用户名: 密码: 验证码:
含水酒精重整燃料发动机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前人类所依存的能源,主要是不可再生的化石能源。但对化石能源储采比的研究表明,化石能源的可开采年限有限。而大规模的使用化石能源,将地底下沉积几亿年的碳元素不可逆地引入大气层,也导致了全球温室气体排放严重,气候变暖。随着经济的发展,能源消费量的日益增加与能源储量日益减少和环境日益恶化的矛盾迫使人类不得不寻找新的替代能源。
     太阳能、风能、海洋能、地热能和生物质能等可再生能源都是未来潜在的替代能源。在目前的技术条件下,和其他可再生能源相比,生物质能中的生物柴油和生物酒精因其能量密度的优势更适于作为载运工具的替代燃料。生物乙醇作为车用替代燃料的技术最为成熟,乙醇汽油已得到广泛应用。但在现有发动机上使用乙醇汽油乙醇的含量不能大于10%,替代率低。若直接燃用高乙醇含量的乙醇汽油发动机需作大的结构改造。而且乙醇汽油对乙醇的纯度要求高,必须是脱水酒精,体积浓度在99.5%以上。本课题提出的含水酒精重整燃料方案可克服以上缺点,将含水酒精直接在现有发动机上应用。基本原理是将含水酒精重整为富氢混合气后供发动机燃烧,含水酒精的蒸发和重整所需的热量由发动机的排气余热提供。本文的主要目的就是研究含水酒精重整燃料的各种特性,寻找对含水酒精重整燃料发动机热效率产生重大影响的燃料内在因素,提出含水酒精重整燃料发动机性能优化策略,为发动机的开发提供理论依据和技术支持。主要研究内容为:
     1)论述了本文研究的背景、目的和意义。
     2)研究了在发动机运行的条件下,乙醇水蒸气在催化剂作用下的重整规律。利用乙醇水蒸气催化重整可得到富氢混合气;在可比条件下,重整率随温度的升高而增加,随酒精浓度的增加而增加,随着酒精流量增加而减小,但在有效空速比范围内,酒精流量对重整率影响有限。
     3)分析了含水酒精重整燃料的特性。含水酒精经过重整后燃料的热值得到了提高,由于富含H_2燃烧特性得到了改善。但因其气体的形态,对发动机的充气效率带来不利影响,而且燃烧时分子体积减小,部分抵消了燃料热值提高和燃烧特性改善有利于发动机性能提高的作用。
     4)研究了含水酒精重整燃料-空气混合气发动机的理论循环。随着重整率的提高,理想循环的最高温度逐渐增大,由于分子体积变化系数的影响,循环最大压力随着重整率的提高逐渐下降;随着重整率的提高,循环热效率逐渐增加。
     5)对比分析了RE发动机和VE发动机台架试验结果。RE发动机热效率较VE发动机高,主要原因是由于RE燃料为富氢混合气,实现了快速燃烧和稀薄燃烧;
     6)研究了以现有发动机改造的含水酒精重整燃料发动机性能优化策略。提高压缩比、点火提前角增大、实现稀薄燃烧都可改善发动机经济性和排放性能。与原机相比,优化后的RE发动机除动力性有所下降外,经济性和排放性能都大幅提高。
At present the nonrenewable fossil fuel is the main energy source human-being depend on.But the researches for the reserve/production ratio of fossil fuel indicate the durative time of fossil fuel production is limited.The serious emission of greenhouse gas and warming of the climate are induced by large scale application of fossil fuel which introduces the carbon depositing under the ground hundreds of millions years to the aerosphere.With the development of the economy, human-being are forced to search new alternative energy by energy consume increasing,energy source reserve decreasing and the environment worsening.
