用户名: 密码: 验证码:
白垩系含水软岩地层冻结与强制解冻规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以室内试验、理论分析、数值分析和现场实测为研究手段,对白垩系含水软岩地层冻结与强制解冻理论与应用进行了较为深入、系统的研究。
     论文研究了从-5℃到-15℃条件下的白垩系地层的冻土力学和热物理性能。建立了各阶段的温度场数学模型和相应的热传导控制方程以及冻结壁冻融温度场计算模型,给出了冻结壁形成和强制解冻融化过程及规律;分析了影响冻结壁冻融温度场的各个因素及其对温度场的显著性影响,同时对冻结和强制解冻温度场进行了多因素回归分析。通过冻结与强制解冻交互作用下的温度场、冻结壁冻胀以及井壁的受力变形规律研究,得到了单一冻结和冻融交互作用下的温度场、冻结壁冻胀以及井壁受力变形规律。以灵东煤矿冻结和强制解冻为工程背景,进行了白垩系地层冻结信息化施工技术的研究。
In this paper, we use laboratory test,theoretical analysis, numerical analysis and field measurement as aresearch tool,to make a more in-depth,systematic study in the theory and the application of the ground freezing and mandatory thawing in the Cretaceous aqueous soft rock.
     We studied the thermophysical properties and frozen soil mechanics of the Cretaceous stratum, when the temperature ranged from-5℃to-15℃, created a mathematical model of the temperature field in each stage. We also established the corresponding thermal governing equations. Based on a model we established to calculate the freezing and thawing temperature field in the shaft, we studied the process and the laws of the formation and the forced thawing process of the frozen wall. Every factors effecting the freezing and thawing temperature field and the significance of them. were studied.. We carried on multivariate regression analysis on freezing and forced thawing temperature field. We analysed the temperature field in the interaction of the freeze and mandatory thaw, freeze wall by the force of the frost heave, and the borehole wall deformation law. We also studied the temperature field under a single freeze and freeze-thaw interaction, frost heaving of the freeze wall and the changes of the borehole wall by the force-deformation. A research of freeze information construction technology on Cretaceous strata is based on freeze and mandatory thaw engineering of lingdon coal mine.
引文
[1]HA崔托维奇.冻土力学[M].张长庆,朱元林译.北京:科学出版社.1985.
    [2]唐益群,沈锋,张曦,等.软土地区人工冻土无侧限瞬时抗压强度的试验研究[J].工程地质学报,2006,14(.03):376-379.
    [3]程知言,颜庭成,秦江红.上海软土人工冻结热力学性质研究[J].地质与勘探,2005,.41(2):90-92.
    [4]程知言,张可能,裘慰伦,等.上海某冻结加固工程试验研究分析[J].地质与勘探,2002,38(3):90-92.
    [5]汪崇鲜.淤泥质冻土的物理力学性能试验研究[J].煤炭科学技术,2000,28(8):9-12.
    [6]戚家忠,储党生,韩彦智.祁东矿人工冻土物理力学性能试验研究[J].淮南工业学院学报,1999,19(3):54-58.
    [7]彭万巍.冻结黄土抗拉强度与应变率和温度的关系[J].岩土工程学报,1998,20(3):31-33.
    [8]杨平.两淮地区深厚粘土人工冻土力学特性研究[J].淮南矿业学院学报,1999,15(3):26-32.
    [9]樊良本,丁伯阳,王纪峰等,人工冻结的抗州饱和软土的单轴抗压强度特性[J].浙江工业大学学报,2000,28(4):319-325.
    [10]马巍,吴紫汪,常小晓等.高围压下冻结砂土的强度特性[J].冰川冻土,1996,18(3):268-272.
    [11]沈忠言,彭万巍,刘永智等.轴向压裂法测定冻土抗拉强度初步研究[J].冰川冻土,1995,17(1):33-39.
    [12]马芹永.人工冻土单轴抗拉、抗压强度的试验研究[J].岩土力学,1996,17(3):76-81.
    [13]王春雷,谢强,姜崇喜.含盐冻土无侧限抗压强度的试验研究[J].路基工程,2005,(5):58-60.
    [14]李栋伟,汪仁和.冻土抗剪强度特性及试验研究[J].安徽理工大学学报(自然科学版),2004,24(Supplement):52-55.
    [15]李洪升,杨海天,常成等.冻土抗压强度对应变速率敏感性分析[J].冰川冻土,1995,17(1):40-48.
    [16]马巍,常小晓.两种不同试验模式下人工冻结土强度与变形的对比分析[J].冰川冻土,2002,24(2):149-154.
    [17]张文,张卫红,潘起来.青藏高原多年冻土冻结强度的影响因素[J].青海大学学报(自然科学版),200523(15):26--29.
