物处理系统儿个子系统组成。烧结机主抽风机的烟气被引入到脱硫反应塔中进行脱硫反应。吸收剂制备系统提供生产中所需的脱硫剂,烟气系统中烧结烟气与脱硫剂充分混合并反应,经过氧化系统后,脱硫副产物将在脱硫副产物处理系统中得到处理。脱硫后的烟气从反应塔顶部通过玻璃钢FRP防腐烟囱排入大气,可满足国家规定的排放要求。
     (5)采用石灰-石膏法动力波脱硫工艺处理萍钢2x90m2烧结机烧结烟气,生石灰(CaO)经过消化装置,制成20wt.%Ca(OH)2浆液作为脱硫剂。脱硫系统生石灰(CaO,80%)消耗量为1.3 t/h,耗电量为2400 kW·h/h,年耗电量为1806万kW·h。脱硫系统工艺用水由萍钢烧结厂给水系统供给,耗水量约为39 m3/h,年耗水量为29万m3。经脱硫系统处理后烧结烟气参数如下:烟气量:95.8万m3/h(标态,湿),温度:40℃,压力:100 kPa,H2O(Vo1%):7.37。工艺水主要由烟气带出(占耗水量的98.5%),其余少量由脱硫终产物(石膏)带出。整个脱硫系统无废水外排。
     (6)脱硫系统运行的主要成本为脱硫剂消耗、系统耗电、耗水以及人员费用,合计为2247.78万元/a。本脱硫系统(按脱硫效率按93%计)运行后,每吨烧结矿成本增加7.2元。获得的经济收益主要是由于脱硫而减少的SO2排污费用(799.43万元/a)以及脱硫产物外售获得的经济收益。但是,由于采取脱硫措施,降低了企业外排SO2浓度,从而改善了企业所在区域的环境空气质量,树立了环境友好型企业形象,提升了企业形象,为企业带来环境效益和社会效益。
Sintering process is the main source of SO2 emissions in iron and steel company, which accounts for approximate 60% of the total emission in iron and steel works. Controlling SO2 emission from sintering is extremely important for reducing pollution in iron and steel works. Accelerating the implementation of sintering flue gas desulfurization, reducing SO2 emission of the sintering process is a inevitable requirement of the sustainable development of the iron & steel industry, is an important problem needed to be resolved urgently as well as a effective way to improve the international competitiveness of our iron and steel enterprises
     In response to our country's policy on the reduction of the total SO2 emission and constructing environment-friendly enterprises, Pingxiang iron and steel corporation is about to remake the existing flue gas system of the two 90 m2 sintering machine, so as to construct its sintering flue gas desulfurization facilities. Thus, research on the characteristics of the sintering flue gas from Pingxiang 2×90m2 sintering machine and the corresponding desulphurization process, the construction of a reasonable sintering flue gas desulfurization facilities, can reduce the total SO2 emission in Pingxiang Iron and Steel Co., Ltd., which complies with our country's increasingly severe SO2 emission situation and makes a contribution for the improvement of the surrounding air quality, and provide scheme for the environment-friendly economic development.
     Through the research of the sintering flue gas from Pingxiang 2×90m2 sintering machine by a simulation test and a lime-gypsum dynamicwave desulphurization process, the following conclusions can be obtained:
     (1) The research of simulated sintering shows:SO2 content in the flue gas in the ignition and heat preservation period emerges a small peak (up to 300ppm) due to the combustion of the ignition fuel gives off a small amount of SO2. Then, the SO2 content decreases to 150~200ppm, and maintains for some time. As the overwet layer of the sinter bed disappears, the SO2 content in the flue gas increases rapidly, and emerges the second peak (up to 1256 ppm). When the temperature of the flue gas begins to increase, the overwet layer has already disappeared at this time. As the temperature of the flue gas increases continuously, the SO2 content decreases rapidly to zero.