     Solar,wind,ocean,geothermal and biomass are the potential alternative energy sources in the future.To the technology of present status,biodiesel and bioethanol are fit for the transport facilities in comparison with all other alternative fuels because of its relatively greater power density.The technology of ethanol as engine alternative fuel is ripest for ethanol-gasoline widely application in the market.But the ratio of ethanol in ethanol-gasoline used to the existing engines couldn't be over 10%,and there are many structure modifications to the existing engines using high ratio ethanol-gasoline.And ethanol-gasoline needs dehydrated ethanol which purity must be over 99.5%.The hydrous-ethanol reforming approach presented in this paper could overcome above shortcomings,which applies hydrous-ethanol to the existing engines directly.The principle of the approach is that hydrous-ethanol is reformed to hydrogen-rich gas mixture for engine combustion,and the energy source for ethanol steam evaporating and reforming comes from the waste heat of engine exhaust.To support the development of hydrous-ethanol reforming fuel engines(RE), the main aim of this paper is to research the characters of hydrous-ethanol reforming fuel,study the intrinsic factors of the fuel which improve engine thermal efficiency, and put forward the optimizing strategies for engine performances.The main contents include:
     1) The research background,aim and significance have been discussed.
     2) The reforming rules of ethanol steam with catalyst under the conditions provided by running engine have been studied.Hydrogen-rich gas mixture could be produced by ethanol steam reforming with catalyst;under the comparable conditions,the reforming ratio would be improved with temperature increasing and with alcohol concentrate increasing,and decreased with alcohol flux increasing.
     3) The characters of hydrous-ethanol reforming fuel have been analyzed.Heat value of hydrous-ethanol reforming fuel is increased,and combustion performance is improved due to hydrogen-rich.But the gas form of it brings negative influence to engine charge coefficient,and moles shrinkage in combustion partly offsets the positive effect from increased heat value and improved combustion performance.
     4) Engine theory cycle with hydrous-ethanol reforming fuel/air mixture is studied.With reforming ratio increasing,the maximal temperature and thermal efficiency of theory cycle is increasing,but the maximal pressure would be decreasing with reforming ratio increasing due to influence of moles.
     5) Kit experiment results of RE compared to that of hydrous-ethanol vapor engine(VE) are studied.The thermal efficiency of RE is higher than that of VE because hydrogen-rich RE fuel realizes quick combustion and lean combustion.
     6) Optimizing strategies for performances of RE based on existing engine have been researched.The economy and emission performances of RE could be improved by increasing compression ratio and ignition angle,and realizing lean combustion.Compared to the baseline gasoline engine,optimized RE performances including energy consuming and emissions are improved greatly except of power performance.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359
    [2]2005 Production:Energy Information Administration,Short Energy Outlook(October 2006)
    [3]www.valuechina.net
    [4]Reserves:Worldwide Look at Reserves and Production,Oil & Gas Journal Vol.104,No.47(December 18,2006),pp.24-25
    [5]王鑫鑫,沈蕾.世界能源的新宠-燃料乙醇在美国的发展及其影响.Economic & Trade Update,Vol.5,Sum.No79,Sep,2007
    [6]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[EB/OL].2007-09-28[2008-02-28].http://www.ndrc.gov.cn/fzgh/ghwb/115zhgh/P020070930491914730 2047.pdf
    [7]张国宝.必须十分重视可再生能源的利用.
