用户名: 密码: 验证码:
米诺环素在L-谷氨酸诱导的视网膜神经节细胞损伤中的保护作用和分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨米诺环素在L-谷氨酸诱导的视网膜神经节细胞损伤中的保护作用和分子机制。
     方法:体外实验,原代小鼠视网膜神经节细胞体外稳定培养24h后,分为三组:对照组、L-谷氨酸组及L-谷氨酸+米诺环素组,相应干预48h后分别观察各组间神经节细胞的存活率及神经轴突生长的差异。体内实验,将C57BL/6小鼠分为三组:对照组、L-谷氨酸组及L-谷氨酸+米诺环素组。前两组小鼠腹腔内注射生理盐水(对照组,L-谷氨酸组),第三组腹腔内注射米诺环素(L-谷氨酸+米诺环素组,60mg/kg),每天一次,连续7天,第二天时,第一组玻璃体腔内注射生理盐水,后两组小鼠玻璃体腔内注射2ulL-谷氨酸(2mM),诱导视网膜神经节细胞损伤。第八天采用组织免疫荧光法技术和激光共聚焦显微镜观察β3tubulin阳性细胞数及视网膜GFAP蛋白表达以评估视网膜神经节细胞的损伤情况。Real-time PCR和Western blot法分别检测视网膜组织中IFN-γ, IL-1, TNF-α与GFAP与Vimentin的mRNA及蛋白表达水平以初步探讨损伤的分子机制。
     结果:体外实验结果显示:与对照组比较,L-谷氨酸组视网膜神经节细胞的存活率明显降低,呈剂量和时间依赖性;神经轴突生长受抑制。米诺环素干预后可明显减轻L-谷氨酸导致的上述效应(P<0.01)。动物实验结果显示,L-谷氨酸组小鼠神网膜神经节细胞数目较对照组小鼠显著减少,视网膜组织中GFAP的表达量明显增加(P<0.01)。米诺环素治疗后可明显改善L-谷氨酸诱导的神经节细胞损伤并明显降低其GFAP的表达(p<0.01)。视网膜组织中IFN-γ、IL-1、NF-α与GFAP与Vimentin的mRNA及蛋白水平在L-谷氨酸组较对照组表达明显增高,而米诺环素可显著降低这些因子的表达。
     结论:L-谷氨酸可诱导视网膜神经节细胞损伤、抑制神经轴突生长和上调炎症因子基因与蛋白的表达,而米诺环素具有明显改善L-谷氨酸所导致的视网膜神经细胞损伤的作用。
Objective:To investigate the protective effect and molecular mechanism of minocycline on toxicity of retinal ganglion cells induced by L-glutamate.
     Methods:In vitro experiments, primary mouse retinal ganglion cells (RGCs) was isolated and identification from mouse retinal. RGCs were divided into control group, L-glutamate group, and L-glutamate + minocycline group.48hours late, the cell survival rate and nerve axon growth length were observed in each group. In vivo study, C57BL/6 mice were divided into control group, L-glutamate group, and L-glutamate + minocycline group.In the former 2 groups,the mice were daily intraperitoneal injected with saline and the mice in the third group were daily intraperitoneal injected with minocycline (60mg/kg, saline injected in the control group) till day 7.on the 2nd day,mice in the first group were intravitreal injected with saline and mice in the latter 2 groups were intravitreal injected with 2ul L-glutamate (2mM) to construct a toxic damage to retinal ganglion cells animal model.On 8th day,β3 tubulin positive cells and retinal GFAP protein expression were evaluated by tissue immunofluorescence assay. Real-time PCR and Western blot assay were used to detect IFN-y, IL-1, TNF-a and GFAP and Vimentin mRNA and protein expression level in retinal tissues.