    [18]Kunieda T, Sato T, Ido S, et al. Numerical case studies of ground freezing for the construction of drain pump chambers[C]. Balkema, Rotterdam, Neth. Ground Freezing,1991:237.
    [19]Vyalov, S.S, et al. Stability of mine workings in frozen soils[J].1st Int Symp On Ground Freezing, 1978:339-351.
    [20]Harlan RL. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Research, 1973,19(5):1314-1323.
    [21]Giancarlo Gioda, Livio Locatelli. A numerical and experimental study of the artificial freezing of sand[J]. Canadian Geotechnical Journal,1994,31(1):1-11.
    [22]安维东,等著.冻土的温度、水分、应力及其相互作用[M].兰州:兰州大学出版社,1990.
    [23]Bonacina C Comini G Fasano A. Numerical solution of phase-change problems[J]. International Journal of Heat and Mass Transfer,1973,7(6).
    [24]吴紫汪.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1989.
    [25]И·д·纳斯诺夫,M·H·苏普利克立井冻结壁形成规律[M].陈文豹,伍期建,梁惠生,译.北京:煤炭工业出版社,1981.
    [26]李述训.立井冻结法凿井工程中的热工计算[J].冰川冻土,1994,16(1):20-30.
    [27]朱林楠.深井人工冻结壁温度场分析[J].冰川冻土,1981,3(4):44-51.
    [28]赵建军,韩文峰,徐学祖,等.人工冻结法施工的冻土壁温度场数学模型[J].天津城市建设学院学报,1999,5(1):30-34.
    [29]谢怀阳.冻结法凿井施工中温度场计算探讨lJ].中州煤炭,2002,115(1):13-14.
    [30]宗欣欣.人工冻结壁温度场的灰色预测[J].矿业科学技术,2002,30(1):9-10.
    [31]丁德文,傅连弟,庞荣庆.冻结壁变化的数学模型及其计算[J].科学通报,1982,27(14):875-879.
    [32]汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报(自然科学版),2003,23(1):25-29.
    [33]汪东波.双排管冻结温度场分布规律理论与试验研究[D].合肥:安徽理工大学,2002.
    [34]张维廉.竖井冻结过程的模拟方法[J].中国矿业大学学报,1981,(3):27-35.
    [35]崔广心.深厚冲积层中冻结壁厚度的研究[J].冰川冻土,1995,17(增):26-34.
    [36]崔广心.厚表土层湿土结冰温度与冻结壁厚度确定的研究[J].中国矿业大学学报,1997,26(3):1-4.
    [37]王文顺,王建平,井绪文,等.人工冻结过程中温度场的试验研究[J].中国矿业大学学报,2004,33(4):388-391,405.
    [38]刘志强,马巍,周国庆,等.纵向布管调控冻土路基温度场的模拟试验研究[J].岩石力学与工程学报,2005,24(11):1827-1831.
    [39]郭兰波,庞荣庆,史文国,等.竖井冻结壁温度场的有限元分析[J].中国矿业大学学报,1981,3:37-55.
    [40]杨平,皮爱如.高流速地下水流地层冻结壁形成的研究[J].岩土工程学报,2001,23(2):167-171.
    [41]汪仁和,王伟.冻结孔偏斜下冻结壁温度场的形成特性与分析[J].岩土工程学报,200325(6):658--661.
    [42]张燕.预报冻结壁形成及其温度分布的有限元法[J].煤炭学报,1979.2.
    [43]杨志江,车平.冷媒循环条件下单管水平冻结温度场数值模拟[J].江苏煤炭,2004,2.
    [44]沈晓明,高峰,李建军.龙固矿副井冻结壁温度场有限元数值模拟[J].河北理工学院学报,2004,26(2):136-138.
    [45]刘慧,杨更社,田俊锋,等.冻结岩石细观结构及温度场数值模拟研究[J].地下空间与工程学报.2007,3(6):1127-1131.
    [46]杨平,陈明华,张维敏,等.冻结壁形成及解冻规律实测研究[J].冰川冻土,1998,20(2):128-132.
    [47]岳丰田,戴仪燮.竖井冻结温度场测试计算机集散系统[J].中国矿业大学学报,1999,28(6):582-584.
    [48]金川,汪仁和,王伟.张集矿北区地层冻结温度场的实测与分析[J].安徽理工大学学报(自然科学版),2004,24(2):13-17.
    [49]刘兴彦.冻结法在封堵主副井基岩段超大裂隙水中的应用[J].中州煤炭,2006,(1):37-38.
    [50]孙猛.深厚表土群孔冻结温度场的发展规律研究[D].徐州:中国矿业大学,2006.
