用户名: 密码: 验证码:
硅橡胶基绝热材料及其热化学烧蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体火箭冲压发动机补燃室是富燃料推进剂的富燃燃气与过量冲压空气掺混、燃烧和释放能量的主要场所。这种特殊的工作环境对补燃室绝热材料提出了抗氧化、耐烧蚀和抗冲刷等要求。柔性的硅橡胶基绝热材料具有优良的耐氧化特性,能够缓冲补燃室助推器药柱形变产生的应力,适合于补燃室富氧高温的烧蚀环境。目前,我国对硅橡胶基绝热材料配方和性能调节技术研究尚不成熟,对该类绝热材料的烧蚀结构和热化学烧蚀机理缺乏认识,这严重制约了该类绝热材料的快速研发。因此,认识硅橡胶基绝热材料配方与烧蚀率的内在联系、明确该类绝热材料的烧蚀结构及化学反应,进而揭示该类绝热材料的热化学烧蚀机理尤为重要。这些研究结果还可为该类绝热材料的配方设计、改进提供理论依据和指导,有利于进一步降低该类绝热材料在冲压发动机补燃室环境中的烧蚀率。
     本文结合冲压发动机补燃室的烧蚀环境特点,以烧蚀过程中硅橡胶基绝热材料的烧蚀结构、组成和化学反应变化为核心,以该类绝热材料烧蚀过程中的热分解-陶瓷化-热氧化反应为纽带,系统研究了该类材料的热化学烧蚀特性。基于氧-乙炔焰和冲压发动机烧蚀实验,研究了硅橡胶基绝热材料配方组成和烧蚀环境对该类绝热材料烧蚀率的影响规律,明确了硅橡胶基绝热材料的烧蚀结构及组成,系统研究了烧蚀过程中该类绝热材料的热分解、陶瓷化和热氧化反应特征,获得了上述主要反应的热力学和动力学数据,明确了硅橡胶基绝热材料烧蚀结构、组成、反应与温度等环境参数的关系,揭示了硅橡胶基绝热材料的热化学烧蚀机理。建立了基于四层烧蚀结构(原始层、热解层、陶瓷层和烧蚀表层)的硅橡胶基绝热材料热化学烧蚀模型,数值研究了该类绝热材料烧蚀性能的影响因素。
     在氧-乙炔焰烧蚀条件下,增大苯基硅橡胶和碳纤维含量、减小气相二氧化硅(SiO2)含量,有利于降低硅橡胶基绝热材料的烧蚀率。综合优化后的绝热材料配方为:50份甲基乙烯基硅橡胶、50份苯基硅橡胶、30份气相SiO2和15份碳纤维,其线烧蚀率为0.049mm·s-1。沿烧蚀方向,烧蚀后的硅橡胶基绝热材料依次形成了原始层、热解层、陶瓷层和烧蚀表层四层结构,陶瓷层厚度较大和组成致密的绝热材料具有较好的耐烧蚀性能。在陶瓷层中原位生成碳化硅(SiC),其含量约为8.1%;烧蚀表层的主要成份是SiO2。冲压发动机补燃室中烧蚀后硅橡胶基绝热材料发生膨胀,线烧蚀率为负值,陶瓷层孔隙率较大。与氧-乙炔焰烧蚀状态相比,冲压发动机补燃室燃烧温度较低、烧蚀时间较短,导致绝热材料陶瓷层中原位SiC含量偏低。在补燃室头部的高温、低氧环境烧蚀作用下,绝热材料烧蚀表面C含量较高,原始绝热材料剩余较少;在补燃室尾部的低温、高氧环境烧蚀作用下,绝热材料烧蚀表面SiO2含量较高,原始绝热材料剩余较多。
     在氧-乙炔焰烧蚀条件下,典型硅橡胶基绝热材料的热解温度段约为765-943K。在该温度段,硅橡胶发生分解,碳纤维和二氧化硅保持稳定,最终形成多孔的热解层。因侧链苯基的位阻效应,苯基硅橡胶的热稳定性优于甲基乙烯基硅橡胶。硅橡胶受热主要发生环化分解,甲基乙烯基硅橡胶主要分解产物为甲基环硅氧烷,苯基硅橡胶液态产物中含有二苯基-多甲基环硅氧烷;硅橡胶热解过程中有部分侧链有机基团发生断裂和结构重排,产生小分子化合物;热分解过程中苯基硅橡胶的芳环结构发生高温缩合脱氢反应,并释放出氢气。甲基乙烯基硅橡胶和苯基硅橡胶热解固态产物的化学式分别为SiC0.90O1.11和SiC1.65O1.26。典型硅橡胶基绝热材料热解产物为碳纤维、SiO2、甲基乙烯基硅橡胶和苯基硅橡胶的固态热解产物。获得了典型硅橡胶基绝热材料及两种硅橡胶的热分解反应动力学方程。
     在氧-乙炔焰烧蚀条件下,典型硅橡胶基绝热材料热解层的陶瓷化反应主要发生在943-2073K之间,包含芳构碳缩合脱氢、硅氧碳化物高温转化SiC陶瓷、C/SiO2反应生成SiC和SiO、SiO2熔化、SiC/SiO2反应等,最终形成由C、SiO2和SiC构成的陶瓷层。陶瓷层的多孔结构使其密度和导热系数比原始绝热材料下降一半以上,但943-1873K陶瓷化过程中材料的物性参数变化相对较小。1673K以上绝热材料陶瓷层中存在硅氧碳化物的高温转化反应和C/SiO2的碳热还原反应,这两种反应导致了SiC的原位生成。1873K时管式炉陶瓷层试样原位生成的SiC含量高达30.4%,并存在纳米SiC晶须。SiC具有还原性,高温下SiO2具有氧化性,陶瓷层中部分原位生成的SiC可与SiO2进一步发生反应生成SiO和CO。获得了典型硅橡胶基绝热材料热解层试样的陶瓷化反应及C/SiO2、SiC/SiO2反应的动力学方程。
     硅橡胶基绝热材料陶瓷层的热氧化主要包括C、SiC分别与燃气中氧气(O2)、水(H2O)和二氧化碳(CO2)之间的反应,获得了这些反应及硅橡胶基绝热材料陶瓷层在O2、H2O和CO2混合氧化性气氛中的反应动力学方程。C的氧化反应在800-1400K之间快速进行,并导致了陶瓷层的失重;氧化性气体与C的反应速率大小关系是:O2>H2O>CO2。SiC优良耐氧化能力的发挥主要得益于产物SiO2对外部氧化性气体的隔离作用。原位生成的SiC不仅耐热氧化,还能将烧蚀形成的陶瓷层连接成牢固的整体结构,导致陶瓷层比C/SiO2/SiC混合物体系具有更好的耐热氧化性能。随着陶瓷层中C和SiC被逐渐氧化消耗,与高温氧化性环境接触的陶瓷层将会被氧化成以SiO2为主要成份的烧蚀表层。
     建立了基于四层烧蚀结构(原始层、热解层、陶瓷层和烧蚀表层)的硅橡胶基绝热材料热化学烧蚀过程的物理模型和数学模型,用实验结果验证了模型的正确性;采用数值分析方法,研究了硅橡胶基绝热材料配方、烧蚀环境对硅橡胶基绝热材料耐烧蚀特性的影响规律。
In the secondary combustion chamber of the integral solid rocket ramjet, mix andcombustion are taken place between the hot fuel-rich gas from primary combustion of thefuel-rich propellant and the excessive ducted air stream. A lot of reaction heats are releasedduring the combustion process. Therefore, there are many requirements, such as, anti-oxidation,anti-ablation and anti-erosion, for the insulation material to be used in the secondary combustionchamber of solid ducted rocket. Silicone rubber based insulation material, a kind of elastomericmaterial with excellent anti-oxidative and mechanical properties, can meet these requirements.However, the technologies of the formulation design and performance adjustment about thesilicone rubber based insulation material has not been fully developed in our country, and theunderstanding about the ablation structure and thermochemical ablation mechanism of thematerials is quite lacked in China. Therefore, it is very important to disclose the correlationsbetween the insulation material formulation and the ablation rate, and to realize the ablationstructure and chemical reactions during the ablation process. The results in this dissertation arevery usefull in establishment of the ablation theory and decreaseing the ablation rate of thisinsulation material.
