用户名: 密码: 验证码:
碳纳米颗粒改性碳化硅陶瓷基复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷基复合材料(Ceramic Matrix Composite,简记为CMC)是以陶瓷材料为基体,以陶瓷纤维、晶须、晶片或颗粒为补强体,通过适当的复合工艺制备的、性能可设计的一类新型材料。本论文将碳纳米颗粒与碳化硅复合制备的碳颗粒/碳化硅陶瓷基复合材料,有效地改善碳化硅陶瓷的机械加工性能,并将其应用于玻璃夹具、模具材料,提高了使用寿命,具有一定的强度和硬度,且使该材料不与高温玻璃熔体发生粘接。
     本论文第一章首先综述C/SiC陶瓷基复合材料的研究现状及应用前景,归结了制备C/SiC陶瓷基复合材料的现代技术,其中主要是碳纤维增强的碳化硅(Cf/SiC)陶瓷基复合材料的制备技术。虽然,Cf/SiC陶瓷基复合材料各方面性能的研究较为成熟,然而,在C/SiC陶瓷基复合材料的未来工业领域,考虑到制备成本,可选用碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。还阐述了机械力化学法合成复相陶瓷粉体材料是一种具有广阔应用前景的复相陶瓷材料制备方法,采用该方法制备在常规高温、高压条件下难以制备的特种陶瓷颗粒材料。同时,重点描述了机械力化学法制备陶瓷颗粒的原理和理论基础及其研究进展。另外,给出了本论文的研究目标和研究内容。
     论文第二章根据机械力化学反应机理、采用常温下机械力化学方法原位制备Cp/SiC复合粉体,探讨了机械力化学法原位合成复合粉体的复合机理。采用现代表征方法(如X光衍射、热重和差热分析、扫描电镜和透射电镜等)对制备的样品进行了表征。另外,还分析和研究了不同的合成参数(如球料比、研磨时间、研磨方式等)对合成β-SiC以及后续原位复合得到Cp/SiC复合粉体性质的影响。研究结果表明,采用优化机械力化学合成参数,可有效地合成β-SiC并与多余碳纳米颗粒原位复合得到Cp/SiC的复合粉体。
     论文第三章研究了采用喷雾造粒的方法以机械力化学原位合成Cp/SiC复合粉体为原料制备类球形Cp/SiC复合颗粒,并探讨了影响喷雾造粒过程的主要因素。另外,还研究了分散剂种类、分散剂用量、搅拌时间以及碳纳米颗粒含量等参数对合成Cp/SiC复合粉体在水介质中的分散性能的影响。结果表明,对Cp/SiC复合粉体固含量为45wt%的分散浆料采用喷雾造粒方法可有效地制得适宜的类球形实心Cp/SiC复合颗粒。
     论文第四章研究了采用无压烧结的方法制备不同碳纳米颗粒含量(即,5wt%、10wt%、15wt%和25wt%)的碳化硅陶瓷基复合材料,探讨了无压烧结Cp/SiC复合陶瓷的烧结致密化机理,以及碳纳米颗粒含量对复合陶瓷的力学性能的影响。结果表明,添加碳纳米颗粒的碳化硅陶瓷基复合材料的无压烧结致密化机理与SiC陶瓷的无压烧结机理是一致的,即,烧结初期,膨胀机制占主导;烧结中期,收缩机制占主导,并抵消膨胀机制的作用;烧结终结前,膨胀机制略占主导。同时,随着碳纳米颗粒含量的增加,碳纳米颗粒/碳化硅陶瓷基复合材料的弯曲强度逐渐降低,显气孔率逐渐增大,硬度逐渐降低,但断裂韧性先增大后减小,并在碳纳米颗粒为15wt%时达到了极大值(2.58MPa·m1/2)。当碳纳米颗粒含量为0~15wt%时,陶瓷基复合材料的烧失率控制在5~6%之间。当碳纳米颗粒含量超过15wt%时,烧失率急剧增大,当碳纳米颗粒含量为25wt%时,其烧失率达到18%以上。
     论文第五章研究了Cp/SiC复合陶瓷材料的氧化行为和抗热震性。结果表明,在400~700℃之间,Cp/SiC复合陶瓷在空气中的氧化过程受C-O2反应控制,呈均匀氧化,其显气孔率随氧化温度的升高而增加,弯曲强度随氧化温度增加而降低,当达到700℃时,为极小值;在700~1000℃之间,氧化过程受O2的气相扩散和O2通过微裂纹的扩散控制,可形成SiO2相。随温度增高,其显气孔率降低,弯曲强度增加,在1000℃时达到极大值;在1000~1100℃之间,O2通过SiC缺陷的扩散控制着复合陶瓷材料的氧化过程,显气孔率增加,弯曲强度降低。同时,随着碳纳米颗粒含量的增加,碳纳米颗粒大量聚集在晶界处,重复冷热循环容易降低复合材料的强度,出现裂纹的几率增大,抗热震性变差。因此,氧化温度和碳纳米颗粒含量是影响Cp/SiC复合陶瓷材料强度及氧化行为和抗热震性的关键因素。
     论文第六章研究了碳纳米颗粒含量对Cp/SiC陶瓷的机械加工性能。结果表明,添加在Cp/SiC陶瓷中并均匀分布在SiC晶界处的碳纳米颗粒可改善Cp/SiC陶瓷的机械加工性能。但是,当添加的碳纳米颗粒含量超过15wt%时,材料内部形成了网络孔洞结构,导致其陶瓷材料致密度急剧降低。另外,依据采用机械加工速度V、机械加工性指数M、脆性指数B及可加工性能参数n综合评价Cp/SiC陶瓷的机械加工性能可知,当碳纳米颗粒含量为15wt%时,极大值Mmax为0.921,极小值Bmin为1.09,可加工性能参数极大值nmax为+0.342,这表明碳纳米颗粒含量为15wt%的Cp/SiC陶瓷具有良好的机械加工性能。
     论文第七章采用此复合材料制备了玻璃夹具,并给出了实际应用结果。
     另外,经润湿性实验测试表明,当碳纳米颗粒含量为或大于15wt%时,Cp/SiC陶瓷基复合材料在1000℃以下与玻璃熔体不发生粘结,润湿性差。此时在复合材料中的碳纳米颗粒先于SiC基体氧化,抑制了基体表面SiO2膜的生成,从而有效地降低了基体与玻璃熔体的粘结和润湿效应,以达到适用作玻璃夹具材料的不粘结性质。
     最后,给出了通过研究所获得的论文结论以及今后工作的展望。
Ceramic matrix composite (CMC) is one of advanced inorganic materials composed ofceramic substrate and reinforcing body such as ceramic fiber, whisker, chips or particles,which is prepared through developed composite technologies in recent years. In this thesis,carbon nanoparticles/silicon carbide (Cp/SiC) ceramic matrix composites (Cp/SiC-CMC) wereprepared as a promising material of glass fixtures in glass processing. The Cp/SiC-CMC canbe used as glass fixtures and mold materials due to the improved machinability, appropriatemechanical strength/hardness and unbonding with high-temperature glass melts.