    [8]倪维斗,李政,靳晖.对用生物质原料生产燃料用乙醇之我见.中国工程科学.2001,3(5):44-49
    [9]严传俊,范玮.燃烧学.西安:西北工业大学出版社.2005
    [10]中华人民共和国国家发展和改革委员会.世界能源消费现状和可再生能源发展趋势.http://www.ndrc.gov.cn
    [11]Kasting J,F.The carbon cycle,climate,and the long-term effects of fossil fuel burning.U.S.Global Change Research Information Office,Consequences 1998,4(1)
    [12]孙杰,吴锋,邱新平,等.燃料电池氢源技术-中低温乙醇水蒸气重整制氢研究.现代化工,2003,23(9):31-34
    [13]王卫平,吕功煊.乙醇催化制氢研究进展.化学进展,2003,15(1):74-78
    [14]中伟.进气加氢柴油机燃烧及排放特性研究:[学位论文].北京交通大学,2007
    [15]杨振中.氢燃料发动机燃烧与优化控制:[学位论文].浙江大学,2001
    [16]黄佐华,王金华,黄印玉,等.氢能在燃烧发动机上利用的研究综述.中国科技论文在线,http://www.paper.edu.cn
    [17]刘世文,汪洋.天然气加氢改性对柴油引燃气体燃料发动机排放特性和经济性能影响的研究.燃烧科学与技术,.2003,(9).3-11
    [18]Yuksel F,Ceviz M,A.Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel.Energy 28(2003) 1069-1080
    [19]Maher Abdul-Resul,Sadiq Al-Baghdadi,Haroun Abdul-Kadim,Shahad Al-Janabi.Improvement of performance and reduction of pollutant emission of a four stroke spark ignition engine fueled with hydrogen gasoline fuel mixture.Energy Conversion &Management.2000(41),77-91
    [20]王胜年,王树东,吴迪镛.甲醇自热重整制氢反应分析.燃料化学学报,2001,29(3):238-242
    [21]M.A.S.Al-Baghdadi.Hydrogen-ethanol blending as an alternative fuel of spark ignition engines.Renewable Energy,28(2003):1471-1478
    [22]Yasushi Sekine,Kohei Urasaki,Shinjiro Asai,et al.A novel method for hydrogen production from liquid ethanol/water at room temperature.Chem.Commun.,2005,78-79
    [23]Bernard Savaiko.A Promising Future for Ethanol.F.O.Licht,2004,12(17)
    [24]Maher Abdul-Resul Sadiq Al-Baghdadi.A Study on The Hydrogen-ethyl Alcohol Dual Fuel Ignition Engine.Energy Conversion and Management 43(2002):199-204
    [25]Robert D.Sopuck.ETHANOL:The Promise and The Peril.The Frontier Centre for Public Policy,ISSN 1491-7874
    [26]刘海全,马凡华,王宇,等.不同掺氢比天然气发动机的燃烧排放特性.农业机械学报,2008,8(8)
    [27]Tokgoz,Simla,Elobeid,Amani.An analysis of the link between ethanol,energy,and crop markets.Working Paper 06-WP 435.November 2006
    [28]崔可润,高孝洪.氢在内燃机中的应用和发展.兵工学报:坦克装甲车与发动机分册,1994,2:24-30
    [29]亓爱笃,王树东,付桂芝,等.汽油自热重整制氢反应过程分析.燃料化学学报,2001,29(6):519-523
    [30]周启德,李厚生,包铁成,等.汽车用掺氢汽油发动机的试验研究.内燃机学报,1996(1):63-68
    [31]李从心,张欣,刘建华.天然气掺氢发动机性能试验.北京交通大学学报,2008,8(4)
    [32]徐挺,石鲁民,王志中,等.传统柴油机的排放情况及掺氢燃烧后的排放预测.吉林工业大学学报,1996(2)
    [33]杨斌,Charles E.Wyman.中国纤维素乙醇技术的研究进展.化工进展,2007,8(19),1072-1075
    [34]董丹丹,赵黛青,廖翠,等.生物基燃料乙醇生产工艺的能耗分析与节能技术综述.化工进展,2007,26(11)
    [35]陈俊英,马晓建,楚德强,等.降低酒精生产能耗的关键技术.酿酒科技,2006,8(146),24-26
    [36]江茂修,段启伟.燃料电池汽车用车载汽油制氢技术发展分析.化工进展,2003,22(4):459-461
    [37]李晶,傅维鏕,侯凌云等.蓄热式催化重整氢发生器的研究.工程热物理学报,2003,24(3):527-530
    [38]Garcia E,Y,Laborde M,A.Hydrogen production by the steam reforming of ethanol:Thermodynamic analysis.Int.J.Hydrogen Energy,1991,16,307-312
    [39]F.Frusteri,S.Freni,V.Chiodo,L.Spadaro.Steam reforming of Bio-ethanol on Alkali-Doped Ni/MgO Catalysts:Hydrogen Production for MC Fuel Cell.Appl.Catal.,A 2004,270,30-38
    [40]Srinivas D,Satyanarayana C,V,V,Potdar H,S,et al.Structural studies on NiO-CeO2-ZrO2Catalysts for Steam reforming of ethanol.Appl.Catal.,A,2003,323-334
