用户名: 密码: 验证码:
高产热密度数据机房冷却技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息产业的快速发展,全社会对各类高性能数据机房的需求越来越大。以刀片式服务器为代表的高性能IT设备的广泛应用已经使得标准42U机柜的容量从早年的不足1kW跃升到10~20kW,大型数据中心单位面积IT设备发热量高达1~3kW,如此高的产热密度使空调能耗大幅上升,目前已占机房总用电量的40%左右,不仅增加机房运营成本,制约机房升级扩容,还直接影响着未来绿色数据机房的发展。如何有效降低机房空调能耗已成为亟待解决的问题。基于此,本文从机房传热过程的本质入手,从传热动力损失角度重新审视和分析机房传热过程,开展以下研究:
     对机房传热过程本质的研究。指出机房排热的核心任务是在给定的散热量和可用的传热动力(机房室内外温差)下,通过减少各换热环节的温差消耗,用高温冷源完成热量从室内到室外的搬运,并结合实测数据给出机房实际传热过程的的温度分布,指出室内冷热空气混合对机房传热性能有重要的影响。
     对机房传热过程分析方法的研究。对于给定传热温差求最大热流的优化问题,分别用传统热力学方法(熵产,火用损失)和热学方法(火积耗散)分析,结果表明热学原理(也称热质理论)适合研究机房传热过程,用火积耗散表征传热动力损失,指出机房排热的核心任务是减少传热火积损失,结合实测数据分析了机房传热过程中由温差传热、冷热流体混合、流量不匹配等因素引起的火积耗散,并分析了在不同工况下投入体系的压缩功以及在不同结构的换热网络中流体流量的变化对体系传热火积耗散的影响。
     分布式冷却技术研究。基于传热火积损失最小原则提出机房分布式冷却方案,通过与传统集中式冷却流程对比,指出分布式冷却在消除冷热空气混合、改善传热过程匹配性、减少火积耗散以及改善机房热环境、降低排热能耗等方面的优势,在此基础上提出了内置多级分离式热管的内冷型机柜以及冷却塔与多级冷机串联运行的大温差冷水系统,消除冷热空气混合;通过自然冷却和机械制冷联合运行并连续调节供冷能力,有效延长自然冷却时间,提高机房排热效率。
     工程应用。对北京市某数据机房空调系统节能改造,通过对全年不同工况下改造前后空调性能对比测试,采用分布式冷却系统后,机房空调系统全年综合能效从2.6提高到5.7,机房年均PUE值从1.6降低到1.35,证明了热学原理和分布式冷却技术在高产热密度数据机房的适用性,为今后的推广应用积累了经验。
With the rapid growth of information industry, demand for high performance datacenter is increasing. Blade servers have lifted the capacity of a normal42U rack fromless than1kW in early years to recent10~20kW, rising IDC heat density up to1~3kW/m2,and nearly40%of data center operating cost is spent on air-conditioning.Reducing cooling cost is an urgent issue which affects management and development ofhigh heat density data centers. This paper characterizes the thermal behavior and thegoverning rules through the analysis on heat transfer ability loss of data centers fromfollowing aspects
     The essence of data center heat transfer. The central work is to remove the givenheat under available driven force (temperature difference between indoor and outdoor),with minimum temperature difference dissipation and cold source of high temperature.The temperature distribution of a real data center indicates that the mix of hot and coldair has a significant impact on heat transfer performance.
     The analysis method of data center heat transfer. Maximizing heat flux undergiven temperature difference by flow rate optimization is performed using boththermodynamic method (entropy generation and exergy loss) and entransy analysis(entranssy dissipation). The results show that entransy analysis is suitable for heattransfer optimization by minimizing heat transfer ability loss, which is represented byentransy dissipation caused by temperature difference driven heat conduct, mixing ofhot and cold air and unmatching flowrate in heat exchangers. The influence of inputwork and flowrate change in heat exchanger network on entransy dissipation is alsoanalysed with test data.
     Distributed cooling system. Based on minimum principle of entransy dissipation.distributed cooling solution is brought up to improve data center cooling performance.Inner cooled racks with multi separated heat pipes inside eliminate hot and cold airmixing by multi-stage heat removal, and cooling water loop comprised of serialconnected cooling tower and multi-chiller enables continuous distribution of freecooling capacity and mechanical cooling capacity according to the outdoor condition,making more free cooling available. Such cooling loop has large temperature differenceof supply and returen water, which improves multi-chiller performance. With more free cooling and higher chiller COP, distributed cooling can be more energy efficient.