     (2) The research on the characteristics of the sintering flue gas from Pingxiang iron and steel company shows:the instability of the sintering process and fluctuations in raw sintering material, result in a substantial fluctuation and a high frequency in the amount of flue gas^ flue gas flow、dust concentration and SO2 concentration of the Pingxiang Iron and Steel Co., Ltd., and the characteristics of head flue gas between the two sintering machines are not consistent. The change in the total gas flow comes up to over 40%; while the quarterly SO2 average concentration changes in the range between 889 and 2240 mg/m3, while it may changes between 600 and 6000 mg/m3 in the single day.
     (3) Through the research on the domestic desulfurization technology and comprehensive considerations over the flue gas characteristics of the sintering plant in the Pingxiang Iron and Steel Co. Ltd.、the maturity of existing desulfurization process and the safety and reliability of operating system, combined with the availability of local desulfurization agent and so on, we choose the lime-gypsum dynamicwave desulphurization process to deal with the flue gases of the 2*90m2 sintering machines, using a single tower with two reverse nozzle desulfurization system, its designed capacity is of flue gas volume of 2*630000m3/h (working condition,110℃), SO2 concentration is 1440 mg/m3, the designed SO2 removal efficiency≥93%(guaranteed value≥90%), the flue gases after treatment release into the atmosphere through the Chimney corrosion (H: 70 m, D:4.5 m) of the desulphurization systems.
     (4) The desulphurization system in the Pingxiang Iron and Steel Co. Ltd. mainly consists of flue gas system、the absorbent preparation system、oxidation system and desulfurization by-product disposal system. The gas from the main exhaust fan of sintering machine is introduced into a tower where desulfurization reaction happens. The desulfurization agent comes from the absorbent Preparation System so, in the flue gas system sintering flue gas and desulfurization agent are fully mixed and reacted, then through the oxidation system, the desulfurization by-products will be addressed in desulfurization by-product processing system. The desulfurizated flue gas emit into air through the FRP corrosion chimney at the top of the reaction tower, which can meet the national emission requirements.
     (5) Using lime-gypsum dynamic wave desulfurization processing to deal with the sintering flue gas coming from 2×90m2 sintering machines in Pingxiang iron and steel plant, lime (CaO) are used after transforming to 20wt.% Ca(OH)2 slurry as the desulfurization agent. Desulfurization system quicklime (CaO,80%) consumption is 1.3 t/h, the power consumption is 2400 kW·h/h, annual power consumption is 18.06 million kW·h. The water consumption of Desulfurization process comes from water supply system in the Ping Steel sintering plant, about 39 m3/h, for the annual water consumption is 290,000 m3. The parameters of sintering flue gas treated by desulfurization system are in the following:flue gas volume:958,000 m3/h (standard state, wet), temperature:40℃, pressure: 100 kPa, H2O (Vol.%):7.37. Process Water is outleted mainly by gas (98.5% of total water consumption), and the remaining small amount is brought out by the desulfurization end products (gypsum). The whole desulfurization system is without waste water efflux.
     (6) The major cost of desulfurization system is sorbent consumption, system power, water and personnel costs for a total of 22.4778 million RMB/a. The desulfurization system (removal efficiency of 93% by total) runs, the cost of per ton of sinter increased by 7.2 RMB. Economic benefits gained are mainly due to the reduction of SO2 emission desulfurization costs (7994300 RMB/a) and the desulfurization by-products on sell. However, taking measures for desulphurization to reduce the SO2 emission concentration around the enterprise, the business environment and the air quality are improved, so as to set the environmently-friendly corporate image, promote the reputation of company, and obtain environmental and social benefits.
引文
[1]王筱留.钢铁冶金学(炼铁部分)[M].冶金工业出版社,2000.
    [2]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996.
    [3]中南矿冶学院团矿教研室.铁矿粉造块[M].北京:冶金工业出版社,1978.
    [4]麻丙田,张景智.高炉炼铁原料制备技术[M].沈阳:东北工学院出版社,1992
    [5]郜学.中国烧结行业的发展现状和趋势分析[J].钢铁,2008,43(1):85-88
    [6]郜学.“十五”我国烧结发展和技术进步[J].冶金信息导刊,2007(3):10-13.