     Results:Compared with control group, RGCs survival rate in L-glutamate group was significantly reduced with a dose-and time-dependent. In addition, axon growth was inhibited with the treatment of glutamic acid, while these effects were abolished in the minocycline group (P<0.01). Animal study showed that the number of RGCs dramatically decreased,however, expression of GFAP in retinal tissue significantly increased in L-glutamate treated mice, compared to control (P<0.01). Minocycline treatment significantly improved L-glutamate-induced ganglion cell damage and significantly reduce their GFAP expression (p<0.01). Both mRNA and protein expression levels of IFN-y, IL-1, TNF-a and GFAP and Vimentin in retinal tissue of L-glutamic acid group significantly upregulated compared to control(p <0.01), while the minocycline significantly reduces the expression of these factors(p<0.01).
     Conclusion:L-glutamic acid can induce retinal ganglion cell damage, inhibit axon growth and increase inflammatory gene and protein expression, but minocycline has a significant improvement in L-glutamate caused by retinal nerve cell damage role.
引文
1曹业宏,林乐理.青光眼与谷氨酸、细胞凋亡[J].沈阳医学院院报.2007,9(1): 54-59.
    2 Gupta N, Yiicel YH. Glaucoma as a neurodegenerative disease[J]. Curr Opin Ophthalmol.2007,18(2):110-114.
    3 Osborne NN, Wood JP, Chidlow G. Invited review:Neuroprotective properties of certain beta-adrenoceptor antagonists used for the treatment of glaucoma[J]. Jocul Pharmacol Ther.2005,21(3):175-81.
    4 Kawasaki A, Otori Y, Barnstable CJ. Muller cell protection of rat retinal ganglion cells from glutama te and nitric oxide neuro toxicity[J]. Invest Ophthalmol Vis Sci,2000,41(11):3442-3450.
    5 Naskar R, D reyer EB. New horizons in neuroprotection[J]. Surv Ophthalmol, 2001,45(Suppl3):S250-256.
    6 Russo R, Rotiroti D, Tassorelli C, etal. Identification of novel pharmacological targets to minimize excitotoxic retinal damage[J]. Int Rev Neurobiol,2009, 85(12):407-423.
    7 Mika J, Rojewska E, Makuch W, et al. Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the DRG in a rat model of neuropathic pain[J]. Neuroscience,2009,11(12):854-859[J].
    8 Wu J, Yang S, Hua Y, et al. Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage [J]. Acta Neurochir Suppl,2010,106(12):147-50.
    9 Guasti L, Richardson D, Jhaveri M, et al. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain[J]. Mol Pain,2009,5(12):35-38.
    10 LIU Qing, ZHANG Hong, LI Guigang. The inhibition of minocycline to pressure2induced apoptosis of retinal neurons cultured in vitro[J]. Mol Pain, 2007.9(1):1-5.
    11许红霞,糜漫天,黄国荣,等.无血清神经基质培养基培养纯化的视网膜神经节细胞[J].中华眼底病杂志,2006,22(3):200-203.
    12 Wu J, Yang S, Xi G, et al. Minocycline reduces intracerebral hemorrhage-induced brain injury[J]. Neurol Res,2009,31(2):183-188.
    13 Wasserman JK, Schlichter LC. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat[J]. Exp Neurol, 2007,207(2):227-37.
    14 Tikka T, Fiebich BL, Goldsteins G, et al. Minocycline, a tetracycline derivative, is neuroprotective aL-Gluinst excitotoxicity by inhibiting activation and proliferation of microglia[J]. J Neurosci,2001,21(8):2580-2588,
    15 Nutile-McMenemy N, ElfenbeinA, Deleo JA. Minocycline decreases in vitro microglial motility, betal-integrin, and Kvl.3 channel expression[J]. J Neurochem,2007,103(5):2035-2046.
    16 Yang LP, Zhu XA, Tso MO. Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation[J]. Mol Vis,2007, 9(22):1083-1093.
    17 Zhang C, Lei B, Lam TT, et al. Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration[J]. Invest Ophthalmol Vis Sci,2004,45(8):2753-2759.