    [51]周真云.冻结法施工快速解冻研究及施工实践[J].西部探矿工程,2003,15(10):84-84.
    [52]周晓敏,王梦恕,张顶立.地层冻结技术在北京地铁施工中的应用分析[J].岩土工程界,2002,5(3):61-64.
    [53]邱凡.人工冻土强制解冻基本理论和技术研究[D].上海:同济大学,2006.
    [54]张水宾.冻结加固技术在上海地铁联络通道施工中的应用[J].岩土工程界,2007,10(2):51-53.
    [55]仇培云.地铁区间隧道联络通道强制解冻技术研究[D].徐州:中国矿业大学,2006.
    [56]张水宾.大型盾构出洞冻结加固融沉控制技术研究[D].徐州:中国矿业大学,2007.
    [57]Beskow G. Soil freezing and frost heaving with special application to roads and railroadsfJ]. Swedish Geol. Survey Yearbook.1935,26(3):375-380.
    [58]Everett DH. The thermodynamics of frost damage to Porous solids[J]. Trans. Faraday Soc.1961,57: 1541-1551.
    [59]Loch JPG, Miller RD. Tests of the concept of seeondary frost heaving [J]. Soil Sci. Soc. Am.Proc.1975, 39:1036-1041.
    [60]Miller RD. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record.1972, (393):1-11.
    [61]Miller RD. Lens initiation in secondary frost heaving [R]. Int. SymP. On Frost action in soils, Sweden, 1977.
    [62]Konrad JM, Morgenstern NR. The segregation potential of a freezing soil [J]. Can. Geotech.J.,1981,18: 482-491.
    [63]Konrad JM, Duquennoi C. A model for water transport and ice lensing in freezing soils[J].Wat.Resour.Res.1993,29:3109-3123.
    [64]Gilpin RR. A model for the Predietion of ice lensing and Frost heave in soils[J]. Wat. Resour. Res.,1980, 16:918-930.
    [65]Penner E. AsPects of ice lens growth in soils[J]. Cold Region Science and tech_nology,1986,13(1): 91-100.
    [66]Satoshi Akagawa. Experimental study of frozen fringe characteristics[J]. Cold Region Science and Technology,1988,15:209-223.
    [67]Takeda K.Okamura A. Microstrueture of freezing front in freezing soils[A]. Ground Freezing97[C]. Netherlands:Lulea University of Technology,1997.
    [68]Harlan RL. Analysis of coupled heat-fluld transport In Partially frozen soil[J], Wat.Resour.Res..1973, 9(5):1314-1323.
    [69]Taylor GS, Luthin JN. A model for coupled heat and moisture transfer during soil freezing[J]. Can.Geoteeh.J.,1978,15:548-555.
    [70]O'NeillK, Miller RD. Exploration of rigid-ice of frost heave[J]. Wat.Resour.Res.,1985,21:281-296.
    [71]Holden J, T Piper D, Jones RH. A mathematical model of frost heave in granular materials [A].4th Int.Conf.on Permafrost[C], washington.D.C.:National Academy Press.1983,498-530.
    [72]Piper D, Holden J T, Jones RH. A mathematical model of frost heave in granular materials [A].5th Int.Conf.on permafrost[C]. Norway:TaPir Pub.,1988,370-376.
    [73]Ishizaki T. Nishio N. Experimental study of frost heaving of a saturated soils[A].5th Int.Symp.on Ground freezing[C]. UK:Balkema, Rotterdam,1988,65-72.
    [74]Sheng DC. Thermo dynamics of freezing soils [D]. Sweden:Lulea University Press,1994.
    [75]Nixon JF. Field frost heave Predictions using the segregation potential concept [J]. C an. Geoteeh. J,1982, 19:526-529.
    [76]Knutsson SL, Domaschuk, Chandler N. Analysis of large scale laboratory and in situ frost heave tests [A],4th Int Symp. on Ground Freezing[C]. Sapporo, JaPan:Balkema, Rotterdam,1985,65-70.
    [77]徐学祖,王家澄,张立新,等.土体冻胀和盐胀机理[M].北京:科学出版社,1995.
    [78]Nixon J F. Discrete ice lens theory for frost heave in soils [J]. Can.Geotech.J.,1991,28:843-859.
    [79]Fremond M, Mikkola M. Thermo mechanical modeling of frezing soil [A].6th Int Symp On Ground Freezing [C].BeiJing.
    [80]何平,程国栋,俞祁浩,等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土,22(2):135-138.
    [81]程桦,姚直书,张经双,等.人工水平冻结法施工隧道冻胀与融沉效应模型试验研究[J].土木工程学报,40(10):80-85.