     Based on the analysis of the ablative environment in the secondary combustion chamber ofthe integral solid rocket ramjet, the studies in this paper were focused on the ablation structures,the chemical reactions and their reaction products of the silicone rubber based insulation materialin the pyrolysis, ceramization and oxidation stages under the ablation process to realize theablative characteristics of the material systemically. Oxygen-acetylene ablation test and ramjetmotor test were employed to investigate the effects of ingredients and environmental parameterson the ablation rates of the insulation material. The reactions in the pyrolysis, ceramization andoxidation processes of the insulation material under the ablation test environments were studied.The thermodynamic and kinetic data of these reactions was obtained. The correlations betweenthe ablation structure, composition and reactions of the insulation material with environmentaltemperatures were deduced. Therefore, the thermochemical ablation mechanism of the siliconerubber based insulation material was established. An ablative model, which was based on theablation structure with virgin layer, pyrolysis layer, ceramic layer and surface layer, wasestablished. Finally, the effective factors on the ablation rates of the insulation material werenumerically studied.
     The ablation rates of the insulation material from the oxygen-acetylene flame test werereduced by increasing the contents of phenyl silicone rubber and carbon fibers, or decreasing thecontent of silica. The optimum composition of silicone rubber based insulation material isconsist of50parts per hundred grams of rubber (phr) methylvinyl silicone rubber,50phr phenylsilicone rubber,30phr fumed silica and15phr carbon fibers, of which the ablation rate is0.049mm·s-1. After ablation, virgin layer, pyrolysis layer, ceramic layer and surface layer were observed along the ablation direction. The experimental results showed that the insulationmaterial with low ablation-rate generally formed a thick and firm ceramic layer. Siliconcarbide was in-situ produced in the ceramic layer. The content of silicon carbide in-situproduced in the ceramic layer of the optimum insulation material composition from theoxygen-acetylene ablation test is about8.1%. The surface layer is mainly consisted of silica.The insulation material samples expanded under the ablation environment of the ducted rocketsecondary combustion chamber. Therefore, the porosity of the ceramic layer is greater thanthat from oxygen-acetylene ablation test. Because of the low temperature and short ablationtime, the silicon carbide content of the ceramic layer formed in the secondary combustionchamber is lower than that produced under the oxygen-acetylene flame. In the front part of thesecondary combustion chamber, where the ablative environment is high temperature and lowoxidized gas level, a high carbon content was detected in the surface layer of the ablatedinsulation material sample, and a thin virgin layer was remained. In the back part of thesecondary combustion chamber, where the ablative environment is low temperature and highoxidized gas level, the ablated insulation material sample showed high silica content on thesurface and a thick virgin layer.
     Under the oxygen-acetylene flame ablation condition, the temperature range of pyrolysisprocess for the typical silicone rubber based insulation material is765-943K. In thistemperature range, silicone rubbers decomposed, but carbon fibers and silica kept steady, so aporous pyrolysis layer of the insulation material is formed. The thermal stability of phenylsilicone rubber is better than that of the methylvinyl silicone rubber because of the blockingeffects of the phenyl groups. Circular type decomposition of silicone rubber took place.Dimethyl siloxane cycles are the main decomposition products of the silicone rubber with methyland vinyl groups, but diphenyl-multimethyl siloxane cycles are found in the liquiddecomposition products of the phenyl silicone rubber. Meanwhile, some other thermaldecomposition reactions, such as, side groups of silicone rubbers are ruptured from the polymerchain, and molecular redistribution reactions, take place to produce low molecular-weightcompounds. Polymerization of the aromatic groups from the themal decomposition of thesilicone rubber leads to produce hydrogen gas. The molecular formulas of the solid thermaldecompostion products pf the two silicone rubbers are SiC0.90O1.11and SiC1.65O1.26respectively.The pyrolysis layer sample of the typical silicone rubber based insulation material is consisted ofcarbon fibers, fumed silica and solid decomposition products of the two silicone rubbers. Thedecomposition kinetic equations of the typical silicone rubber based insulation material and thatof the two silicone rubbers were also obtained.
     Under the oxygen-acetylene flame ablation condition, the temperature range of theceramization process from the pyrolysis layer is between943K and2073K. The reactions ofceramization process include the polymerization of aromatic structure, the transformation ofsiliconoxycarbide to carbide silicon, the reactions between carbon and silica, melting of silica,the reaction between silicon carbide and silica. The ceramic layer sample, which produced by the ceramization reaction from the pyrolysis layer, is mainly consisted of carbon, silica andsilicon carbide. The density and conductibility of the ceramic layer is less than half of these ofthe insulation material because of its porous structure. However, the changes of physical andstructure parameters of the ceramic layer are relatively low between943K and1873K. Whenthe temperature is more than1673K, the reactions of ceramization process to produced in-situsilicon carbide, such as, the siliconoxycarbide transformation, carbothermal reaction betweencarbon and silica, will take place. At1873K, the content of silicon carbide in the ceramic layermade from tube furnace is as high as30.4%, and nano silicon carbide whiskers are also observedin the sample. The reaction between reductive silicon carbide and oxidative silica could occurto produce silicon monoxide and carbon monoxide. The kinetic equation of the ceramizationreaction of the typical silicone rubber based insulation material pyrolysis layer was obtained, aswell as the kinetic equations of the carbon and silica reaction, silicon carbide and silica reaction.