     In Chapter1, recent development on the preparation and application of C/SiC-CMC wasreviewed. The existing preparation methods for carbon fiber reinforced silicon carbide(Cf/SiC) CMC were represented. Besides Cf/SiC-CMC, carbon nanoparticle (Cp) reinforcedSiC CMC can be used as a promising material instead of Cf/SiC-CMC due to the lowpreparation cost. In addition, a mechanochemical method for the preparation of ceramicand/or composite powders was also introduced. The mechanochemical method can be used toprepare some special ceramic materials that were commonly produced under high temperatureand/or high pressure conditions. The corresponding principle and theory of mechanochemicalmethod for the preparation of ceramic particles were described. In this chapter, the researchobjectives and contents of the thesis were given.
     In Chapter2, a carbon-silicon carbide (Cp/SiC) composite powder was prepared withnano-carbon (Cp) and silicon (Si) powders as starting materials via a mechanochemicaltreatment in Ar atmosphere in a dry stirred ball mill. The composite powder was characterizedby X-ray diffraction (XRD), thermogravimetry/differential scanning calorimetry (TG/DSC),scanning electron microscopy (SEM) and transmission electron microscopy/high resolutiontransmission microscopy (TEM/HRTEM). Effects of parameters (such as grinding time, ratioof ball to powder, grinding mode and atmosphere) on the synthesis of β-SiC particles, and the simultaneous preparation of Cp/SiC composite powder with the synthesized particles of β-SiCand the remaining Cpby the mechanochemical treatment were investigated. The results showthat β-SiC particles can be synthesized and the Cp/SiC composite powder in the presence ofexcessive nano-sized carbon can be simultaneously obtained via the mechanochemical route.
     In Chapter3, sphaeroid particles of Cp/SiC composite were fabricated with awell-dispersive aqueous slurry of Cp/SiC composite powder by a spray granulation technique.The parameter influences on the spray granulation process were investigated. In addition, theeffects of dispersant type, dispersant amount, stirring rate and carbon nanoparticle content onthe dispersibility of the aqueous slurry of Cp/SiC composite powder before the spraygranulation were also analyzed. The results show that the sphaeroid Cp/SiC compositeparticles can be effectively obtained with the well-dispersive aqueous slurry by the spraygranulation technique.
     In Chapter4, Cp/SiC-CMC with different contents of carbon nanoparticles (i.e.,5wt%,10wt%,15wt%and25wt%) was prepared by pressureless sintering. The densificationmechanism of Cp/SiC-CMC by pressureless sintering was discussed. The influence of carbonnanoparticles content on the mechanical properties of Cp/SiC-CMC was investigated. Theexperimental results reveal that the densification mechanism of Cp/SiC-CMC with carbonnanoparticles by pressureless sintering is consistent with that of pure SiC ceramic,i.e., theexpansion mechanism is dominant at the initial stage of sintering, the shrinkage mechanismbecomes dominant and offsetsagainst the expansion mechanism at the middle stage and theexpansion mechanism is slightly dominant before the end of sintering. It was also indicatedthat the bending strength and the hardness of Cp/SiC-CMC decrease andthe apparent porosityincreases with increasing carbon nanoparticle content in Cp/SiC-CMC. However, the fracturetoughness firstly increases and then decreases with increasing the nanoparticle content, givingan optimum value of2.58MPa·m1/2at the nanoparticle content of15wt%. When thenanoparticle content is in the range of0~15wt%, the ignition loss of Cp/SiC-CMC is5~6%. The ignition loss increases sharply atthe nanoparticle content of>15wt%, and becomes>18%at the content of25wt%.
     In Chapter5, the oxidative behavior and thermal shock resistance of Cp/SiC-CMC wereinvestigated. The results show that the oxidation of Cp/SiC-CMC in air atmosphere iscontrolled via the reaction of C-O2at400~700℃, exhibiting a homogeneous oxidation. Theapparent porosity of Cp/SiC-CMC increasesand the bending strength decreaseswith increasingthe oxidation temperature. The bending strength becomes minimum at700℃; At700~1000℃, the oxidation is controlled via the O2diffusion, and O2diffusion through themicrocracksleads to the formation of SiO2phase. The apparent porosity decreases and thebending strength increases with increasing the temperature. The bending strengthis maximumat1000℃; At1000~1100℃, the oxidation is controlled by the O2diffusion through thedefects of SiC. The apparent porosity increases and the bending strength decreases withincreasing the temperature. Also, since there exist massive carbon nanoparticles in the SiCgrain boundaries when the carbon nanoparticle content increases, readily causing the increaseof the crack probability inthe repeated psychro-thermal cycles,the strength andthe thermalshock resistance of the composite material thus reduce.It was indicated that the oxidationtemperature and carbon nanoparticle content both have effects on the strength, oxidationbehavior and thermal shock resistance of Cp/SiC-CMC.
     In Chapter6, the influence of carbon nanoparticle content on the machinability ofCp/SiC-CMC was investigated. The results show that the machinability of Cp/SiC-CMC canbe improved due to the presence of carbon nanoparticles evenly distributed through the SiCgrain boundary in Cp/SiC-CMC. However, the net-like hole structure in Cp/SiC-CMC canappear at carbon nanoparticle content of>15wt%, resulting in the decrease of the density ofCp/SiC-CMC. According to the evaluation of the machinability by machining speed V,machinability index M,brittleness index B and malleability parameter n, the maximummachinability index (Mmax) is0.921and the minimum brittleness index (Bmin) is1.09, and themaximum malleability parameter (nmax) is+0.342when the content of carbon nanoparticles is15wt%, showing a proper machinability of Cp/SiC-CMC with carbon nanoparticle content of 15wt%.