    [7]唐先觉.朱雪琴,浅论我国烧结球团业50年来的技术进步[J]2004,29(6):1-3.
    [8]唐先觉.喜迎我国烧结行业的大发展[J].烧结球团,2003,28(3):1.
    [9]唐先觉.我国烧结工业现状及面临的问题[J].烧结球团,1995,20(6):1-6.
    [10]王春石.烟气污染及控制[J].化学工程师,2003,29(6):51-52
    [11]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,23(4):110-116
    [12]Ikuta K, Suzuki Y, Kitamura S. Effects of low pH on the reproductive behavior of salmonid fishes [J]. Fish physiology and biochemistry,2003(28):407-410.
    [13]匡凤娣.酸雨[J].北京水利,1997,(4):60.
    [14]Barbara Walna, Jeizy Siepak, Stanislaw Dizymala. Soil degradation in Wielkopolski National Park(Poland) as an Effect of Acid Rain Simulation [J]. Water, Air and Soil Pollution,2001(130):1727-1732.
    [15]高太忠,戚鹏,张杨,等.酸雨对土壤营养元素迁移转化的影响[J].生态环境,2004,13(1):23-26.
    [16]杨学春,朱亚萍.酸沉降对土壤化学性质的影响[J].四川环境,1995,14(1):6-9.
    [17]任国栋,王景红.酸雨的危害[J].陕西气象,1997,(2):42.
    [18]林慧萍.酸雨对陆生植物的影响机理[J].福建林业科技,2005,32(1):60-64.
    [19]王金潮.污染大气中浑仪、筒仪的带锈防护[J].文物保护与考古科学,1995,7(1):1-9.
    [20]萧以德,王光雍,李小刚,等.我国西部地区大气环境腐蚀性及材料腐蚀特征[J].中国腐蚀与防护学报,2003,23(4):248-255.
    [21]张夏,郭占成.我国钢铁工业能耗与大气污染物排放量[J].钢铁,2000,35(1):63-68.
    [22]宋伟民.钢铁联合企业控制SO2污染的探讨[J].钢铁,1999,34(7):21—23
    [23]张承中.循环流化床烧结烟气脱硫热态模拟试验研究[J].西安建筑科技大 学学报,1997,29(3):349-354
    [24]长沙黑色冶金矿山设计研究院.烧结设计手册[M].北京:冶金工业出版社,1999:127-131
    [25]Jin-IuhMou. In-Plant De-SOX, De-NOX in Iron Ore Sintering Process[J]. Kuangye,2000,2:41-48
    [26]E.Φ.维格曼.炼铁学[M]. 北京:冶金工业出版社,1993:40
    [27]潘建.铁矿烧结烟气减量排放基础理论与工艺研究[D].长沙,中南大学:2007.
    [28]Environmental Protection Agency (UBA). Comments on the draft'Dutch Notes on Best Available Techniques for Pollution Prevention and Control in the Production of Primary Iron and Steel[R]. Berlin:Environmental Protection Agency of Germany,1997.
    [29]Environmental Resources Management. Technical Note on Best Available Techniques to Reduce Emissions of Pollutants into the Air from Sinter Plants, Pelletisation and Blast Furnaces[R]. Brussels:EUROPEANCOMMISSION, 1995.
    [30]郝继锋,汪莉,宋存义.钢铁厂烧结烟气脱硫技术的探讨[J].太原理工大学学报,2005,36(4):491-494.
    [31]杨飏.环境保护专论选[M].北京:冶金工业出版社,1999:38-47.
    [32]沙永志,曹军,王凤岐,等.我国炼铁节能与环保[J].钢铁,2000,35(7):62-65
    [33]Hofstadle K.烧结与电炉烟气的二恶英脱除方案[J].世界钢铁,2004,(4):45-49.
    [34]David R. Anderson, Raymond Fisher. Sources of dioxins in the United Kingdom: the steel industry and other sources[J]. Chemosphere,2002, (46):371-381.
    [35]伍九畴.武钢烧结厂第四烧结车间工程烧结烟气治理情况介绍[J].冶金环境保护,2003,(5):17-20.