    18 Hughes EH, Schlichtenbrede FC, Murphy CC, et al. Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mecha-nism[J]. Exp Eye Res,2004,78(6):1077-1084.
    19王一奇,魏尔清.米诺环素对大鼠皮质神经元的毒性及N2甲基2D2天冬氨酸损伤的保护作用[J].中国药理学与毒理学杂志,2004,18(3):184-188.
    20高艺,朱晓波,罗燕,等.米诺环素抑制谷氨酸诱导的大鼠视网膜神经细胞凋亡[J].中国病理生理杂志,2008,24(10):1970-1974.
    21 Cicero SA, Johnson D, Reyntjens S. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells[J]. Proc Natl Acad Sci U S A,2009, 106(16):6685-90.
    22薛黎萍,丁鹏,吴开力,等.胶质纤维酸性蛋白在青光眼大鼠视网膜神经胶质细胞中的表达[J]国际眼科杂志,2008,8(4):721-725.
    23柯技,陈晓瑞,易少华,等.大鼠视神经挫伤后视网膜神经节细胞形态改变及GFAP表达的变化[J].华中科技大学学报(医学版),2007,36(3):370-373.
    24苟琳,张作明,郭守一,等.缺氧对视网膜Miiller细胞超微结构及GFAP表达的影响[J].第四军医大学学报,2002,23(5):472-475.
    25 Baptiste DC, Hartwick A, Jollimore C, et al. An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death[J]. Mol Phar,2004,66:1113-1122.
    26 Vallazza-Deschamps G, Fuchs C, Cia D, et al. Diltiazem-induced neuroprotection in glutamate excitotoxicity and ischemic insult of retinal neurons[J]. Doc Ophthal,2005,1(10):25-35.
    27 Leung DW, Lindlief LA, Laahich A, et al. Minocycline protects photoreceptors from light and oxidative stress in primary bovine retinal cell culture[J]. Invest Ophthalmol Vis Sci,2008,48:412-421.
    28 Mattson M P, Lovell M A, Furukawa K, et al. Neurotrophic factors a Renuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons[J]. J Neurochem,2005,65(11):1740-1751.
    29 Fletcher CL. Alterations in neurochemistry during retinal degeneration [J]. Microse Res Tech,2008,89(11):102-110
    30 Li R, Maminishkis A, Wang FE, et al. PDGF-C and-D induced proliferation/ migration of human RPE is abolished by inflammatory cytokines[J]. Invest Ophthalmol Vis Sci,2007,48(12):5722-32.
    31 Yang D, Elner SG, Bian ZM, et al. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells[J]. Exp Eye Res,2007,85(4):462-472.
    32 Carty ML, Wixey JA, Colditz PB, et al. Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat:a comparison of two different dose regimens[J]. Int J Dev Neurosci,2008,26(5):477-85.
    33 Takeo-Goto S, Doi M, Ma N, et al. Immunohistochemical localizalion of amino acids in the diabetic retina of Goto·Kakizaki rats[J]. Ophthalmic Res,2002, 4(3); 139-145.
    34 Juan ED, Mahmoud M, Cooney M, et al. Genistein soy based TKI for retina protection.5th intemational symposium On ocular pharmacology and therapeut ics(Abstract 1146-OR)[J]. Monte carlo. Monaco.2004.11(12):11-14
    35 Tadayoni R, Paques M, Gaudric A. Erythrocyte and leukocyte dynamics in the retinal capillaries of diabetic mice[J]. Exp Eye Res,2003,77(12):497-504.
    36 Blum D, Chtarto A, Tenenbaum L, et al. Clinical potential of minocycline for neurodegenerative disorders[J]. Neurobio Dis,2004,17(3):359-366.
    37 Shimazawa M, Yamashima T, Agarwal N, et al. Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage[J]. Brain Res,2005,1053(12):185-194.
    38 Kwong JQ, Beal MF. The role of mitochondria in inheritel neurodegenerative diseases[J]. J Neurochem,2006,97(6):1659-1675.