     In Chapter7, the preparation process and the practical application of Cp/SiC-CMC usedas glass fixtures were investigated.
     In addition, the wettability of Cp/SiC-CMC was also examined. The results show thatCp/SiC-CMC does not bond with molten glass at <1000℃when carbon nanoparticle content is≥15wt%, exhibiting a poor wettability. In this case, carbon nanoparticles are oxidized prior toSiC substrate, inhibiting the formation of SiO2film on the surface of substrate and thuspreventing the wetting effect between the substrate and molten glass, which can favor theapplication of Cp/SiC-CMC for glass fixtures.
     Finally, the conclusions obtained and some prospects for future research work weregiven.
引文
[1]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙.2001.
    [2]郭景坤.陶瓷的脆性与增韧[J].硅酸盐学报,1987,15(5):385-393.
    [3]王树海,李安明,乐红志,等.先进陶瓷的现代制备技术[M].北京.化学工业出版社.2007.
    [4]周洋,袁广江,徐荣九.高温结构陶瓷基复合材料的研究现状与展望[J].硅酸盐通报,2001(4):31-36.
    [5]万峰,罗发,周万城,等.先驱体转化法制备连续纤维增韧陶瓷基复合材料的研究[J].材料导报,2012,26(23):134-137.
    [6] PAN Y., Y. XU, Z. CHEN, et al. Ablation properties analysis of2D C/SiC composites[J]. OrdnanceMater Sci Eng (in Chinese),2006,29(1):17-20.
    [7]李宏,徐永东,张立同,等.2.5D C/SiC复合材料的热物理性能[J].航空材料学报,2007,27(4):60-64.
    [8] Suo T., X. Fan, G. Hu, et al. Compressive behavior of C/SiC composites over a wide range of strainrates and temperatures[J]. Carbon,2013,62:481-492.
    [9] Wang H., C. Zhang, Y. Liu, et al. Temperature dependency of interlaminar shear strength of2D-C/SiCcomposite[J]. Materials&Design,2012,36:172-176.
    [10] Dong S.M., Z. Wang, P. He, et al. Study on the In Situ Growth of Carbon Nanotubes for theReinforcement of Cf/SiC Composite Fabricated by CVI+PIP Process[A]. in Materials ScienceForum[C].2013: Trans Tech Publ.
    [11] Wang Z., L. Gao, Y. Ding, et al. Microstructure observation and analysis of3D carbon fiber reinforcedSiC-based composites fabricated through filler enhanced polymer infiltration and pyrolysis[J]. CeramicsInternational,2012,38(1):535-540.
    [12] Udayakumar A., M. Stalin, and K. Venkateswarlu. Effect of CVD SiC seal coating on the mechanicalproperties of C f/SiC composites generated through CVI[J]. Surface and CoatingsTechnology,2013.
    [13] Yin X., L. Cheng, L. Zhang, et al. Thermal shock behavior of3-dimensional C/SiC composite[J].Carbon,2002,40(6):905-910.
    [14]阪口美喜夫,星田浩树,井上启作.玻璃成型模具用陶瓷:中国专利,公开号:CN1785902A.
    [15]王零森.特种陶瓷[M].长沙.中南大学出版社.2005.
    [16] Werheit H., K.A. Schwetz. Journal of Solid State Chemistry,2004,177:580-585.
    [17] Iwami M. Silicon carbide: fundamentals[J]. Nuclear Instruments and Methods in Physics ResearchSection A: Accelerators, Spectrometers, Detectors and Associated Equipment,2001,466(2):406-411.
    [18]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安.西安交通大学出版社.2000.
    [19]钦征骑编.新型陶瓷材料手册[M].南京.江苏科学技术出版社.1996.
    [20]王茂章,贺福.碳纤维的制造、性质和应用[M].北京.科学出版社.1984:157-166.
    [21] Figueiredo J.L.. Carbon fibers filaments and composites. London, Kluwer AcademicPublishers[M].1989.
    [22]李仍元,过梅丽译著.碳纤维[M].北京.科学出版社.1984:157-166.
    [23]吴立峰,丁丽萍.碳黑应用手册[M].北京.化学工业出版社.2010:51.
    [24]周玉.陶瓷材料学[M].哈尔滨工业大学出版社.1995.
    [25] Ji H. L.,Zhang C. M., Zhou X. G.,et al. Fabrication and properties of porous C/SiC composites[J]. NewCarbon Materials,2011,26(2):145-150.
    [26] K.F. Yan C.Y.Z., S.R. Qiao, et al. HanFailure and strength of2D-C/SiC composite under in-plane shearloading at elevated temperatures[J]. Materials and Design,2011,32:3504-3508.
    [27] Hou J., Qiao S., Lu G.,et al. Influence of heat treatment on the internal friction of2D-C/SiCcomposites[J].2009,209:3555-3560.
    [28] Mei H.,Cheng L.F, Zhang.L.T. Thermal cycling damage mechanism of C/SiC composites indisplacement constraint and oxidizing atmosphere[J]. J.Am.Ceram.Soc,2006,89(7):2330-2334.
    [29] Wang M., C. Laird. Characterization of microstructure and tensile behavior of a cross-woven C/SiCcomposite[[J]. Acta Mater,1996,44(4):1371-1387.
    [30]梅辉,成来飞,张立同,等.2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征[J].硅酸盐学报,2007,35(2):137-143.
    [31]郭洪宝,王波,矫桂琼,等.2D-Cf/SiC复合材料缺口试件拉伸力学行为研究[J].材料工程,2013(5):83-88.
    [32] Verrilli M., E.J. Opila, C. A, et al. Effect fo environment on the stress-rupure behavior of acarbon-fiber-reinforced silicon carbide ceramic matrix composite[J]. J.Am.Ceram.Soc,2004,87(8):1536-1542.
    [33]刘持栋,成来飞,梅辉,等.2D C/SiC复合材料在1300℃水氧环境下的疲劳行为研究[[J].无机材料学报,2008,23(4):729-733.