     Engineering application. Through the air-conditioning retrofitting project of a highheat density data center in Beijing, the performance of two cooling solutions, distributedcooling and centralized cooling, are tested and compared after one year operation. Theresults show that after using distributed cooling, the data center’s annual average EER(Energy Efficiency Ratio) of air-conditioning system increases from2.6to5.7, and thedata center’s annual average PUE (Power Utilization Effectiveness) decreases from1.6to1.35, indicating the applicability of entransy analysis and distributed cooling solutionin data centers of high heat density. This retrofitting project enriches the experience forthe widely use of distributed cooling system in data centers in the future.
引文
[1] Amip Jagat Shah. Exerg-Based Analysis and Optimization of Computer ThermalManagement Systems [D]. Berkeley: University of California Department ofMechanical Engineering,2005.
    [2] ASHRAE TC9.9.数据处理环境热指南.杨国荣,陈巍,王振华,译.2版.北京:中国建筑工业出版社,2010.
    [3] U.S Environmental Protection Agency ENERGY STAR Program. Report to congresson server and data center energy efficiency public law109-431[DB/OL].
    [2007-08-02].http://www.energystar.gov/ia/partners/proddevelopment/downloads/EPA_DatacenterReport_Congress_Final1.pdf
    [4] J.Rambo and Y.Joshi. Modeling of data center airflow and heat transfer: State of theart and future trends. Distributed and Parallel Databases,2007,21(2):193-225.
    [5] C.D.Patel, C.E.Bash, C.Belady, et al. Computational fluid dynamics modeling of highcompute density data centers to assure system inlet air specifications. The PacificRim/ASME International Electronics Packaging Technical Conference and ExhibitionKauai, HI,2001
    [6] R.R.Schmidt, E. Cruz and M.Iyengar. Challenges of data center thermal management.IBM Journal of Research and Development,2005,49:709–723.
    [7] C.D.Patel, R.Sharma, C.E.Bash, et al. Thermal considerations in cooling of large scalehigh compute density data centers. Eight Intersociety Conference on Thermal andThermomechanical Phenomena in Electronic Systems, San Diego, CA,2002.
    [8] R.K. Sharma, C.E. Bash and C.D. Patel. Dimensionless parameters for the evaluationof thermal design and performance of large-scale data centers. AIAA,2002.
    [9] R.R. Schmidt and E. Cruz. Raised floor computer data center: effect on rack inlettemperatures of chilled air exiting form both the hot and cold aisles. Eight IntersocietyConference on Thermal and Thermomechanical Phenomena in Electronic Systems,San Diego, CA,2002.
    [10] J. Rambo and Y. Joshi. Multi-scale modeling of high power density data centers. ThePacific Rim/ASME International Electronics Packaging Technical Conference andExhibition, Kauai, HI,2003.
    [11] S. Bhopte, D. Agonafer, R.R. Schmidt, et al. Optimization of data center room layoutto minimize rack inlet air temperature. International Electronic Packaging TechnicalConference and Exhibition, San Francisco, CA,2005.
    [12] S. Shrivastava, B. Sammakia, R.R. Schmidt, et al. Comparative analysis of differentdata center airflow management configurations. International Electronic PackagingTechnical Conference and Exhibition, San Francisco, CA,2005.
    [13] M. Iyengar, R.R. Schmidt, A. Sharma, et al. Thermal characterization of non-raisedfloor air cooled data centers using numerical modeling. International ElectronicPackaging Technical Conference and Exhibition, San Francisco, CA,2005.
    [14] J. Rambo and Y. Joshi. Physical models in data center airflow simulations. ASMEInternational Mechanical Engineering Congress and R&D Exposition, WashingtonD.C.,2003.
    [15] R.R. Schmidt and E. Cruz. Cluster of high powered racks within a raised floorcomputer data center: Effects of perforated tiles flow distribution on rack inlet airtemperature. ASME International Mechanical Engineering Congress and R&DExposition, Washington D.C,2003.
    [16] M. Iyengar, R.R. Schmidt, A. Sharma, et al. Thermal characterization of non-raisedfloor air cooled data centers using numerical modeling. International ElectronicPackaging Technical Conference and Exhibition, San Francisco, CA,2005.