     During the oxidation process of ceramic layer sample, the reactions of C/O2, C/H2O, C/CO2.SiC/O2, SiC/H2O, and SiC/CO2will take place. The kinetic equations of these oxidationreactions of ceramic layer sample, carbon and silicon carbide with oxygen, water or carbondioxide were gained. Carbon could be quickly oxidized between800K and1400K, which leadsto the weight loss of ceramic layer. The oxidation rate of carbon became faster according to thesequence of carbon dioxide, water, oxygen. Silicon carbon showed good anti-oxidationproperties because silica was produced by the oxidation and obstructed silicon carbide fromoxidized gas. Besides its nice oxidation resistance, the in-situ produced silicon carbides have acapability of bonding the ingredients of the ceramic layer together to make a whole structure inthe ceramic layer. So the thermooxidative stability of the ceramic layer is better than that of themixture of carbon, silica and silicon carbide. When the carbon and silicon carbide in theceramic layer were oxidized by the oxidative gas under the high temperature environment, anablation surface layer mainly composited by silica was formed.
     Physical and numerical ablation models of the silicone rubber based insulation material,which considered four layers ablation structure (virgin layer, pyrolysis layer, ceramic layer andablation surface layer), were established. The calculation results were validated by theexperiment data. The effects of ingredients and ablative environment on the ablative rates ofsilicone rubber based insulation material were numerically studied.
引文
[1]刘兴洲,等编著.飞航导弹动力装置[M].北京:宇航出版社,1992.
    [2]张炜,朱慧,方丁酉.冲压发动机发展现状及其关键技术[J].固体火箭技术,1998,21(3):25-29.
    [3]杨月诚.火箭发动机理论基础[M].西安:西北工业大学出版社,2011.
    [4]史振翔,王春华,等.冲压发动机燃烧室热防护[C].玻璃钢学会第十五界全国玻璃钢/复合材料学术年会论文集,2003:308-310.
    [5]航空航天部三院三一零所.超音速飞航导弹文集[C].1991.
    [6]郭振玲.法国冲压发动机研制情况介绍[J].飞航导弹,1994,(4):24-28.
    [7]刘祥静,何熙虹.美国固体冲压发动机研发计划的进展[J].航空科学技术,2011,(3):45-48.
    [8]王秀萍,陈怡.欧美固体火箭冲压发动机研制[J].飞航导弹,2010,(3):77-82.
    [9]陈怡,闫大庆.流星导弹的关键技术及最新研制进展[J].飞航导弹,2012,(6):17-21.
    [10]徐东来,陈凤明,蔡飞超,杨茂.固体火箭冲压发动机设计技术问题分析[J].固体火箭技术,2010,33(2):142-147.
    [11]苏鑫鑫,王永寿.日本积极研制弹用固体冲压发动机[J].飞航导弹,2010,(3):17-21.
    [12] Myers. Integral Boost, Heat Protection, Port Covers and Transition [R]. NASAN85-15813.
    [13] Leonard S C, Harold T C, Thomas A M. Performance of Ablator Materials in RamjetEnvironments [R]. AIAA74-0697.
    [14] Ronald S F. A Century of Ramjet Propulsion Technology Evolution [J]. Journal ofPropulsion and Power,2004,20(1):27-58.
    [15]胡志刚.固体火箭冲压发动机补燃室内燃烧过程的数值研究[D].南京:南京理工大学,2008.
    [16]王德全.固体火箭冲压发动机补燃室粒子沉积与绝热层烧蚀过程研究[D].长沙:国防科学技术大学,2009.
    [17]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科技大学,2006.
    [18] A·达维纳,主编,张德雄,姚润森,等译.固体火箭推进剂技术[M].北京:宇航出版社,1997.
    [19] Bennet W J. Heat transfer through unbounded ceramic liners and walls of the combustionchamber [R]. AD659109,1967.
    [20] Curran E T, Stull F D. Ramjet Engines: Highlights of Past Achievements and FuturePromise [C]. The2nd International Symposium on Air Breathing Engines, Sheffield,1974.
    [21] Ramseyer J A, Linwood, Mich. Elastomeric Composition Containing Silicon Carbide forUse as an Ablative Coating [P]. USP3623904,1971.
    [22]余凤儿.改性聚氨酯/聚硅氧烷耐烧蚀材料研究[D].中国台湾,国立中山大学材料科学研究所,2004.
    [23] Roy L, Robert M. Lightweight ablating insulation for ramjet combustion [R]. AD-A413060,2002.
    [24] Webster F F. liquid fueled integral rocket ramjet technology review [R]. AIAA78-1108.
    [25] Garner A M, Webster F F. ASALM/PTV Propulsion System Development and FlightTest Program [C].7th Association for Unmanned Vehicle Systems Annual TechnicalSymposium,1980:135-141.
    [26]李存杰,龙玉珍.整体式冲压发动机的几项关键技术问题[J].飞航导弹,(3),1992:46-49.
    [27]任加万,谭永华.冲压发动机燃烧室热防护技术[J].火箭推进,32(4),2006:38-47
    [28] Dvornic P R, Lentz R W. Exactly alternating silirylene siloxane polymers [J]. Polymers,1983,24:763-768.
    [29] Baldwin J C, Meyers G W. Ablative insulating materials of high vinyl content [P].USP4581391,1986.
    [30] Newhouse J P, Rhein R A. High Temperature Insulators [P]. USP4778871,1988.
    [31] Chapman A J. Evaluation of several silicone, phenolic, and epoxy base heat-shieldmaterials at various heat-transfer rates and dynamic pressures [R]. NASA TN D-3619,1996.
    [32] Yamada S, Serizawa C. Thermal and ablative properties of silicone insulation [R].AIAA97-3259,1997.
    [33] Oyumi Y. Ablation characteristics of silicone insulation [J]. Journal of Polymer Science:Part A: Polymer Chemistry,36(2),1998:233-239.
    [34] Roland S.Castable silicone based heat insulations for jet engines [J]. Polymer Testing,2002,21(1):61-64.
    [35] Beall G, Shirin Z, Harris S. Development of an ablative insulation material for ramjetapplications [J]. Journal of Spacecraft and Rockets,2004,41(6):1068-1071.
    [36]张家骅,胡顺楠,顾炎武,等.整体式固体火箭冲压发动机研制[J].推进技术,1998,19(2):9-13.