    [34]梁训裕,刘景林编译.碳化硅耐火材料[M].北京.冶金工业出版社.1981.
    [35]潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀.[J].腐蚀科学与防护技术,2000,1(12):2.
    [36] Lenoe E M, Katz R N, Burke J J. Ceramics for high-performance applications III: Reliability[C]//NewYork, Plenum Press(Army Materials Technology Conference Series,.1983,6.
    [37] Haug T., R. Ostertag, H. Knabe, et al. in Proc.6th European Conf[J]. On Composite Materials,Bordeaux, Sept.,1993,20-24:767.
    [38] W D Vogel, U. Spelz, Cost effective production technique for continuous fibre reinforcedceramic matrix composites, in: Ceramic Processing Science and Technology, Ceram. Trans.,1995,51:255-259.
    [39] Haug T, Ostertag R, Schfer W. Fiber reinforced ceramics for aerospace applications[J]. AdvancedMaterials and Structures from Research to Application,1992:163-173.
    [40] Aparicio M, Durán A. Infiltration of C/SiC composites with silica sol-gel solutions: Part I. Infiltrationby dipping[J]. Journal of materials research,1999,14(11):4230-4238.
    [41] Aparicio M, Durán A. Infiltration of C/SiC composites with silica sol-gel solutions: Part II. Infiltrationunder isostatic pressure and oxidation resistance[J]. Journal of materials research,1999,14(11):4239-4245.
    [42] Berton B., M.P. Bacos, D. Demange, et al. High Temperature Behavior of the Hot Structure Materials ofHermes Space Shuttle.(in French)pp.315-325in Composite Materials for High TemperatureApplications.[J]. Edited by R.Naslain,J.Lamalle,J.L.Zulian. AMAC,Paris.France,,1990.
    [43] J.C.Cavalier A.L., J.M.Rouges. Ceramic Matrix Composites, New High Performance Materials.(inFrench)pp.99-110in Developments in the Science and Technology of Composite Materials.[J]. Editedby A.R.Bunsell, P.Lamicq, A.Massiah. Eisevier,London, U.K.,,1989.
    [44] Lamouroux F, Camus G, Thebault J. Kinetics and mechanisms of oxidation of2D woven C/SiCcomposites: I, experimental approach[J]. Journal of the American ceramic society,1994,77(8):2049-2057.
    [45] Xu Y., L. Cheng, L. Zhang, et al. Oxidation behavior and mechanical properties of C/SiC compositeswith Si-MoSi2oxidation protection coating[J]. J. of Mat. Sci.,1999,34:6009-6014.
    [46] N.Fretty M.B. Relationship between High-temperature Development of Fibre-Matrix Interfaces and theMechanical Behaviour of SiC-SiC composites.[J]. Compos. Sci. Technol.,1990,37:177-189.
    [47] Bhatt R.T. Oxidation Effects on Mechanical properties of a SiC-Fibre-Reinforced Reaction BondedSi3N4Matrix Composite.[J]. J.Am.Ceram.Soc.,1992,75(2):406-412.
    [48] LU Y., Y. WANG, L. WU, et al. Oxidation Behavior of Carbon Nanoparticles/Silicon CarbideComposite Ceramics[J]. Journal of The Chinese Ceramic Society,2013,41(10):1431-1436.
    [49] M.Aparico M.A.V., A.Duran,Bol. Soc.Esp.Ceram.Vidrio.[J].1997,36:119.
    [50]武丽华,陈福.玻璃熔窑耐火材料[M].北京.化学工业出版社.2009.
    [51]张宁,茹红强,吴进怡,等. SiC/YAG烧结工艺及铝钇比的研究[J].材料科学与工艺,2001,9(4):417-419.
    [52]刘荣,茹红强,赵媛,等.基于机械混合法无压烧结制备ZrB2/B4C陶瓷复合材料[J].北京科技大学学报,2006,28(8):762-765.
    [53]吴澜尔,江涌,乔发鹏.烧结温度对碳化硅陶瓷力学性能的影响[J].粉末冶金技术,2010,28(1):58-60.
    [54]卢志华,孙康宁,赵中帆.原位合成制备碳纳米管/羟基磷灰石复合粉体[J].硅酸盐学报,2007,35(2):212-215.
    [55]翟华嶂,李建保,张淑霞.原位选择性氮化法制备t-ZrO2-TiN复合粉料[J].材料工程,2002(1).
    [56]杨华明.材料机械化学[M].北京.科学出版社.2010.
    [57]游效曾.分子材料:光电功能化合物[M].上海.上海科学技术出版社.2001.
    [58] Takahashi H. Effect of dry grinding on koalin minerals: I. Koalinite[J]. Bulletin of the Chemical Societyof Japan,1959,32(3):235-245.
    [59] Juhász A.Z. Aspects of mechanochemical activation in terms of comminution theory [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,,1998(141):449-462.
    [60] Avvakumov E., M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: A Basis for NewChemical Technologies [M]. UK: Kluwer Academic Publishers,.2001.
    [61]陈鼎,严红革,黄培云.机械力化学研究进展[J].稀有金属,2003(2):21.
    [62] Kruman I.I., C. Culmsee, S.L. Chan, et al. Homocysteine elicits a DNA damage response in neuronsthat promotes apoptosis and hypersensitivity to excitotoxicity[J]. The Journal of neuroscience,2000,20(18):6920-6926.
    [63]王燕民,潘志东.陶瓷及其复合材料合成的机械力化学效应[J].硅酸盐学报,2005,33(4):506-515.
    [64] Michel D F.F., Gaffet E. Stabilized zirconias prepared by mechanical alloying. J. Am. Ceram. Soc.,[J].1993,76(11):2884-2888.
    [65] Wang J., D. Wan, J. Xue. Synthesizing nanocrystalline Pb(Zn1/3Nb2/3)O3powders from mixedoxides.[J]. Communication of the American Ceramic Society,1999,82(2):477-479.
    [66] Nivoix V, Bernard F, Gaffet E, et al. Mechanical activation conditions of the Fe2O3and V2O3mixturepowders in order to obtain a nanometric vanadium spinel ferrite[C]//European Federation of ChemicalEngineering. Event.1998:243-252.