    [36]王剑涛.鞍钢烧结烟气S02测试结果分析[J].矿山环保,2002,(5):11-13.
    [37]谭志东,唐涌,汪建川.攀钢烧结机头烟气脱硫技术方案的建议[J].工业安全与防尘,2000,(8):15-17.
    [38]李庭寿,苏笑鹏.烧结烟气脱硫技术[C].2005中国钢铁年会论文集.北京:出版者,2005.484-487.
    [39]张同文.钢铁联合企业二氧化硫减排与控制[J].工业安全与环保2004,30(7):37-38
    [40]胡国生.攀钢烧结烟气脱硫技术研究[J].工业安全与环保,2002,28(8):7-10
    [41]杨飏.清洁生产与宝钢的SO2削减方略[J].宝钢技术,1997,(6):28-32.
    [42]沈晓林.宝钢环境保护[J].中国冶金,2005,15(6):39-42.
    [43]欧阳琦.浅谈烟气脱硫技术[J].工业安全与防尘,2000,(7):31-32.
    [44]戴华.烟气千法脱硫新工艺[J].环境科学动态,1983,10:6
    [45]陈东,林继发.湿法烟气脱硫技术简述[J].陕西环境,2003,10(5):32-34
    [46]童伟刚,姚雪荣,莫伟标.烟气脱硫方法分析及脱硫石膏的应用途径[J].新型建筑材料.2006,(8):55-57.
    [47]符迈群.沸石法净化气体中的硫化物[J].国外环境科学技术,1983,5:13-16
    [48]王增愉.美国和日本采用的烟道气脱NOx和SO2方法[J].环境保护科技消息,1981,61:2-3.
    [49]Richter, Ekehard. Modelling of crossflow moving bed absorbers exemplified for gas desulfurigation by activated coke erfahrenstech,1980,14(5):338-42 (Ger)
    [50]汤静芳,黄新发.烧结厂大气污染控制技术的应用及发展[J].武钢技术,2002,40(5):50-53
    [51]刘永峰,韦传稳,张旭.适合烧结烟气脱硫的S D A技术[J].中国钢铁业,2008,(5):32-33.
    [52]李江.钢铁企业烧结烟气脱硫技术的研究现状[J].钢铁技术,2006,(6):41-44.
    [53]Information Centre for Environmental Licensing. Dutch Notes on BAT for the Production of Primary Iron and Steel[R]. Berlin:the Ministry of Housing, Spatial Planning and the Environment, Directorate for Air and Energy, Department of Industry,1997.
    [54]Kasai E. Influence of properties of fluxing materials on the flow of melt formed in the sintering process[J]. ISIJ International,2000,40(9):857-862.
    [55]Kowaldki W, Kersting K and Werner P. The Influence of Sinter Composition on Sintering Rate and Phuical Quality of Sinter[C]. Ironmaking Conference Proceedings,1997:415-425.
    [56]Gunther Straka. Experiment and Study on Efects of Diferent Basicity and Contents of MgO and SiO2 in Sinter[J]. ISIJ International,1998,38(7):457-462.
    [57]Li-Heng HSISH and Whiteman J A. Effect of raw material composition on the mineral phases in the lime-fluxed iron ore sinter[J]. ISIJ International,1993, 133(4):62-73.
    [58]Bristow N J, Loo C E. Sintering Properties of iron ore mixes containing titanium[J]. ISIJ International,1997,32(7):819.
    [59]杨怀东.烧结烟气脱硫技术探讨[J].工业安全与环保,2006,(3):12-13.
    [60]葛介龙,张佩芬,周钓忠等.几种半干法脱硫工艺机理的探讨[J].中国电力环保,2006,(4):15-19.
    [61]单尚华,李春风.加快实施烧结烟气脱硫促进区域环境改善[J].冶金经济与管理,2006,4:8-12.
    [62]钟琴.燃煤烟气脱硫脱销技术及工程实例[M].北京:化学工业出版社,2002.
    [63]郝继峰,宋存义,钱大益,程相利.烧结烟气脱硫技术的研究[J].钢铁,2006,41(8):76-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700