    [37]杨永忠,鲍冠苓.聚二甲基硅氧烷/聚氨酯互穿网络耐烧蚀材料的研究[J].推进技术,1999,20(1):92-94.
    [38]赵凤起,鲍冠苓等.推进剂用室温硫化硅橡胶包覆材料的耐烧蚀性能研究[J].兵工学报,1999,20(1):83-86.
    [39]李岩芳.固体火箭冲压发动机补燃室绝热层烧蚀试验研究[J].固体火箭技术,2003,26(4):68-69.
    [40]高智阳.中科院秘密武器-雄三研发秘辛[J].全球防卫杂志,(197),2007.
    [41]余晓京.富氧环境下绝热层烧蚀模型研究[D].西安,西北工业大学,2004.
    [42]娄永春,余晓京,何国强,等.富氧环境下模拟绝热层烧蚀试验方法[J].固体火箭技术,2006,29(3):229-231.
    [43]张长贵,鲁国林等.硅橡胶热防护材料的烧蚀性能[J].有机硅材料,2005,19(1):1-4.
    [44]张长贵,鲁国林,何碧烟.填料对硅橡胶材料烧蚀性能的影响研究[C].中国宇航学会2005年固体火箭推进第22届年会论文集(推进剂分册),成都:中国宇航学会固体火箭推进专业委员会,2005:322-325.
    [45]张艳,陈国辉,王吉贵.用于冲压发动机补燃室热防护的硅橡胶绝热层研究[J].火炸药学报,2007,32(3):65-68.
    [46]叶定友.固体火箭冲压发动机的若干技术问题[J].固体火箭技术,2007,30(6):470-473.
    [47]程秀忠.炮射固体火箭冲压发动机绝热层传热烧蚀性能研究[D].南京,南京理工大学,2008.
    [48]梁华,陈雄,鞠玉涛,等.不同构型固体冲压发动机补燃室绝热层传热烧蚀[J].弹道学报,2009,21(3):26-30.
    [49]梁华.冲压发动机补燃室内绝热层传热烧蚀特性研究[D].南京:南京理工大学,2009.
    [50]王书贤,何国强,李江,等.不同燃气环境下硅橡胶绝热材料烧蚀特性试验研究[J].固体火箭技术,2009,32(5):583-587.
    [51]栾贻浩,武德珍,吴卫东,等,芳砜纶浆粕在硅橡胶耐烧蚀绝热材料中的应用[J].北京化工大学学报(自然科学版),2009,36(5),65-69.
    [52]陈春娟,王江,鹏正贵,等.固体火箭冲压发动机热防护材料研究进展[C].中国宇航学会固体火箭推进专业委员会第26届年会论文集:227-230.
    [53]陈春娟,马国富.富氧环境下燃烧室内绝热层的研究[J].火箭推进,30(4),2004:32-35.
    [54]马国富,王江,彭正贵.冲压发动机补燃室热防护研究[C].中国宇航学会固体火箭推进专业委员会第二十一届年会,上海,2004:260-263.
    [55]王德全,夏智勋,胡建新.固冲发动机补燃室非稳态沉积过程分析.固体火箭技术,34(1)2011:48-51.
    [56] Koo J H, Ho D W H, Ezekoye O A, A review of numerical and experimentalcharacterization of thermal protection materials-Part I. Numerical modeling [R]. AIAA2006-4936,2006.
    [57]姜贵庆,刘连元,著.高速气流传热与烧蚀热防护[M],北京:国防工业出版社,2002.
    [58]刘志刚,梁军,张巍.碳基复合材料超高温热化学烧蚀过程的数值模拟[J].航空材料学报,2006,26(5):91-95.
    [59]陆海波,陈伟芳,袁雷,等.再入体碳基材料烧蚀特性分析与工程计算[J].弹道学报,2008,20(3):107-110.
    [60] Gray P E. Oxidation resistant refractory coated carbon-carbon composites [P].USP4894286,1990.
    [61] Geisler R L. The relationship between solid propellant formulation variables and nozzlerecession rates [C]. JANNF rocket nozzle technology subcommittee workshops,Lancaster, Calif., July12-13,1978.
    [62] Klager K. The interaction of the efflux of solid propellants with nozzle materials [J].Propellants and Explosives,1981,2:123-147.
    [63]肖育民,何洪庆,蔡体敏.C/C材料的烧蚀机制分析[J].西北工业大学学报,1992,10(1),36-42.
    [64]何洪庆,周旭.固体火箭喷管中的烧蚀控制机制[J].推进技术,1993,(4):36-41.
    [65] Kuo K K, Keswani S T. A comprehensive theoretical model for carbon-carbon compositenozzle recession [J]. Combustion Science and Technology,1985,42:145-164.
    [66]严传俊,范玮,编著.燃烧学[M].西安,西北工业大学出版社,2008.
    [67] Stephen R T著,姚强,李水清,王宇,译.燃烧学导论:概念与应用[M].北京:清华大学出版社,2009.
    [68]王德全,夏智勋,胡建新.固冲发动机补燃室凝相碳颗粒燃烧研究[J].国防科技大学学报,2010,32(3):37-41.
    [69] Nusselt W Z. The process of combustion in powdered coal firing [J]. Ver. Deut. Ing.,1924,68:124-128.
    [70] Burke S P, Schuman T E W. The mechanism of combustion of solid fuel[C], Process oninternational conference of bituminous coal,1932,2:485-509.
    [71] Amundson N R, Mon S. Diffusion and reaction in carbon burning in dynamics andmodeling of reacive systems [M]. New York, Academic press,1980.
    [72]章明川,徐旭常.CO气相反应对碳颗粒燃烧的影响——连续模理论的一种简化模拟方法[J].工程热物理学报,1990,11:438-443.
    [73] Zhang M C, Yua J, Xu X C. A new flame sheet model to reflect the influence of theoxidation of CO on the combustion of a carbon particle [J]. Combustion and Flame,2005,143:150-158.
    [74]于娟.挥发份、CO火焰与炭粒燃烧的相互作用及其模化[D].上海:上海交通大学,2003.
    [75] Arthor J A. Reactions between carbon and oxygen [J]. T. F. S.,1951,47:164-178.
    [76] Rossberg M. Experimental results concerning the primary reaction in the combustion ofcarbon [J]. Journal of Electrochemistry,1956,60:925-956.
    [77]岑可法,姚强,骆仲泱,等著.高等燃烧学[M],浙江大学出版社,2002.
    [78]徐春霞,徐振刚,步学朋,等.煤焦与CO2及水蒸气气化特性研究进展[J].洁净煤技术,2007,13(6):49-52.
    [79] Kathy E, Benfell B, Basil B. Thermogravimeteric analytical procedures for characterizingNew Zealand and Eastern Australian coals [J]. Thermochimica Acta,1996,286:67-70.