    [82]宋文华,李岩峰,宋郁.应用地温解决基础冻胀的实脸研究[J].节能技术,1997(5)
    [83]周红,王贵虎.人工冻土冻胀融沉问题研究现状与展望[J].淮南职业技术学院学报,2002,2(4):37-40.
    [84]柯洁铭,杨平,冻土冻胀融沉的研究进展[J].南京林业大学学报(自然科学版),2004,28(4):105-108.
    [85]Viklander, P. (Lulea Univ of Technology), Knutsson, S. Deformation and coMPaction of frozen soils[C]. Proc 7 Int Symp Ground Freezing,1994,109-116.
    [86]P.Viklander. Laboratory study of stone heave in till exposed to freezing and thawing [J]. Cold-Regions Science and Technology.27(1998):141-152.
    [87]Taskin Oztas, Ferhan Fayetorbay. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena52(2003):1-8.
    [88]Konrad, J.-M. (Univ of Waterloo). Physical processes during freeze-thaw cycles in clayey silts [J]. Cold Regions Science and Technology, v 16, n 3, Jul,1989,291-303.
    [89]Konrad, J.-M.; Lemieux, N. Influence of fines on frost heave characteristics of a well-graded base-course material[J]. Canadian Geotechnical Journal, v 42, n 2, April,2005,515-527.
    [90]周国庆.饱水砂层中结构的融沉附加力研究[J].冰川冻土,1998,20(2):11-14.
    [91]王建平,王文顺.人工冻结土体冻胀融沉的模型试验[J].中国矿业大学学报,1999,28(4):303-306.
    [92]罗小刚,陈湘生,吴成义.冻融对土工参数影响的试验研究[J].建井技术,2000,21(2):24-26.
    [93]杨平,张婷.人工冻融土物理力学性能研究[J].冰川冻土,2002,24(5):665-667.
    [94]周希圣,郑宜枫.高含水黏土层隧道冻结位移场模型试验研究问.同济大学学报,2000,28(4):472-476.
    [95]翁家杰.群孔冻结冻土加固体的应力与变形[J].地下工程与隧道,1998,1:2-9.
    [96]岳丰田等,隧道联络通道冻结位移场模型试验研究[J].中国矿业大学学报,2005,34(2):209-212.
    [97]仇培云,岳丰田.上海大连路隧道联络通道冻结法施工模拟试验研究[J].岩土工程界,2005,8(3):32-33.
    [98]程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工业学院学报,2000,20(2):12-16.
    [99]陈瑞杰.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):40-43.
    [100]Konrad, J.-M. Prediction of freezing-induced movements for an underground construction project in Japan[J]. Canadian Geotechnical Journal, v 39, n 6, December,2002,1231-1242.
    [101]Shoop, Sally; Affleck, Rosa. Cap plasticity model for thawing soil[M]. Geotechnical Special Publication, n 130-142,Geo-Fromtiers 2005 2605-2615.
    [102]Hermansson, Ake; Guthrie, W. Spencer. Numerical modeling of thaw penetration in frozen ground subject to low-intensity infrared heating{J]. Journal of Cold Regions Engineering, v20, nl, March,2006,4-19.
    [103]尚松浩.冻结条件下土壤水热耦合迁移数值模拟的改进[J].清华大学学报,1997,37(8).
    [104]石春林.饱和土壤冻融过程中水热迁移数值模拟[J].中国农业气象,1998.8,19(4).
    [105]王建平.人工冻土冻胀融沉规律的研究[D].徐州:中国矿业大学,1999.5.
    []06]周希圣.冻结前期水、温度、应力、位移场的耦合分析[D].徐州:中国矿业大学,1999.5.
    [107]王正中,沙际德.正交各向异性冻土与建筑物相互作用的非线性有限元分析[J].土木工程学报,1999,32(3):55-60.
    [108]李述训,南卓铜.冻融作用对系统与环境间能量交换的影响[J].冰川冻土,2002,24(2):109-115.
    [109]程国栋.冻土力学与工程的国际研究新进展—2000年国际地层冻结和土冻结作用会议综述[J].地球科学进展,2000,16(3):293-299.
    [110]翁家杰.液氮冻结土层的理论与实践[J].煤炭科学技术,1994,22(9):11-14.
    [111]李大勇,吕爱钟,张庆贺,等.南京地铁旁通道冻结实测分析研究[J].岩石力学与工程学报,2004,23(2):334-338.
    [112]裴烈烽.“零距离”穿越运营地铁车站的综合施工技术[J].上海建设科技,2005,3.
    [113]岳丰田.地铁联络通道冻结加固技术研究[J].地下空间与工程学报[J],2006,2(8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700