    [67] Xue J.M., D.M. Wan, L.S. E, et al. Mechanochemistry synthesis of PZT from mixed oxides[J]. J.Am.Ceram.Soc,1999,82(7):1687-1792.
    [68]王加芳,罗驹华,李杰.机械力化学法制备超细钛酸镁粉体[J].无机盐工业,2008,40(6):23-26.
    [69] Lu C.J., Z.Q. Li. Structural evolution of the Ti–Si–C system during mechanical alloying[J]. Journal ofAlloys and Compounds,2005(395):88-92.
    [70] Muroi.M S.R., McCormick.P.G. Structual and meganetic properties of ultrafine La0.7Ca0.3MnO2powders prepared by mechanical alloying[J]. Solid phase Chem,2000,152(2):503-510.
    [71] Boskovie S., D. Kosanovie, Bahloul-Hourlier, et al. Formation of celsian from mechanochemicallyactivated BaCO3-Al2O3-SiO2mixtures[J]. Journal ofAlloys and Compounds,1999(290):230-235.
    [72]杨晓云,黄震威,吴玉琨,等.球磨Si, C混合粉末合成纳米SiC的高分辨电镜观察[J].金属学报,2000,36(7):684-688.
    [73]崔晓龙,崔立山,王来, et al.石油焦反应研磨合成纳米碳化物[J].石油学报,2002,18(1):14-17.
    [74] El-Eskandarany S., S. M, and S.K. K. Mechanical solid state reaction for synthesis of beta-SiC powders.J. Mater. Res,[J].1995,10:659-667.
    [75] Kun Yang Y.Y., Zhi-Ming Lin, et al. Mechanical-activation-assisted combustion synthesis of SiCpowders with polytetrafluoroethylene as promoter[J]. Materials Research Bulletin,2007,42:1625-1632.
    [76]张立德,牟季美.纳米材料和纳米结构[M].北京.科学出版社.2001.
    [77] Eric G F.B. Some recent developments in mechanical activation and mechanosynthesis[J]. J. Mater.Chem,1999,9(1):305-314.
    [78] Nicholas J W., Willis P E, et al. Ambient-temperature mechanochemical formation of titaniumnitride-alumina composites fromTiO2and FeTiO3[J]. J.Am. Ceram.Soc,2000,82(9):2332-2336.
    [79] Nicholas J W., Willis P.E, et al. Mechenochemical Fomation of metal-ceramic composites[J]. J.Am.Ceram. Soc,2000,82(1):33-40.
    [80] Grigorieva T F B.A.P., Lyakhov N Z. Mechanosynthesis of nanocomposites[J]. Journal of NanoparticleResearch,2003(5):439-453.
    [81]陈君平,施雨湘,张凡,等.高能球磨中的机械合金化机理[J].机械,2004,31(3):52-54.
    [82] Miani F F.H.J. Evaluating the mechanochemical power transfer in the mechanosynthesis of nanophaseFe-C and Fe-Cu powders[J]. International Journal of Refractory Metals&Hard Materials,1999,17:133-139.
    [83] K T., Mechanical activation of minerals [M]. Netherlands. Elsevier.1989.
    [84] M G.E., Mechanochemistry of materials[M]. UK. Cambridge International Science Publishing,.1998.
    [85] Gutman E. M.. Mechanochemistry of solid surface[M]. Singapore. World Scientific.1994.
    [86]北京师范大学,华中师范大学,南京师范大学无机化学教研室.无机化学(上册)第四版[M].北京.高等教育出版社.2002.
    [87]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术,2003,1:23-32.
    [88] Schmidt S., S. Beyer, H. Knabe, et al. Advanced ceramic matrixcomposite materials for current andfuture propulsion technology applications[J]. Acta Astronaut,2004,54(3-9):409-420.
    [89]张新民,何新波,张长瑞,等.热压烧结Cf/SiC复合材料的力学性能[J].硅酸盐学报,1999,27(5):611-617.
    [90]吴市,陈来,钱林,等.先驱体浸渗裂解法制备C/C–SiC复合材料的烧蚀性能[J].硅酸盐学报,2008,36(7):973-984.
    [91]简科,林红吉,陈朝辉,等.先驱体转化法制备低成本碳纤维增强陶瓷基复合材料研究[J].宇航材料工艺,2004(5):6-9.
    [92] LI Fan, C.Z., WANG Song, et al. Effect of pyrolysis mode of first cycle on C/SiC compositesfabricated by precursor pyrolysis[J]. J Aeronaut Mater (in Chinese),2006,26(2):29-32.
    [93]闫志巧,黄伯云. C/SiC复合材料表面化学气相沉积涂覆SiC涂层及其抗氧化性能[J].硅酸盐学报,2008,36(8):1098-1102.
    [94]魏玺,成来飞,张立同,等. C/SiC复合材料等温化学气相浸渗过程的数值模拟研究[J].无机材料学报,2005,22(5):1179-1184.
    [95] Guo S Q K.Y. Temperature dependence of tensile strength for a woven boron-nitride-coatedHi-Nicalon(TM) SiC fiber-reinforced silicon-carbide-matrix composite[J]. J.Am.Ceram.Soc,2001,84(9):2079-2085.
    [96]张亚妮,徐永东,张立同,等.碳/碳化硅复合材料摩擦磨损性能分析[J].航空材料学报[J].2005,25(2):49-54.
    [97]徐芳,张立同,孟祥康,等.碳/碳化硅刹车材料的显微结构分析[J].无机材料学报,2008,23(2):233-237.
    [98]张立同,成来飞,徐永东,等.自愈合碳化硅陶瓷基复合材料研究及应用进展.[J].2006,26(3):226-232.
    [99]汪信,郝青丽,张莉莉.软化学方法导论[M].北京.科学出版社.2007.
    [100]丁玉生,董绍明,高乐,等.烧结温度对Cf/SiC复合材料结构及性能的影响[J].无机材料学报,2008,23(6):1151-1154.
    [101] Zhang Y.N., L.T. Zhang, L.F. Cheng. High-load friction behavior of a hinge bearing based on acarbon/silicon carbide composite[J]. J.Am.Ceram.Soc,2007,90(4):1139-1145.
    [102]张亚妮,张立同,成来飞.碳/碳化硅复合材料在高温燃气环境中的铰链传动与摩擦行为[J].无机材料学报,2008,23(3):501-508.