    [80]尧志辉,旷戈,林诚,等.单颗粒煤焦燃烧反应动力学研究方法[J].化工学报,2009,60(6):1442-1450.
    [81] Ciambelli P, Corbo P, Gambino M, et al. Catalytic combustion of carbon particulate [J].Catalysis Today.1996,27:99-106.
    [82]张林仙,黄戒介,房倚天,等.中国无烟煤焦气化活性的研究——水蒸气与二氧化碳气化活性的比较[J].燃料化学学报,2006,34(3):265-269.
    [83] Libby P A, Blake T R. Burning carbon particles in the presence of water vapor [J].Combustion and flame.1981,41:123-147.
    [84] Potts R L. On heat balance integral solutions of carbonaceous ablator response duringre-entry [R]. AIAA84-0393,1984.
    [85] Potts R L. Hybrid integral/quasi-steady solution of charring ablation[R]. AIAA90-1677,1990.
    [86] Adarkar D B and Hartsook L B. An integral approach to transient charring ablatorproblems [J]. AIAA Journal,1966,4(12):2246-2248.
    [87] Leone S A and Laganelli A L. Enhancements to approximate ablation techniques[R].AIAA92-0854,1992.
    [88] Leone S A and Potts R L. Enhancements to integral solutions to ablation and charring [J].Journal of spacecraft and rockets,1995,32(2):210-216.
    [89] Swann R T, Pittman, Claud M. Numerical analysis of transient response of advancedthermal protection system for atmospheric entry [R], NASA TN D-1370,1962.
    [90] Swann R T. Approximate analysis of the performance of char-forming ablators [R].NASA TR R-195,1964.
    [91] Moyer C. B. Finite difference solution for the in-depth response of charring materialsconsidering surface chemical and energy balance [R]. NASA CR-1061,1968.
    [92]杜新,叶定友.固体火箭发动机内绝热层烧蚀分析[J].固体火箭技术,1994,(2):27-34.
    [93]王铮.内绝热层的炭化厚度和设计厚度计算[J].固体火箭技术,1994,(4):1-6。
    [94]孙冰,刘小勇,林小树,等.固体火箭冲压发动机燃烧室热防护层烧蚀计算[J].推进技术.2002,23,(5):375-378.
    [95]张杰,孙冰.基于热解动力学的绝热材料烧蚀研究[J].固体火箭技术,2010,33,(4):454-458.
    [96]姜贵庆.有加质和化学反应热传导的积分计算[J],宇航学报,1980,(1):50-58.
    [97]何国强,陈景蕙.绝热层烧蚀性能的理论预示[J].推进技术,1990,(4):33-39.
    [98]蔡体敏,王思民.高硅氧增强塑料烧蚀模型中热解层厚度的探讨[J].推进技术,1989,(1):10-13.
    [99] Curry D M. An analysis of a charring ablation thermal protection system [R], NASA TN3150,1965.
    [100] Chen Y-K, Milos F S. Ablation and thermal response program for spacecraft heatshieldanalysis [R], AIAA98-0273,1998.
    [101] Chen Y-K, Milos F S. Three-Dimensional ablation and thermal response simulationsystem [R], AIAA2005-5064,2005.
    [102]国义军.炭化材料烧蚀防热的理论分析与工程应用[J].空气动力学学报,1994,12(1):94-98.
    [103]何洪庆,严红. EPDM的烧蚀模型[J].推进技术,1999,20(4):36-39.
    [104]余晓京,何国强,李江,等.富氧环境下绝热层烧蚀模型[J].固体火箭技术,2006,29(2):113-116.
    [105] Yang B C, Cheung F B, Koo J H. Numerical investigation of thermo-chemical andmechanical erosion of ablative materials [R]. AIAA93-2045,1993.
    [106]李强,冯茵,李江,杨飒.以基于孔隙结构特征的EPDM绝热材料热化学烧蚀模型[J].固体火箭技术,2010,33(6):680-683.
    [107] Koo J H, Ho D W H, Ezekoye O A, A review of numerical and experimentalcharacterization of thermal protection materials-Part II. Properties Characterization [R].AIAA2007-2131,2007.
    [108]刘金香,高秀英.低密度烧蚀材料分解动力学[J].空间科学学报,1986,6(2):112-117.
    [109]李莉,谭志诚,孟霜鹤.烧蚀材料的热分解动力学研究[J].空间科学学报,1999,19(3):247-252.
    [110] Russel G W. Evaluation of decomposition kinetic coefficients for a fiber-reinforcedintumescent-epoxy [R]. AIAA93-1856,1993.
    [111] Uyarel AY, Pektas I. A thermal analysis investigation of new insulator compositionsbased on EPDM and phenolic resin [J]. Journal of Thermal analysis,1996,46:163-176.
    [112] Davidy A, Achlama A M, Ronen A. Determination of kinetic parameters of aerospacematerials [R]. AIAA2007-5771,2007.
    [113]郑亚,陈军,鞠玉涛,等编著.固体火箭发动机传热学[M],北京,北京航空航天大学出版社,2006.
    [114] Stockes E H. Kinetic of pyrolysis mass loss from cured phenolic resin [R]. AIAA94-3182,1994.
    [115]唐金兰,何洪庆,硅基内衬喷管扩展段烧蚀和温度场的耦合计算方法[J].推进技术,1991,(3),19-25.
    [116] Bethe H A and Adams M C. A theory for the ablation of glasy materials [J] Journal ofAstrophysics Science.1959,26(6):560-564.
    [117] Adams M C. Recent advances in ablation [J]. American Recent Science Journal,1959,29(9):621-625.
    [118] Hidalgo H and Kadanoff. Comparison between theory and flight ablation data [J]. AIAAJournal,1963,1(1):41-44.
    [119] Hidalgo H. Ablation of glassy material around blunt bodies of revolation [J]. AmericanRecent Science Journal,1960,30(9):806-822.
    [120] Zien T F. Heat transfer in the melt layer of a simple ablation model [R]. AIAA99-0470,1999.
    [121] Wei CY and Zien TF. Integral calculations of melt-layer heat transfer in aerodynamicablation [R]. AIAA2000-0205,2000.
    [122]俞继军,姜贵庆,李仲平.高粘度SiO2材料烧蚀传热机理及试验验证[J].空气动力学学报,2008,26(4):462-465.
    [123] Guan Y, Zhang L X, Zhang L Q. Study on ablative properties and mechanisms ofhydrogenated nitrile butadiene rubber (HNBR) composites containing different fillers [J].Polymer Degradation Stability,2011,96:808-817.