    [41]V.Mas,R.Kipreos,N.Amadeo,M.Laborde.Thermodynamic analysis of ethanol/water system with the stoichiometric method.Int.J.Hydrogen Energy,2006,31,21-28
    [42]Freni S.Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells.J.Power Sources,2001,94,14-19
    [43]Sheng P,Y,Bowmaker G,A,Idriss H.The Reactions of Ethanol over Au/CeO2,Appl.Catal.A,2004,261,171-181
    [44]Cavallaro S,Mondello N,Freni S,.Hydrogen Produced from Ethanol for Internal Reforming Molten Carbonate Fuel Cell.J.Power Sources,2001,102,198-204
    [45]Cavallaro S,Freni S.Ethanol steam reforming in a molten carbonate fuel cell.A preliminary kinetic investigation.Int.J.Hydrogen Energy,1996,21,465-469
    [46]Sun Jie,Qiu Xin-Ping,Wu Feng,Zhu Wen Tao.H2 from steam reforming of ethanol at low temperature over Ni/Y2O3,Ni/La2O3 and Ni/A12O3 catalysts for fuel-cell Application.Int.J.Hydrogen Energy,2005,30,437-445
    [47]孙杰,吴锋,邱新平,王芳,郝少军,刘媛.Ni/Al_2O_3和Ni/La_2O_3催化剂上低温乙醇水蒸气重整制氢.催化学报,2005,25,551-555
    [48]Akande A,J,Idem R,O,Dalai A,K.Synthesis characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production.Appl.Catal.,A,2005,287,159-175
    [49]Haryanto A,Fernando S,Murali N,Adhikari S.Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:A Review.Energy Fuels,2005,19,2098-2106
    [50]Deluga G,A,Salge J,R,Schmidt L,D,et al.Renewable Hydrogen from Ethanol by Auto-thermal Reforming.Scince,2004,303,993-997
    [51]A.N.Fatsikostas,D.I.Kondarides,X.E.Verykios.Production of hydrogen for fuel cells by reformation of biomass-derived ethanol.Catal.Today,2002,75,145-155
    [52]S.Cavallaro.Ethanol Steam Reforming on Rh/A1203 Catalysts.Energy Fuels,2000,14,1195-1199
    [53]J.Llorca,N.Homs,J.Sales,J.G.Fierro,P.R.Piscina.Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol.J.Catal.,2004,222,470-480
    [54]A.N.Fatsikostas,X.E.Verykios.Reaction network of steam reforming of ethanol over Ni-based catalysts.J.Catal.,2004,225,439-452
    [55]A.Therdthianwong,T.Sakulkoakiet,S.Therdthianwong.Hydrogen Production by Catalytic Ethanol Steam Reforming.Science Asia,2001,27,193-198
    [56]J.Llorca,P.R.Piscina,J.Sales,N.Homs.Direct Production of Hydrogen from ethanolic aqueous solutions over oxide catalyst.Chem.Commun.,2001,641-642
    [57]Goula M,A,.Kontou S,K,Tsiakaras P,E.Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al_2O_3 catalyst.Appl.Catal.B,2004,135-144
    [58]Fatsikostas A,N,Kondarides D,I,Verykios X,E.Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications Chem.Commun.,2001,851—852
    [59]Sheng P,Y,Idriss H.Ethanol Reactions over Au-Rh/CeO2 Catalysts.Total Decomposition and H2 Formation.J.Vac.Sci.Technol.A,2004,22,1652-1658
    [60]Vargas J,C,Sternenberg F,Roger A,C,et al.Steam reforming of bioethanol on Co/Ce-Zr-Co and Co/Ce-Zr Catalysts:A comparison between cobalt integration and cobalt impregnation,presented in the technical program,Pisa,Italy,May 16-19,2004
    [61]Frusteri F,Freni S,Chiodo V,Bonura G.,et al.Hydrogen from biomass-derived ethanol to feed a MC fuel cell:A comparison among MgO supported Rh,Pd,Co and Ni catalysts.Presented in the technical program,Pisa,Italy,May 16-19,2004.