    [103]郭友军,聂景江,徐永东,等.三维针刺C/SiC复合材料的结构特征和力学性能[J].硅酸盐学报,2008,36(2):144-149.
    [104]孟志新,成来飞,张立同,等.化学气相浸渗2D Cf/(SiC-C)的微观结构域强韧性[J].无机材料学报,2009,24(5):939-942.
    [105]闫联生,崔红,李克智,等.碳纤维针织预制体增强C/SiC复合材料的制备与性能研究[J].无机材料学报,2008,23(2):223-228.
    [106] Yin X.W., L.F. Cheng, L.T. Zhang, et al. Microstructure and oxidation resistance of carbon/siliconcarbide composites infiltrated with chromium silicideMater[J]. Sci.Eng.A,2000,290(1,2):89-94.
    [107] Schulte-Fischedick J., J. Schmidt, R. Tamme, et al. Oxidation behavior of C/C-SiC coated withSiC-B4C-SiC-cordierite oxidation protection system[J]. Mater.Sci.Eng.A,2004,386(1,2):428-434.
    [108] Cheng L.F., Y.D. Xu, L.T. Zhang, et al. Oxidation behavior from room temperature to1500of3D–C/SiC composites with different coatings[J]. J.Am.Ceram.Soc,2002,85(4):989-991.
    [109] BOITIER G., J. VICENS, J.L. CHERMANT. Understanding the creep behaviorof a2.5D C/SiCcomposite I:morphology and microstructure of the as received material[J]. Materials Science andEngineering,2000, A279:73-80.
    [110] BOITIER G., J.L. CHERMANT, J. VICENS. Understanding the creep behavior of a2.5D C/SiCcompositeⅡ: experimental specifications and macroscopicmechanical creep responses[J]. materialsScience and Engineering,2000, A289:265-275.
    [111] BOITIER G., J. VICENS, J.L. CHERMANT. Understanding the creep behavior of a2.5D C/SiCcomposite Ⅲ: from mesoscale to nanoscale microstructural and morphological investigation towardscreep mechanism[J]. Materials Science and Engineering,2000,A313:53-63.
    [112] DALMAZ A., P. REYNAUD, D. ROUBY, et al. Mechanical behavior and damage development duringcyclic fatigue at high-temperature of a2.5D carbon/SiC composite [J]. Composites Science andTechnology,1998,58:693-699.
    [113] DALMAZA D., GUERJOUMA R El, et al. Elastic moduliof a2.5D C/SiC composite[J]. Experimentaland Theoretical Estimates Composites Science and Technology,2000,60:913-925.
    [114] Edwin F Erickson M.A.H., Chad A Brivkalns, et al. Backup secondary mirror and mechanism forSOFIA[J]. Proc. SPIE,2004,5489:203-211.
    [115]张玉娣,张长瑞,周新贵. SiC基反射镜制备工艺研究进展[J].硅酸盐通报,2005(1):89-93.
    [116]常军,翁志成,姜会林,等.用于空间的三反射镜光学系统设计光学学报[J].2003,23(2):216-219.
    [117] Schafer W.,W.D. Vogel. Faserverstarkte Keramiken hergestellt durch Polymer infiltration, KeramischeVerbundwerkstoffe (Ed.W.Krenkel)[J]. WILEY-VCH, Weinheim,Germany,2003:76-94.
    [118]潘育松,徐永东,陈照峰,等.固体火箭发动机用C/SiC导流管烧蚀性能研究[J].宇航学报,2005,26(6):789-792.
    [119] KRENKEL W H.B., RENZ G. C/C-SiC composites it for advanced friction systems[J]. Adv Eng Mater,2002,4(8):427-436.
    [120] Fan S.W., Y.D. Xu, L.T. Zhang. Three-dimensional needled carbon/silicon carbide composites with highfriction performance[J]. Materials Science and Engineering A,2007,467:53-58.
    [121]田广来,徐永东,范尚武,等.高性能C/SiC刹车材料及其优化设计[J].航空材料学报,2008,25(2):101-108.
    [122] Inasaki I. Grinding of hard and brittle materials, Annals of CIRP[J].1987,36(2):463-471.
    [123] J. B. Davis D.B.M., R. M. Housley, and P. E. D. Morgan. Machinable Ceramics Containing Rare-EarthPhosphates[J]. J.Am. Ceram. Soc.,1998,81(8):2169-75.
    [124] N. P. Padture C.J.E., H. K. Xu, and B. R. Lawn. Enhanced Machinability of Silicon Carbide viaMicrostructural Design,[J]. J.Am. Ceram. Soc.,1995,78(1):215-17.
    [125]刘新年,刘静.玻璃器皿生产技术[M].北京.化学工业出版社.2006.
    [126] I. Marinescu B.R., L. Yin, H.G. Wobker. Abrasive processes,in: I. Marinescu, H.K. Tonshoff, I. Inasaki(Eds.), Handbook of Ceramics Grinding and Polishing,[J]. Noyes Publications,Park Ridge, New Jersey,2000:94-189.
    [127] H. Huang Y.C.L., T.L. Teo. High speed deep grinding of yttria stabilized tetragonal zirconia[A]. in26-30May, Proceedings of Euspen Third International Conference[C].2002. in: Eindhoven, TheNetherlands.
    [128]薛建勋.工程陶瓷切削加工技术研究[J].中国陶瓷,2012,7:018.
    [129]张承龙,冯平法,吴志军.旋转超声加工振幅与实际切削深度特性研究[J].兵工学报,2013,34(7):883-888.
    [130] Kovach J. High-speed, low-damage grinding of advanced ceramics, phase II[J]. Oak Ridge NationalLaboratory, Heavy Vehicle Propulsion System Materials Program. Semiannual Progress Report forOctober1997Through March1998(USA),1998:68-85.
    [131] Hwang T., C. Evans, and S. Malkin. An investigation of high speed grinding with electroplated diamondwheels[J]. CIRPAnnals-Manufacturing Technology,2000,49(1):245-248.
    [132] F. Klocke E.V., C. Schippers,. High-speed grinding of ceramics,[A]. in Machining of Ceramics andComposites, Marcel Dekker, New York,1999:119-138.[C].1999. in: S. Jahanmir, M. Ramulu, P. Koshy(Eds.).