    39 Fernandez Gomez FJ, Galindo MF, Gomez Lazaro M, et al. Involvement of mitochondrial potential and calcium bufering capacity in minocycline cytoprotective actions[J]. Neuroseience,2005,133(4):959-967.
    40 Toda N, Nakanishi Toda M. Nitric oxide:ocular blood flow, glaucoma, and diabetic retinopathy[J]. Prog Ret Eye Res,2007,26(3):205-208.
    41任蕾,牛建军,王一,等.利用荧光金逆行示踪技术评价视神经不完全损伤后视网膜神经节细胞的存活率[J].眼科新进展,2005,1(25):21-23.
    42石晶明,蒋幼琴.兴奋性氨基酸与青光眼[J].国际眼科杂志.2004,4(4):668-673。
    43国汉邦,黎健,董军,等.野生型p53基因导入诱导神经细胞凋亡[J].中国神经免疫学和神经病学杂志,2002,9:92-95.
    44牛膺筠,高云霞等.碱性成纤维细胞生长因子对视网膜缺血再灌注损伤中 凋亡相关基因表达的影响[J].中华眼底病杂志2005,5(21):310-313.
    45石晶明,蒋幼芹,刘旭阳.N-甲基-D-天门冬氨酸对大鼠视网膜损伤的形态学观察[J].中南大学学报.医学版,2004,29(3):287-291
    46刘庆淮.兴奋性氨基酸与视网膜缺血性损伤关系的研究进展[J].眼科研究,2003,21(5):553-556.
    47妙妙,段宣初.青光眼视神经保护的免疫学途径.国外医学眼科学分册[J].2005,29(2):89-93
    48 Yano T, Yamada K, Kimura neurofilament protein and HLA-DRB1 1502 allele in glaucoma[J]. Immunol Lett,2005,100(2):164-169
    49 Grus FH, Joachim SC, Bruns Ket al. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States[J]. Invest Ophthalmol Vis Sci,2006,47(3):968-976
    50 Hammam T, Montgomery D, Morris D, et al. Prevalence of serum autoantibodies and paraproteins in patients with glaucoma[J]. Eye,2006,31 (12):231-240
    51 Yang J,Patil RV, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma[J]. Am J Ophthalmol,2001,131(4):421-426
    52 Rebecca M. Sappington, Matilda Chan, David J. Calkins. Interleukin-6 Protects Retinal Ganglion Cells from Pressure-Induced Death[J]. Invest Ophthalmol Vis Sci,2006,47(7):2932-2942
    53 Tezel G, Li LY, Patil RV, et al. TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes[J]. Invest Ophthalmol Vis Sci,2001, 42(8):1787-1794
    54 Sharon Bakalash, Jonathan Kipnis, Eti Yoles, et al. Resistance of Retinal Ganglion Cells to all Increase in Intraocular Pressure Is Immune-Depen dent[J]. Invest Ophthalmol Vis Sci,2002,43(8):2648-2653
    55 Schwartz M. Modulating the immune system:a vaccine for glaucoma[J]. Can J Ophthalmol,2007,42(3):439-441
    56张扬,赵家良.免疫系统调节在青光眼性视神经病变中的作用[J].中华眼 科杂志,2007,43(9):858-861
    57 Yuan L, Neufeld All. Tumor necrosis factor-alpha:a potentially neurodestruetive cytokine produced by glia in the human glaucomatous optic nerve head[J]. Gila,2000,32(1):42-50
    58 Taylor S, Srinivasan B, Wordinger RJ, et al. Glutamate stimulates neurotrophin expression in cultured Miiller cells[J]. Brain Res Mol Brain Res,2003, 111(12):189-197
    59 Fran Shen, Bin Chen, John Danias, et al. Glutamate-induced glutamine synthetase expression in retinal Miiller cells after short-term ocular hypertension in the rat[J]. Invest Ophthalmol Vis Sci,2004,45(9):3107-3112
    60 Takayuki Harada, Chikako Harada, Kazuaki Nakamura, et al. The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma[J]. The Journal of Clinical Investigation,2007,117(7):1763-1770
    61 Kountouras J,Mylopoulos N, Chatzopoulos D, et al. Eradication of Helicobacter pylori may be beneficial in the management of chronic open-angle glaucoma[J]. A rch Intern Med,2002,162(11):1237-1244