    [124] Jiang Y Y, Zhang X, He J Y. Effect of polyphenylsilsesquioxane on the ablative andflame-retardation properties of ethylene propylene diene monomer (EPDM) composite [J].Polymer Degradation Stability,2011,96(5):949-954.
    [125]孙冰,林小树,刘小勇等.硅基材料烧蚀模型研究[J].宇航学报,2003,24(3):282-286.
    [126] Milos F S, Marschall J. Thermochemical ablation model for TPS materials with multiplesurface constituents [R]. AIAA94-2042,1994.
    [127] Milos F S, Chen Y K. Comprehensive model for multicomponent ablationthermochemistry [R]. AIAA97-0141,1997.
    [128] Jones R G,著,冯圣玉,译.含硅聚合物——合成与应用[M].北京:化学工业出版社,2008.
    [129]马雷舍夫,波莫盖博,著,谢世杰,杨耀祖,译.橡胶分析[M].北京,化学工业出版社,1986.
    [130] Hamdani S, Longuet C, Perrin D, et al. Flame retardancy of silicone-based materials [J].Polymer Degradation and Stability,2009,94(4):465-495.
    [131] Camino G, Lomakin S, Lageard M. Thermal polydimethylsiloxane degradation. Part2.The degradation mechanisms [J]. Polymer,2002,43(7):2011-2015.
    [132] Jovanovic J D, Govedarica M N, Dvornic P R, et al. The thermogravimetric analysis ofsome polysiloxanes [J]. Polymer Degradation and Stability,1998,61(7):87-93.
    [133] Radhakrishnan T S. New method for evaluation of kinetic parameters and mechanism ofdegradation from pyrolysis-GC studies: thermal degradation of polydimethylsiloxanes [J].J Applied Polymer Science,1999,73:441-450.
    [134] Hayashida K, Tsuge S, Ohtani H. Flame retardant mechanism of polydimethylsiloxanematerial containing platinum compound studied by analytical pyrolysis techniques andalkaline hydrolysis gas chromatography [J]. Polymer,2003,44(19):5611-5616.
    [135]王雁冰,黄志雄.甲基硅橡胶的制备与热性能研究[J].国外建材科技,2007,28(1):46-48.
    [136]韦震宇,邹华,张立群,等.硅橡胶阻燃及成炭性能研究[J].特种橡胶制品,2011,32(2):15-20.
    [137]黄艳华,孙全吉,米志安,等.苯基链节结构对硅橡胶性能的影响研究[C].2010第十五届中国有机硅学术交流论文集,2010,202-204.
    [138] Deshpande G, Rezac M E. The effect of phenyl content on the degradation ofpoly(dimethyl diphenyl) siloxane copolymers[J].Polymer Degradation and Stability,2001,74:363-370.
    [139] Owen M J, Dvornic P R. Poly(silphenylene-siloxanes) in polymer data handbook [M].New York, Oxford University Press,1999.
    [140] Andrianov K A. Metalorganic polymers [M]. New York, Interscience,1965.
    [141]刘维良.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004.
    [142]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2001.
    [143] Henderson J B, Tant M R. A study of the kinetics of high-temperature carbon-silicareactions in an ablative polymer composite [J]. Polymer Composites,1983,4(4):233-237.
    [144]刘衍兵,郭康康,齐会民.硅氧烷改性含硅芳炔树脂的耐热性能研究[J].化工新型材料,2010,38(增刊):84-87.
    [145]崔孟忠,王文华.有机硅-无机硅高转化率耐高温消融材料的热性质[J].科学通报,2007,52(14):1625-1629.
    [146]欧阳水吾,郑国铭,杨希霓.高硅氧增强塑料的烧蚀理论及试验结果.宇航学报,1981.(1):19-22.
    [147]刘思峰,党耀国,方志耕.灰色系统理论及应用[M].北京:科学出版社,2004.
    [148]孙才志,宋彦涛.关于灰色关联度的理论讨论[J].世界地质,2000,19(3):248-252.
    [149] Zhao D, Zhang C, Hu H and Zhang Y. Ablation behavior and mechanism of3D C/ZrCcomposite in oxyacetylene torch environment [J]. Composite Science and Technology,2011,71(11):1392-1396.
    [150] Zhao D, Zhang C, Hu H, Zhang Y. Preparation and characterization of three-dimensionalcarbon fiber reinforced zirconium carbide composite by precursor infiltration andpyrolysis process [J]. Ceramic International,2011,37(7):2089-2093.
    [151] Zhang S, Wang S, Li W, Zhu Y, Chen Z. Microstructure and properties of W-ZrCcomposites prepared by the displacive compensation of porosity (DCP) method [J].Journal of Alloy Compound,2011,509(33):8327-8332.
    [152] Chen Z, Wu W, Chen Z, Cong X, Qiu J. Microstructural characterization on ZrC dopedcarbon/carbon composites [J]. Ceramic International,2012,38(1):761-767.
    [153] Zhou S, Li W, Hu P. Ablation behavior of ZrB(2)-SiC-ZrO(2) ceramic composites bymeans of the oxyacetylene torch [J]. Corrosion Science,2009,51:2071-2079.
    [154] Zhang X, Hu P, Han J, Meng S. Ablation behavior of ZrB2-SiC ultra high temperatureceramics under simulated atmospheric re-entry conditions [J]. Composite Science andTechnology,2008,68(7-8):1718-1726.
    [155] Han J, Hu P. Oxidation-resistant ZrB2-SiC composites at2200℃[J]. Composite Scienceand Technology,2008,68(3-4):799-806.
    [156] Zhang X H, Hu P, Han J C, Xu L, Meng S H. The addition of lanthanum hexaboride tozirconium diboride for improved oxidation resistance [J]. Scripta Material,2007,57(11):1036-1039.
    [157] Hu H F, Wang Q K, Chen Z H, Zhang C R, Zhang Y D, Wang J. Preparation andcharacterization of C/SiC–ZrB2composites by precursor infiltration and pyrolysisprocess [J]. Ceramic International,2010,36(3):1011-1016.
    [158] Wang Y, Liu W, Cheng L, Zhang L. Preparation and properties of2D C/ZrB2-SiC ultrahigh temperature ceramic composites [J]. Material Science and Engineer,2009,524(1-2):129-133.
    [159] Tong Q, Shi J, Song Y, Guo Q, Liu L. Resistance to ablation of pitch-derived ZrC/Ccomposites [J]. Carbon,2004,42(12-13):2495-2500.
    [160] Zhao D, Zhang C, Hu H, Zhang Y, Wang J. A simple way to prepare precursors forzirconium carbide [J]. Journal of Material Science,2010,45(23):6401-6405.
    [161] Shen X T, Li K Z, Li H J, Fu Q G. The effect of zirconium carbide on ablation ofcarbon/carbon composites under an oxyacetylene flame [J]. Corrosion Science,2011,53(1):105-112.