    [133] Kusunose T., T. Sekino, Y.-H. Choa, et al. Machinability of Silicon Nitride/Boron NitrideNanocomposites[J]. J.Am. Ceram. Soc.,2002,85(11):2689-2695.
    [134] Rajendran S., H.J. Rossell, and J.V. Sanders. Preparation and characterization of precursor powders foryttria-doped tetragonal zirconia polycrystals (Y-TZP) and Y-TZP-Al2O3composites[J]. Journal ofmaterials science,1989,24(4):1195-1202.
    [135] Yamakata K., K. Hirota, O. Yamaguchi, et al. Formation of Alumina/Zirconia (3mol%Yttria)Composite Powders Prepared by the Hydrazine Methods[J]. Journal of the American Ceramic Society,1994,77(8):2207-2208.
    [136] F B.P. Transient Thermal Stress Behavior in ZrO2-Toughened Al2O3[J]. Journal of the AmericanCeramic Society,1981,64(1):37-39.
    [137] Hori S.Al2O3-ZrO2Ceramics Prepared from CVD Powders[J]. Advances in ceramics,1984,12:794.
    [138] Shi J.L., J.H. Gao, B.S. Li, et al. Processing of nano-Y-TZP/Al2O3composites. II: Compaction andsintering behaviour of nano-Y-TZP/Al2O3composite powders[J]. Journal of the European CeramicSociety,1995,15(10):967-973.
    [139]施尔畏,夏长泰.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [140] M S.E.-E. Mechanical solid state mixing for synthesizing of SiC/Al nanocomposites[J]. Journal ofalloys and Compounds,1998,279(2):263-271.
    [141] G. Feng L.J.S., J. Xu, K. Lu. Acta Metallurgica Sinica[J].2000,36:300.
    [142] Yang Z.G. and L.L. Shaw. Synthesis of nanocrystalline SiC at ambient temperature through high energyreaction milling[J]. Nanostructured Materials,1996,7:873-886.
    [143] K.Tkácǒvá. Mechanical Activation of Minerals,Elsevier[J]. Nether-lands,1989:70-108.
    [144] Wang Y.M., Z.D. Pan. Mechano-chemical effects on synthesis of ceramic materials and itscompositions[J]. Journal of the Chinese Ceramic Society,2005,33:506-515.
    [145] Weimer A.W., K.J. Nilsen, G.A. Cochran, et al. Kinetics of carbothermal reduction synthesis of betasilicon carbide reactors,[J]. Kinetics and Catalysis,1993,39:493-503.
    [146] Paefitt G.D. Dispersion of Powders in Liquids[J]. Applied Science Publishers Ltd,1981.
    [147]任俊,卢寿慈.颗粒的分散[J].粉体技术,1998,4(1):25-33.
    [148] David H A.O. A new ceramic forming process-gelcasting[J]. Physics Today,1998,22:877-880. David,H., and Orlando Auciello."A new ceramic forming process-gelcasting." Physics Today22(1998):877-880. David, H.,&Auciello, O.(1998). A new ceramic forming process-gelcasting.Physics Today,1998,22:877-880.
    [149]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京.化学工业出版社.2005.
    [150] Roy G., G. Bertrand, C. Coddet. Spray drying and sintering ofzirconia based hollow powders[J]. PowderTechnology,2005,157:20-26.
    [151]黄政仁,江东亮,谭寿洪.喷雾造粒SiC粉料在成型过程中的破坏行为[J].硅酸盐学报,2000,28(3):204-209.
    [152] J. S.,Lukasiewicz. Spray-drying ceramic powder[J]. Am.Ceram. Soc,1989,72(4):617-624.
    [153]朱桂花,陈宇红.液相烧结碳化硅喷雾造粒工艺控制[J].化工新型材料,2006,34(8):65-67.
    [154]杨金龙,谢志鹏,汤强. α-Al2O3悬浮体流变性及凝胶注模成型工艺研究[J].硅酸盐学报,1998,26(1):41-46.
    [155]陈宗祺,戴闽光.胶体化学[M].北京.高等教育出版社.1984.
    [156] Prochazka. Sintering of silicon carbide[A]. in Proceedings of the Conference on Ceramics for HighPerformance Applications[C].1975. Brook Hill Publishing Co.
    [157]肖汉宁,高朋召著.高性能结构陶瓷及其应用[M].北京.化学工业出版社.2006.
    [158] L C.R. Sintering crystalline solids II. Experimental test of diffusion models in powder compact s[J]. JAppl Phys,1961,32:793.
    [159] L C.R. Sintering crystalline solids—I intermediate and final state diffusion models[J]. J Appl Phys,1961,32:787-792.
    [160]关振铎,张中太,焦金生编著.无机材料物理性能(第2版)[M].北京.清华大学出版社.2011.
    [161] Shi J.L., J.H. Gao, Z.X. Lin, et al. Sintering behavior of fully agglomerated ultrafine zirconia powdercompacts.[J]. J Am Ceram Soc,1991,74(5):994.
    [162] Shi J.L., Z.X. Lin, T.S. Yen. Effect of agglomerates in superfine zirconia powder compacts onmicrostructural development[J]. J Mater Sci,1993,28(2):342.
    [163] Zhao J. and M.P. Harmer. Effect of pore distribution on microstructure development:Ⅱfirst andsecond-generation pores[J]. Am Ceram Soc,1988,71(7):530.
    [164] Zheng J.,J.S. Reed. Effects of particle packing characteristics on solid state sintering.[J]. J Am CeramSoc,1989,72(5):810.
    [165] Kingery W. D.,Franscois B., Sintering of crystalline oxide-I interaction between grain boundaries andpores. In:Kuczynski G C, Hooten N A, Gibson G N eds. Sintering and Related Phenomena,[M]. NewYork. Gorden&Breach.1967.
    [166]施剑林.固相烧结——Ⅰ气孔显微结构模型及其热力学稳定性致密化方程[J].硅酸盐学报,1997,25(5):499-513.
    [167] J. Nakayama i.R.C.B., D.P.H. Hasslman, F.F. Lange (Eds.). Fracture Mechanics of Ceramics, PlenumPress,[J]. NewYork,,1974,2:759.