    62 Michal Schwartz. Neurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective Vaccine[J]. Invest Ophthalmol Vis Sci,2003,44(4):1407-1411
    63 Levkovitch Verbin H, Quigley HA, Kerrigan Baumrind L, etal. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells[J]. Invest Ophthalmol Vis Sci,2001,42(5):975-982
    64 Bakalash S, Shlomo GB, Aloni E, et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med,2005,83(11):904-916
    65刘杰,杜兆江,杨新光.共聚物-1对慢性高眼压模型大鼠视网膜神经节细胞凋亡及IL-6R表达的影响[J].细胞与分子免疫学杂志,2004,20(3):293-296
    66 Fished, Levkoviteh-Verbin H, Schori H, et al. Vaccination for neuroprotection in the mouse optic neuropathy[J].. J neurosci,2001,21(1):36-39
    67 Moalem G, Gdalyahu A,ShaniY, et al. Production of neurotrophinsy activated T cells:implication for neuron-protective autoimmunity[J]. J Autoimmun, 2000,15(3):33-38
    68 Bonfanti L, Strettoi E, Chierzi S, et al. Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2[J]. J Neurosci,1996,16(13):4186-4104
    69夏翠然,徐亮.青光眼视网膜神经节细胞损伤及保护[J].国外医学眼科学分册,2001,25(1):36-38
    70吕红彬,袁援生,李燕,等.热休克蛋白27在实验性青光眼中表达的研究[J].眼科新进展,2004,24(6):444-447
    71 Ryu JK, Nagai A, Kim J, et al. Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid:in vitro and in vivo studies[J]. Neurobiol Dis,2003,12:121-132
    72 Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci,2000.41 (12): 1971-1980
    73 Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats [J]. Vis Neurosei,2000,17:463-471
    74 RaoNA, KimotoT, ZamirE. Pathogenic role of retinalmicrogliain experimental uveoretinitis[J]. Invest Ophthalmol Vis Sci,2003,44:22-31
    75 Neufeld Al 1. Microglia in the optic nerve head and the region ofparapapillary chorioretinal atrophy in glaucoma[J]. Arch Ophthalmol,2005,117:1050-1056
    76 Yuan L, Neufeld AH. Tumor necrosis factor-alpha:a potentially neurodestructive cytokine produced by gila in the human glaucomatous optic nerve head[J]. Glia,2000,32 (15):42-50
    77 Stirling TM, Koochesfahani KM, Steeves JD, et al. Minocycline as a neuroprotective agent[J]. Neurosci 2005; 11(4):308-322.
    78 Ambrosini E, Aloisi F. Chemokines and glial cels:a complex network in the central nervous system[J]. Neurochem Res,2004,29(5):1017-1038.
    1 MacDONAD H, KELLY R G, ALLEN E S, et al. Pharmacokinetic studies on inocycline in man[J]. Clin Pharmacol Yher,1973,14(5):852-861.
    2 CARNEY S, BUTCHER R A, DAWBORN J K, et al. Minocycline excretion and distribution in relation to renal function in man[J]. Clin Exp Phalmacol Physiol,1974,1(4):299-308.
    3 Chen L, Yang P, K日stra A. Distribution, markers, and functions of retinal microglia[J]. Ocul Immunol lnflamm,2002,10(10):27-39
    4 Bodeutsch N. Thanos S. Migration of phagocytotic ceUs and development of the murine intraretinal microglial network:an in vivo study using fluorescent dyes[J]. Gila,2000,32:91-101
    5夏翠然,徐亮。青光眼视网膜神经节细胞损伤及保护[J].国外医学眼科学分册,2001,25(1):36-38
    6 Allen JC. Minocycline[J]. Ann Intern Med,1976,85(4):482-487.
    7 Yrjanheikki J, Keinanen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and ale neuroprotective in global brain schemia[J]. Proc Nail Acad Sci USA,2008,95(26):15769-15774.