    [162] Shen X T, Li K Z, Li H J, Du H Y. Microstructure and ablation properties of zirconiumcarbide doped carbon/carbon composites [J]. Carbon,2010,48(2):344-351.
    [163] Sun W, Xiong X, Huang B Y, Li G D. ZrC ablation protective coating for carbon/carboncomposites [J]. Carbon,2009,47(14):3368-3371.
    [164] Wang Y G, Zhu X J, Zhang L T, Cheng L F. Reaction kinetics and ablation properties ofC/C-ZrC composites fabricated by reactive melt infiltration [J]. Ceramic International,2011,37(4):1277-1283.
    [165] Kuo S W, Chang F C. POSS related polymer nanocomposites [J]. Progress of PolymerScience,2011,36(12):1649-1696.
    [166] Pan G, Mark J E, Schaefer D W. Synthesis and characterization of fillers of controlledstructure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcingsiloxane elastomers [J]. Journal of Polymer Science and Polymer Physical,2003,41(24):3314-3323.
    [167] Bocek J, Matejka L, Mentlik V, Trnka P, Slouf M. Electrical and thermomechanicalproperties of epoxy-POSS nanocomposites [J]. European Polymer Journal,2011,47(5):861-872.
    [168] Fina A, Abbenhuis H C L, Tabuani D, Frache A, Camino G. Polypropylene metalfunctionalised POSS nanocomposites: A study by thermogravimetric analysis [J].Polymer Degradation and Stability,2006,91(5):1064-1070.
    [169] Lewicki J P, Pielichowski K, Croix P T D L, Janowski B, Todd D, Liggat J J. Thermaldegradation studies of polyurethane/POSS nanohybrid elastomers [J]. PolymerDegradation and Stability,2010,95(6):1099-1105.
    [170] Zhang Z P, Gu A J, Liang G Z, Ren P G, Xie J Q, Wang X L. Thermo-oxygendegradation mechanisms of POSS/epoxy nanocomposites [J]. Polymer Degradation andStability,2007,92(11):1986-1993.
    [171] Fina A, Tabuani D, Camino G. Polypropylene-polysilsesquioxane blends [J]. EuropeanPolymer Journal,2010,46(1):14-23.
    [172] Pan G, Mark J E and Schaefer D W. Synthesis and characterization of fillers of controlledstructure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcingsiloxane elastomers [J]. Journal of Polymer Science Part B,2003,41(24):3314-3323.
    [173] Baumann T F, Jones T V, Wilson T, Saab A P and Maxwell R S. Synthesis andcharacterization of novel PDMS nanocomposites using POSS derivatives as cross-linkingfiller [J]. Journal of Polymer Science Part A,2009,47(10):2589-2596.
    [174] Chen D Z, Yi S P, Wu W B, Zhong Y L, Liao J, Huang C, Shi WJ. Synthesis andcharacterization of novel room temperature vulcanized (RTV) silicone rubbers usingVinyl-POSS derivatives as cross linking agents [J]. Polymer,2010,51(17):3867-3878.
    [175] Chen D Z, Yi S P, Fang P F, Zhong Y L, Huang C, Wu X J. Synthesis andcharacterization of novel room temperature vulcanized (RTV) silicone rubbers usingocta[(trimethoxysilyl)ethyl]-POSS as cross-linker [J]. Reactive Function Polymer,2011,71(4):502-511.
    [176] Chen D Z, Nie J R, Yi S P, Wu W B, Zhong Y L, Liao J, Huang C. Thermal behaviourand mechanical properties of novel RTV silicone rubbers usingdivinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker [J]. Polymer Degradation andStability,2010,95(4):618-626.
    [177] Chen D Z, Liu Y, Huang C. Synergistic effect between POSS and fumed silica onthermal stabilities and mechanical properties of room temperature vulcanized (RTV)silicone rubbers [J]. Polymer Degradation and Stability,2012,97(3):308-315.
    [178] Liu L, Tian M, Zhang W, Zhang L, Mark J E. Crystallization and morphology study ofpolyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer compositesprepared by melt blending [J]. Polymer,2007,48(11):3201-3212.
    [179]姜本正.硅基绝热材料配方及POSS的应用探索研究[D].国防科技大学,2011.
    [180]周瑞发,韩雅芳,李树索.高温结构材料[M].北京:国防工业出版社,2006.
    [181] Surbrhanyaml J. Self-propagating high-temperature synthesis [J]. Journal of MaterialsScience.1992,27:6249-6273.
    [182]周峰,程晓农,严学华,王萍.原位反应烧结法制备SiC多孔木材陶瓷[J].材料科学与工程学报,2008,26(5):757-760.
    [183]刘江,彭晓东,刘相果,权燕燕.原位合成铝基复合材料的研究现状[J].重庆大学学报,2003,26(10):1-5.
    [184] Deal B E, Grove A S.General relationship for the thermal oxidation of silicon[J].Journalof Applied Physics,1965,36(12):3770-3778.
    [185]赵振国.吸附作用原理[M].北京:化学工业出版社,2005.
    [186]范云鸽,李燕鸿,马建标.交联聚苯乙烯型多孔吸附剂的中孔性质研究[J].高等学校化学学报,2002,23(8):254-259.
    [187]段珏锋,周毅,陈晓平等.煤气化半焦的孔隙结构[J].东南大学学报,2005,35(1):135-139.
    [188] Boer J H. The Structure and Properties of Porous Materials [M]. London: Butterworths,1958:205-210.
    [189]付志新,郭占成.焦化过程半焦孔隙结构时空变化规律的实验研究—孔结构的分形特征及其变化[J].燃料化学学报,2007,35(4):385-390.
    [190] Gao G X,Zhang Z C,Zheng Y S,Jin Z H.Effect of Fiber Orientation Angle on ThermalDegradation and Ablative Properties of Short-Fiber Reinforced EPDM/NBR RubberComposites [J]. Polymer Composites,2010,(7):210-218.
    [191]谢恩情.工业型煤孔隙率及视相对密度测定方法(MT/T918-2002)制定说明[J].煤质技术,2003(1):10-12.
    [192]薛靓.粉末密度的测定方法及误差分析[J].中国测试技术,2004,30(6):31-32
    [193]崔志波.公路工程大空隙试件孔隙率精确测定方法研究[J].山西建筑,2005,31(18):159-160.
    [194]牟宏博.甲基单苯基乙烯基硅橡胶的合成与性能研究[D].北京化工大学,2010.
    [195]周宁琳.有机硅聚合物导论[M].北京:科学出版社.2000.
    [196] Warren B E.X-Ray Diffraction[M].Addison-Wesley, Reading, MA,1969.