    [62]Toth M,Domok M,Rasko'x J,et al.In Reforming of ethanol on different supported Rh catalysts presented in the technical program,Pisa,Italy,May 16-19,2004
    [63]Diagne C,Idriss H,Kiennemann A.Hydrogen production by ethanol reforming over Rh/CeO_2-ZrO_2 catalysts.Catal.Commun.,2002,3,565-571
    [64]Frusteri F,Freni S,Spadaro L,et al.H_2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd,Rh,Ni and Co catalysts”,Catal.Commun.,2004,5,611-615
    [65]Amphlett J,C,Leclerc S,Mann R,F,et al.Fuel cell hydrogen production by catalytic ethanol steam reforming.Proceedings of the 33rd Intersociety Energy Conversion Engineering Conference,Colorado,Sprongs,CO,August 1998,Paper No.98-269.
    [66]Lorca J,L,Ramirez P,Sales J.Direct production of hydrogen from ethanol aqueous solution over oxide catalysts.Chem.Commun.,7(2001)641-642
    [67]Fatsikostas A,N,Verykios X,E.Reaction network of steam reforming of ethanol over Ni-based catalysts.J.Catal.,2004,225,439-452
    [68]Comas J,Marino F,Laborde M,et al.Bio-ethanol steam reforming on Ni/Al2O3 catalyst.Chem.Eng.J.,2004,98,61-68
    [69]Marino F,Boveri M,Baronetti G,et al.Hydrogen production via catalytic gasification of ethanol.A mechanism proposal over copper-nickel catalysts.Int.J.Hydrogen Energy,2004,29,67-71
    [70]Marino F,Cerrella E,G,Duhalde S,et al.Hydrogen from steam reforming of ethanol.Characterization and performance of copper-nickel supported catalysts.Int.J.Hydrogen Energy,1998,23,1095-1101
    [71]Marino F,Boveri M,Baronetti G,et al.Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts.Effect of Ni.Int.J.Hydrogen Energy,2001,26,665-668
    [72]Marino F,Baronetti G,Jobbagy M,et al.Cu-Ni-K/γ-Al_2O_3 supported catalysts for ethanol steam reforming:Formation of hydrotalcite-type compounds as a result of metal-support interaction.Appl.Catal.A:Gen.,2003,238,41-54
    [73]Cavallaro S,Mondello N,Freni S.Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell.J.Power Sources,2001,102,198-204
    [74]Haga F,Nakajima T,Miya H,Mishima S.Catalytic properties of supported cobalt catalysts for steam reforming of ethanol.Catal.Lett.,1997,48,223-227
    [75]Breen J,P,Burch R,Coleman H,M.Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications.Appl.Catal.B,2002,39,65-74
    [76]Frusteri F,Freni S,Spadaro L,Chiodo V,et al.H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd,Rh,Ni and Co catalysts",Catal.Commun.,2004,5,611-615
    [77]Goula M,A,Kontou S,K,Tsiakaras P,E.Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst.Appl.Catal.B,2004,49,135-144
    [78]Liguras D,K,Kondarides D,I,Verykios X,E.Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts.Appl.Catal.B,2003,43,345-354
    [79]陆小明.甲醇裂解燃料点燃式发动机工作过程试验研究及热力学分析.[学位论文].武汉水运工程学院,1987,6
    [80]陆小明,高孝洪.裂解甲醇燃料点燃式发动机工作过程试验研究.内燃机学报,1991,9(2):103-108
    [81]赫麦罗夫B,N,拉夫罗夫Б,Е,氢发动机[M]王震华,译..北京:新时代出版社,1987
    [82]李格升,游伏兵,高孝洪.含水酒精在发动机上的应用研究.武汉理工大学学报:交通科学与工程版,2008,12(6)
    [83]You Fubing,Li Gesheng,Gao Xiaohong.Study on reformed ethanol engine.Solar World Congress of the International-Solar-Energy-Society,Beijing,Peoples R China,Sep 18-21,2007