    [17] R.R. Schmidt and M. Iyengar. Effect of data center layout on rack inlet airtemperatures.International Electronic Packaging Technical Conference and Exhibition,San Francisco, CA,2005.
    [18] J. Rambo and Y. Joshi. Convective transport processes in data centers. NumericalHeat Transfer A–Applications,2006,49(10):923-945.
    [19] J. Rambo and Y. Joshi. Thermal modeling of technology infrastructure facilities: ACase Study of Data Centers. The Handbook of Numerical Heat Transfer: Vol II, W.J.Minkowycz, E.M. Sparrow, J.Y. Murthy, et al.2006:821–849.
    [20]黄少云.营造合理气流组织形式促进通信机房空调系统节能减排.世界电信,2011,8:76-79.
    [21]简弃非,魏蕤,颜永明,等.通信机房气流组织的模拟与分析.技能技术,2009,1:35-39.
    [22]黄赟.上海移动某数据机房空调精确送风系统.上海节能,2009,2:26-28.
    [23]吕爱华,梅胜,杨晚生.数据通信机房空调通风系统的实验测试分析.建筑节能,2010,2:29-31.
    [24] N. Rolander, J. Rambo, Y. Joshi, et al. Towards sustainable design of data centers:Addressing the lifecycle mismatch problem. International Electronic PackagingTechnical Conference and Exhibition, San Franciso, CA,2005.
    [25] N. Rolander, J. Rambo, Y. Joshi, et al. Robust design of turbulent convective systemsusing the proper orthogonal decomposition. ASME Journal of Mechanical Design:Special Issue Robust and Risk Based Design,2006.
    [26] A. Heydari and P. Sabounchi. Refrigeration assisted spot cooling of a high heatdesnity data center. Ninth Intersociety Conference on Thermal and ThermomechanicalPhenomena in Electronic Systems, Las Vegas, NV,2004.
    [27]田浩,李震,刘晓华,等.信息机房热管空调系统应用研究.建筑科学,2010,10:141-145.
    [28]金鑫,翟晓华,祁照岗,等.分离式热管型机房空调性能实验研究.暖通空调,2011,9:133-137.
    [29]李奇贺,黄虎,张忠斌.热管式机房空调性能实验研究.暖通空调,2010,4:145-148.
    [30] S. Kang, R.R. Schmidt, K.M. Kelkar, et al. A methodology for the design ofperforated tiles in a raised floor data center using computational flow analysis.Intersociety Conference on Thermal and Thermomechanical Phenomena in ElectronicSystems, Las Vegas, NV,2000.
    [31] R.R. Schmidt, K.C. Karki, and S.V. Patankar. Raised-floor data center: perforated tileflow rates for various tile layouts. Ninth Intersociety Conference on Thermal andThermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA,2004.
    [32] J. Rambo and Y. Joshi. Supply air distribution from a single air handling unit in araised floor plenum data cente. Joint Indian Society of Heat and Mass Transfer–American Society of Mechanical Engineers Heat and Mass Transfer Conference,Kalpakkam, India,2004.
    [33] A. Radmehr, R.R. Schmidt, K.C. Karki, et al. Distributed leakage flow in raised-floordata centers. International Electronic Packaging Technical Conference and Exhibition,San Franciso, CA,2005.
    [34] J.W. Van Gilder and R.R. Schmidt. Airflow uniformity through perforated tiles in arasied-floor data center. International Electronic Packaging Technical Conference andExhibition, San Francisco, CA,2005.
    [35] K.C. Karki, A. Radmehr, and S.V. Patankar. Use of computational fluid dynamics forcalculating flow rates through perforated tiles in raised-floor data centers.International Journal of Heating, Ventilation, Air-Conditioning and RefrigerationResearch,2003,9:153–166.
    [36] T.D. Boucher, D.M. Auslander, C.E. Bash, et al. Viability of dynamic cooling controlin a data center environment. Ninth Intersociety Conference on Thermal andThermomechanical Phenomena in Electronic Systems, Las Vegas, NV,2004.
    [37] R.K. Sharma, C.E. Bash, C.D. Patel, et al. Balance of power: Dynamic thermalmanagement for internet data centers. IEEE Internet Computing,2005,9:42–49.
    [38] C.D. Patel, C.E. Bash, R. Sharma, et al. Smart chip, system and data center enabled byadvanced flexible cooling resources. Twenty First Annual IEEE SemiconductorThermal Measurement and Management Symposium,2005.