    [197] GB/T3045-2003,普通磨料碳化硅化学分析方法[S].
    [198] GB/T16555.1-1996,碳化硅耐火材料化学分析方法吸收重量法测定碳化硅量[S].
    [199] YB/175-2000,金刚砂中碳化硅的测定[S].
    [200] GB/T16555.6-1996,碳化硅耐火材料化学分析方法测定二氧化硅量[S].
    [201]薛群虎,徐维忠.耐火材料[M].冶金工业出版社,北京,2009.
    [202]华南工学院、南京化工学院、武汉建筑材料工业学院合编.陶瓷工艺学[M].中国建筑工业出版社,北京,1981.
    [203] Ma Y, Wang S, Chen Z H. Raman spectroscopy studies of the high-temperatureevolution of the free carbon phase in polycarbosilane derived SiC ceramics [J]. CeramicInternational,2010(36):2455-2459.
    [204]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2008.
    [205]史启祯,赵凤起,阎海科.热分析动力学与热动力学[M].西安:陕西科学技术出版社,2001.
    [206]李余增.热分析[M].北京:清华大学出版社,1987.
    [207]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [208] Grassie N, Francey K F. The thermal degradation of polysiloxanes—Part3:Poly(dimethyl/methyl phenylsiloxane)[J]. Polymer Degradation and Stability.1980,2(1):53-66.
    [209] Chou C, Yang M H. Structural effects on the thermal properties of PDPS/PDMScompolymers [J]. Journal of Thermal Analysis,1993,40:657-667.
    [210]傅献彩,沈文霞,姚天扬.物理化学[M].北京,高等教育出版社,1999.
    [211]王光辉,熊少祥.有机质谱解析[M].北京:化学工业出版社,2005.
    [212]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术[M].北京:化学工业出版社,2006.
    [213]李光亮.有机硅高分子化学[M].北京:科学出版社,1999.
    [214]周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000.
    [215] Camino G, Lomakin S M, Lazzari M. Polydimethylsiloxane thermal degradation. Part1.Kinetic aspects [J]. Polymer,2001,42:2395-2402.
    [216] Deshpande G, Rezac M E. The effect of phenyl content on the degradation ofpoly(dimethyl diphenyl) siloxane copolymers[J]. Polymer Degradation and Stability,2001,74:363-370.
    [217] Sorarha G D, Andrea G D, Glisenti A. XPS characterization of gel-derived siliconoxycarbide glasses [J]. Materials Letters,1996,27: l-5.
    [218]秦匡宗,劳永新,黄醒汉.油页岩有机碳的演化模式与评价方法[J].石油与天然气地质,1985,6(3):288-299.
    [219]黄惠.表面技术及其在材料分析中的应用[M].北京:科学技术文献出版社,2002.
    [220]吴正龙,刘洁.现代X光电子能谱(XPS)分析技术[J].现代仪器,2006,(1):50-53.
    [221]韩敏芳,李伯涛,郭梦熊.碳化硅晶须品质及其影响因素[J].人工晶体学报,1996,25(4),343-347.
    [222]戴长虹,赵茹,水丽.电场电炉合成碳化硅晶须的研究[J].无机材料学报,2003,18(3),691-694.
    [223]王福,孙加林,曹文斌,王强.SiC晶须的微波加热合成[J].耐火材料,2008,42(5),357-361.
    [224]许桢,戴长虹,赵茹,宋祖伟.碳化硅晶须双重加热合成的研究.稀有金属材料与工程,2007,36(增刊),308-308.
    [225] Yue Z R, Jiang W, Wang L. Surface characterization of electrochemicaly oxidizedcarbon fibers [J]. Carbon,1999,37(11):1785-1796.
    [226]殷永霞,沃西源.碳纤维表面改性研究进展[J].航天返回与遥感,25(1):51-54.
    [227]徐天恒.聚硅氧烷转化SiOC陶瓷微观结构的演变与改性[D].国防科技大学,2011.
    [228]沈光球,陶家洵,徐功骅.现代化学基础[M].北京清华大学出版社,1999
    [229]苏晓磊,周万城,徐洁,等.固相反应合成β-SiC粉体的工艺参数对其介电性能的影响[J].材料导报,2011,25(20):77-79.
    [230]曾洪,阚艳梅,徐常亮,等.固相反应法合成碳化硼纳米粉末[J].无机材料学报.2011,26(10),1101-1104.
    [231]李凤生,崔平,杨毅.微纳米粉体后处理技术及应用[J].北京,国防工业出版社,2005.
    [232] Ciambelli P, Corbo P, Gambino M, Palma V, Vaccaro S. Catalytic combustion of carbonparticulate [J]. Catalysis Today1996,27:99-106.
    [233] Kleykamp H,Schauer V,Skokan A.Oxidation behaviour of SiC fibre reinforced SiC [J].Journal of Nuclear Materials,1995,227(1):130-137.
    [234] Opila E J, Smialek J L, Robinson R C. SiC recession caused by SiO2scale volatilityunder combustion conditions: II, thermodynamics and gaseous-diffusion model. Journalof American Ceramic Society,1999,82(7):1826-1834.
    [235] Goto T, Homma H. High-temperature active-passive oxidation and bubble formation ofCVD SiC in O2and CO2atmospheres [J]. Journal of the European Ceramic Society,2002,22(14-15):2749-2756.
    [236] Shimoo T, Okamura K, Morisada Y. Active-to-passive oxidation transition forpolycarbosilane derived silicon carbide fibers heated in Ar-O2gas mixtures [J]. Journal ofMaterials Science,2002,37(9):1793-1800.
    [237]徐永东,张立同,韩金探.硅基陶瓷在燃气条件下的腐蚀[J].兵器材料科学与工程,18(6),1995,63-72.
    [238]董存胜,张珊珊.固体推进剂燃烧波温度分布及其微分[J].火炸药学报,1995,18(1):19-23.
    [239]杨世铭,陶文铨,编著.传热学[M].北京:高等教育出版社,1998.
    [240]董师颜,等编著.固体火箭发动机原理[M].北京:北京理工大学出版社,1996.
    [241]范晓樯,李桦,丁猛.钝头双锥体有攻角表面热流计算.兵工学报2002,23(1):142-144.
    [242]蔡体敏.固体火箭发动机工作过程的数值分析[M].西安,西北工业大学出版社,1991.
    [243]郭宽良.计算传热学[M].中国科学技术大学出版社,合肥,1988.
    [244]李立康,於崇华,朱政华,编著.微分方程数值解法[M].复旦大学出版社,1998.
    [245] Lide D R. Handbook of Chemistry and Physics [M]. CRC publishing company,87thEdition,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700