    8 Barber AJ Anew view of diabetic retinopathy:a neurodegenerative disease of the eye[J]. Prog neuropsychopharmacol Biol Psychiatry,2003,27 (12):283-290
    9 Wang CX, Yang T, Noor R, et al. Delayed minocycline but not delayed mildhypothermia protects against embolic stroke[J]. BMC Neurol,2002,2(4): 2-8.
    10吕红彬,袁援生,李燕,等.热休克蛋白27在实验性青光眼中表达的研究[J].眼科新进展,2004,24(6):444-447
    11薛黎萍,丁鹏,吴开力,等.胶质纤维酸性蛋白在青光眼大鼠视网膜神经胶质细胞中的表达[J].国际眼科杂志,2008,8(4):721-725.
    12 Browrdee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature,2001,414(6865):813-820
    13 Ryu JK, Nagai A, Kim J, et al. Microglial activation and cell death induced bythe mitochondrial toxin 3-nitropropionic acid:in vitro and in vivo studies[J]. Neurobiol Dis,2003,12:121-132
    14 Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci,2000,41(12): 1971-1980
    15柯技,陈晓瑞,易少华,等.大鼠视神经挫伤后视网膜神经节细胞形态改变及GFAP表达的变化[J].华中科技大学学报(医学版),2007,36(3):370-373.
    16 Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats[J]. Vis Neurosei,2008,17(12):463-471
    17 RaoNA, KimotoT, ZamirE. Pathogenic role of retinalmicrogliain experimental uveoretinitis[J]. Invest Ophthalmol Vis Sci,2003,44(22):22-31
    18 Wells JE, Rice TK, Nuttall RK, et al. An adverse role for matrix metalloproteinase 12 atter spinal cord injury in mice[J]. J Neurosci,2003, 23(31):10107-10115.
    19苟琳,张作明,郭守一,等.缺氧对视网膜Miiller细胞超微结构及GFAP表达的影响[J].第四军医大学学报,2002,23(5):472-475。
    20许红霞,糜漫天,黄国荣,等.无血清神经基质培养基培养纯化的视网膜神经节细胞[J].中华眼底病杂志,2006,22(3):200-203.
    21 Wells JE, Hurlbert RJ, Fehlings MG, et al. Neuroprotection by minoc yclinefacilitates significant recovery from spinal cord injury in mice[J]. Brain.2003.126(Pt7):1628-1637.
    22妙妙,段宣初.青光眼视神经保护的免疫学途径.国外医学眼科学分册[J].2005,29(2):89-93
    23 Brundula V, Rewcastle NP, Metz LM, et al. Targeting leukocyte MMPs andtransmigration:minocycline aS a potential therapy for multiple sclerosis[J]. Brain,2002,125(Pt6):1297-1308.
    24 Yuan L, Neufeld AH. Tumor necrosis factor-alpha:a potentially neurodestructive cytokine produced by gila in the human glaucomatous optic nerve head. Glia,2000,32:42-50
    25刘庆淮.兴奋性氨基酸与视网膜缺血性损伤关系的研究进展[J].眼科研究,2003,21(5):553-556.
    26 Naskar R. Wissing M. Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma[J]. Invest Ophthalmol Vis Sci,2002,43:2962-2968
    27 Popovic N, Schubart A, Goetz BD, et al. Inhibition of autoimmune encephalomyelitis by a tetracycline[J]. Ann Neurol,2002,51(2):215-223.