    [84]You Fubing,Li Gesheng,Gao Xiaohong.Research on the application of hydrous-ethanol for automobiles.7~(th) International Conference on Sustainable Energy Technologies,Seoul,Korea,Aug.2008
    [85]Freni S,Maggio G,Cavallaro S.Ethanol steam reforming in a molten carbonate fuel cell:a thermodynamic approach.J Power Sources 1996;62:67-73
    [86]Ioannides T.Thermodynamic analysis of ethanol processes for fuel cell applications.J.Power Sources 2001;92:17-25
    [87]Benito M,Sanz JL,Isabel R,Padilla R,Arjona R,Daza L.Bio-ethanol steam reforming:insights on the mechanism for hydrogen production.J Power Sources 2005;151:11-7
    [88]Vaidya PD,Rodrigues AE.Insights into steam reforming of ethanol to produce hydrogen for fuel cells.Chem Eng J 2006;117:39-49
    [89]沈维道,郑佩芝,蒋淡安.工程热力学.高等教育出版社.1995
    [90]Fatsikostas A N,Verykios X E.Reaction network of steam reforming of ethanol over Ni-based catalysts.J Catal 2004;225:439-52
    [91]College of the Desert.Module 3:Hydrogen Use in Internal Combustion Engines.Revision 0,December 2001
    [92]Green J,B,Domingo Jr.,N,Storey J,M,E,et al.Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer.SAE Paper 012206,2000
    [93]Cohn D,R,Rabinovitch A,Titus C,H,et al.Near-term possibilities for extremely low emission vehicles using onboard plasmatron generation of hydrogen,Int.J.Hydrogen Energy 1997,22(7):715-723
    [94]王利坡,傅维标.柴油机燃用掺水燃料的燃烧特性及其节油机理分析.内燃机学报,2001,19(4)
    [95]Cohn D,R,L.Bromberg,J.B.Heywood.Direct Injection Ethanol Boosted Gasoline Engines:Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO2 Emissions.Working paper,Massachusetts Institute of Technology,Cambridge,MA 02139
    [96]叶忠慧,韦志康.混燃乙醇改善柴油机碳烟排放的试验研究.农机化研究,2007,2
    [97]王建昕,闫小光,程勇,等.乙醇-柴油混合燃料的燃烧与排放特性.内燃机学报,2002,20(3)
    [98]Tiffany Groode.Review of Corn Based Ethanol Energy Use and Greenhouse Gas Emissions.Working paper,MIT,June 2006
    [99]Bromberg L,Cohn D,R.Effective octane and efficiency advantages of direct injection alcohol engines.MIT Laboratory for Energy and the Environment Report,Jan.2008
    [100]张纪鹏,董光宇,虞浏等.乙醇燃料均质压燃的试验研究.燃料科学与技术,2006,12(5)
    [101]杨宇,马建新.乙醇水蒸气重整制氢反应条件的优化.华东理工大学学报(自然科学版),2006,9,32(9)
    [102]张保才,许斌,李勇等.镍基催化剂上乙醇水蒸气重整反应的研究.燃料化学学报,2006,8,34(4)
    [103]张永光.乙醇作为车用燃料的可行性与发展趋势.石油商技,2001,19(5)
    [104]潘相敏,余瀛,严菁,等.甲醇制氢系统中燃烧催化剂的研究.太阳能学报,2006,27(8)
    [105]吴锋,刘媛,孙杰.乙醇水蒸气重整制氢催化材料的制备及其性能研究.功能材料,2005,36(3)
    [106]王健康,刘树法,陈方,等.制氢催化剂研究进展.分子催化,2005,19(6)
    [107]毛宗强.氢能及其近期应用前景.科技导报,2005,23(2)
    [108]Ather A.Quader,John E.Kirwan and M.James Grieve.Engine Performance and Emissions Near the Dilute Limit with Hydrogen Enrichment Using an On-Board Reforming Strategy.SAE Paper 011356,2003
    [109]Jie Sun,Xinping Qiu,Feng Wu.Research on catalysts for ethanol steam reforming J.Energy & Fuels,2000,14(4-6) 1195-1199
    [110]王海凤.定容燃烧装置的研制及高炉煤气燃烧特性研究.[学位论文].山东理工大学,2007
    [111]张雷,郭子如,丁以斌.高速摄像在火焰传播研究中的应用.煤矿爆炸,2007,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700