    [168] Hasselman D P H. Strength behavior of polycrystalline alumina subjected to thermal shock[J]. Journalof the American Ceramic Society,1970,53(9):490-495.
    [169] Liu GQ M.S., An J, Sun S.L., Ding X H. The evaluation of reliability for zirconium diboride compositewith additives of graphite[J]. Int J Refract MetHard Mater,2009,27:868-871.
    [170]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨.哈尔滨工业大学出版社.2006.
    [171]王诚训,候谨,赵亮,等.耐火材料的损毁及其抑制技术[M].北京.冶金工业出版社.2009.
    [172] Narushima T., T. Goto, Y.M. Yokoyama, et al. Active-to Passive Transition and Bubble Formation for.High-Temperature Oxidation of Chemically Vapor-Deposited Silicon Carbide in CO-CO2Atmosphere[J]. J.Am. Ceram. Soc.,,1994,77(4):1079-82.
    [173] Rodr í guez-Rojas F., A. Ortiz, F. Guiberteau, et al. Oxidation behaviour of pressurelessliquid-phase-sintered α-SiC with additions of5Al2O3+3RE2O3(RE=La,Nd,Y,Er,Tm,or Yb).[J]. J EurCeram Soc,2010,30(15):3209-3217.
    [174] Gao Jiqiang, W.L., Wang Yonglan, et al. Jin Zhihao. Study of Oxidation Resistance of Silicon NitrideBonded Silicon Carbide[J]. Journal of Xi,an Jiaotong University,,1995,29(10):81-85.
    [175] Lin Shiwei, S.W., Peng Zhijian, et al. Review of the Research on the Oxidation Theory of Silicon-basedMaterials at Ultrahigh Temperature[J]. Materiais Science&Engineering,,2002,20(2):268-272.
    [176]吕振林,李世斌,高积强,等.反应烧结碳化硅材料的高温氧化[J].中国有色金属学报,2002,12(1):58-63.
    [177] Antill J.E., J.B. Warburton. Active to passive transition in the oxidation of SiC[J]. Corrosion Science,1971,11(6):337-342.
    [178] Gulbransen E AJ.S.A. The high-temperature oxidation, reduction, and volatilization reactions of siliconand silicon carbide[J]. Oxidation of metals,,1972,4(3):181-201.
    [179] Ogbuji L.U.J.T., M. Singh. High-temperature oxidation behavior of reaction-formed silicon carbideceramics[J]. Journal of materials research,,1995,10(12):3232-3240.
    [180] Persson J., P.O. K ll, M. Nygren. Interpretation of the parabolic and nonparabolic oxidation behavior ofsilicon oxynitride[J]. Journal of the American Ceramic Society,,1992,75(12):3377-3384.
    [181]李建章,张立同,成来飞,等.高温氧化气氛下3D C/SiC质量变化率与剩余强度的相关性[J].复合材料学报,2007,24(4):101-105.
    [182] CHENG L., Y. XU, Z. Litong, et al. Factorization method for failure mechanism analysis of C/C andC/SiC composites[J]. Science and engineering of composite Materials,2002,10(1):45-49.
    [183] H.H.K. Xu, S. Jahanmir. Scratching and grinding of a machinable glass ceramic with weak interfacesand rising T-curve[J]. J Am Ceram Soc,1995,78:497-500.
    [184] Baik D S, No K S, Chun J S, et al. A comparative evaluation method of machinability for mica-basedglass-ceramics[J]. Journal of materials science,1995,30(7):1801-1806.
    [185] Reise M, Muller G. Strengthening of mica glass-ceramics[C]//Third ECerS. Proc.3rd EuropeanCeramic Society Conf.1993,2:1151-1156.
    [186] Taira M, Yamaki M. Ranking machinability of nine machinable ceramics by dental high-speed cuttingtests[J]. Journal of materials science letters,1994,13(7):480-482.
    [187] Boccaccini A.R. Machinability and brittleness of glass-ceramics[J]. Journal of Materials ProcessingTechnology,1997,65:302-304.
    [188] Lawn B.R., D.B. Marshall. Hardness, toughness, and brittleness: an indentation analysis[J]. J. Am.Ceram. Soc..,1979,62:347-350.
    [189]王昕,田进涛.先进陶瓷制备工艺[M].化学工业出版社.2009.
    [190]张光磊,高辉.陶瓷磨削加工性能测试方法及设备[M].中国知网.2008.
    [191] ZHANG G.J., OHJIT. Effect of BN content on elastic modulus and bending strength of SiC-BN in situcomposites[J]. J Mater Res,2000,15:1876-1880.
    [192] M Cing F.A.r., G Basman, K Sesen. The effect of metallurgical structures of different alloyed glassmould cast irons on themould performance[J]. M aterials letters,,2002,55:360-363.
    [193]罗继相.浅谈我国模具行业现状及发展趋势和对策[J].模具技术,2001(3):72-75.
    [194]陈一鹏,玻璃机械设备[M].齐齐哈尔工学院出版社.1995.
    [195]纪胜如,周小平,汪洪斌.金属型D型石墨铸铁抗氧化性的研究[J].现代铸铁,1998(2):17-19.
    [196]李崇礼,一种抗氧化铸铁玻璃模具材料,实用新型技术,1989:中国.公开号:93112190
    [197]李崇礼.稀土微合金化铸铁玻璃模具的应用[J].模具技术,2000(1):92-94.
    [198]杨森,魏芳,梁文心.玻璃模具用低铬D型石墨灰铸铁的研究[J].铸造,2001(8):462-465.
    [199] ZHANG Y., H. LI, and X. YAO. Oxidation protection of C/SiC coated carbon/carbon composites withSi-Mo coating at high temperature[J]. Corrosion Science,,2011,53:2075-2079.
    [200]聂景江,徐永东,张立同,等.化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能[J].硅酸盐学报,2006,34(10):1238-1242.
    [201]肖鹏,徐永东,黄伯云. CVI法快速制备C/SiC复合材料[J].硅酸盐学报,2002,30(2):240-243.
    [202] Krishnamurthy R S.B., Haynes JA. Stability of mullite protective coatings for silicon-based ceramics.[J].J Am Ceram Soc2005,88(5):1099-1105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700