    28 Metz LM, Zhang Y, Yeung M, et al. Minocycline reduces gadolinium- enhancing magnetic resonance imaging lesions in multiple sclerosis[J]. Ann Neurol,2004.55(56):756-758
    29 Shimazawa M, Yamashima T, Agarwal N, et al. Neuroprotective effects of minocycline against in vitro and in vivo retinal ganglion cell damage[J]. Brain Res,2005; 1053(12):185-194.
    30石晶明,蒋幼芹,刘旭阳.N-甲基-D-天门冬氨酸对大鼠视网膜损伤的形态学观察[J].中南大学学报·医学版,2004,29(3):287-291
    31 Baptiste DC, Hartwick AT,Jollimore CA, et al. An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death[J]. Mol Pharmacol 2004; 66(5):1113-1122.
    32 Baptiste DC, Powell KJ, Jollimore CA, et al. Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy[J]. Neuroscience 2005; 134(2):575-582.
    33 Katharina Maier,Doron Merkler, Joachim Gerber, et al. Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation. Neurobiology of Disease 2007; 25:514-525
    34 Zhang C, Lei B, Lam TT, ct al. Neuroproteetion of photoreceptors by minocycline in light induced retinal degeneration[J]. Invest Ophthalmol Vis Sci 2004; 45(8):2753-2759.
    35牛膺筠,高云霞等.碱性成纤维细胞生长因子对视网膜缺血再灌注损伤中凋亡相关基因表达的影响[J].中华眼底病杂志2005,5(21):310-313.
    36 Chang CJ, cherng CH, Liou WS, et al. Mincycline partially inhibits caspase-3 activation and photoreceptor degeneration after photic injury[J]. Ophthalmic Res 2005; 37(4):202-213.
    37 Hughes EH, schlichtenbrede FC, Murphy CC, et al. Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism[J]. Exp Eye Res 2004; 78(6):1077-1084.
    38石晶明,蒋幼琴。兴奋性氨基酸与青光眼[J].国际眼科杂志.2004,4(4): 668-673.
    39国汉邦,黎健,董军,等.野生型p53基因导入诱导神经细胞凋亡[J].中国神经免疫学和神经病学杂志,2002,9:92-95.
    40 Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis[J]. Neurobiol Dis,2002,10(3): 268-278.
    41 Kriz J, Cowing G, Julien JP. Efficient three-drug cocktail for disease induced by mutant superoxide dismutase[J]. Ann Neurol,2003,53(4):429-436.
    42 Zhang W, Narayanan M, Friedlander RM. Additive neuroprotective effects of minocycline with creatine in a mouse model ofALS[J]. Ann Neurol,2003,53(2): 267-270.
    43 Parks WC, Wilson CL, Lopez-Boado YS. Matrix metaloproteinases as modulators of inflammation an d innate immunity[J]. Nat Rev Immunol,2004, 4(8):617-629.
    44高艺,朱晓波,罗燕,等.米诺环素抑制谷氨酸诱导的大鼠视网膜神经细胞凋亡[J].中国病理生理杂志,2008,24(10):1970-1974.
    45 Zhu S, Stavrovskaya IG, Drozda M, et al. Minocycline inhibits cytochrome C release and delays progression of amyotrophic lateral sclerosis in mice[J]. Nature,2002,417(6884):74-78.
    46 Stirling TM, Koochesfahani KM, Steeves JD, et al. Minocycline as a neuroprotective agent[J]. Neurosci 2005; 11(4):308-322.
    47王一奇,魏尔清.米诺环素对大鼠皮质神经元的毒性及N2甲基2D2天冬氨酸损伤的保护作用[J].中国药理学与毒理学杂志,2004,18(3):184-188.
    48 Ambrosini E, Aloisi F. Chemokines and glial cels:a complex network in the central nervous system[J]. Neurochem Res,2004,29(5):1017-1038.
    49 Song Y, Wei EQ, Zhang岍,et al. Minoeycline protects PC Ⅰ 2 cells from ischemic-like injury and inhibits 5-1 ipoxygenase activation[J]. Neuroreport, 2004,15(14):2181-2184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700