    [39] K.E. Herold and R. Radermacher. Integrated power and cooling systems for datacenters. Eight Intersociety Conference on Thermal and Thermomechanical Phenomenain Electronic Systems, San Diego, CA,2002.
    [40]孙研,等.通信机房节能综合解决方案.电信工程技术与标准化,2006,6:2-7.
    [41]刘威,许新毅,邓重秋.通信机房空调系统节能措施分析.暖通空调,2010,4:92-100.
    [42]周航,彭殿贞.通信机房节能热管理设计探讨.邮电设计技术,2009,3:67-71.
    [43]邓晨冕,秦红.通信机房空调系统节能技术.广东工业大学学报:自然科学版,2009,26(4):45-49.
    [44] ASHRAE TC9.9.数据通信设备中心液体冷却指南.杨国荣,陈巍,王振华,译.2版.北京:中国建筑工业出版社,2010.
    [45]李森.通风节能系统在电信机房中的应用.电信技术,2008,8:48-49.
    [46]陈沂,张宇峰,孟庆林.通信基站通风冷却技术的联动控制策略研究.福州大学学报:自然科学版,2012,40(30):352-356.
    [47]尹树峰.中小通信机房通风降温节能改造实践探索.电信技术,2008,8:46-47.
    [48]陈圣照,甘海峰.基站节能控制系统.邮电设计技术,2005,2:30-32.
    [49]白波.新型节能降耗机柜系统NetAccess.低压电器,2008,2:59-62.
    [50]梁文斌.浅议通信机房节能降耗技术.江苏通信技术,2007,23(4):18-22.
    [51]王景刚,康利改,刘杰.廊坊IDC机房空调节能改造可行性分析.制冷与空调,2009,9(1):78-82.
    [52]祝健,张勇.电子计算机机房空调设计实现方法.安徽建筑,2001,1:110-111.
    [53]郝莹,臧润清,王洪旭.机房空调在变环境温度下的数值模拟与实验研究.制冷技术,2010,38(1):67-71.
    [54]侯福平.通信机房空调系统节能技术探讨.电信技术,2006,6:20-21.
    [55]周兰兰,潘毅群.某数据中心空调系统设计与节能优化分析.暖通空调,2009,39(10),102-107.
    [56]李景山.小型计算机机房空调系统设计的探讨.天津建设科技,2002,3:31-37.
    [57]王恕清,卢允庄,张为民.机房专用恒温恒湿空调机组的基础设计.暖通空调,2008,38(10):86-94.
    [58]江家青.通信机房上送风空调方式的改善.机电技术,2009,2:117-127.
    [59]韩国光,董会建.通信机房节能技术浅谈.山东通信技术,2008,28(3):12-14.
    [60]张雷霆.通信机房空调节能的思考.通信电源技术,2009,26(2):65-67.
    [61] Scofield, C.Mike. Heat pipe used for dry evaporative cooling. ASHRAE Transaction,1986,92:371-381.
    [62] Scofield, C.Mike, Weaver et al. Using wet-bulb economizers: Data center cooling.ASHRAE Journal,2008,50:52-58.
    [63] Sorell, Vali. OA economizers for data centers. ASHRAE Journal,2007,49:32-37.
    [64] Sujatha, Abimannan. Energy efficient free cooling system for data centers. The3rdIEEE International Conference on Cloud Computing Technology and Science, CloudCompute,2011:646-651.
    [65] Weerts, Gallaher, Weaver, et al. Green data center cooling: Achieving90%reduction:Airside economization and unique indirect evaporative cooling.2012IEEE GreenTechnologies Conference,2012.
    [66] Iyengar, Schmidt. Energy efficient data centers using evaporative cooling and air sideeconomizers. ASME2011Pacific Rim Technical Conference and Exhibition onPackaging and Integration of Electronic and Photonic Systems, InterPACK2011,2011,2:623-627.
    [67] Delfani, Shahram. Energy saving potential of an indirect evaporative cooler as apre-cooling unit for mechanical cooling systems in Iran. Energy and Buildings,2010,42(11):2169-2176.
    [68] Stein. Waterside economizing in data centers: Design and control considerations.ASHRAE Transactions,2009,115, PART2:192-200.
    [69] Ratnesh Sharma, Serqio Escobar. Data center characteristic temperature signaturesand SHI correlation to nondimensional parameters. The11th IEEE IntersocietyConference on Thermal and Thermomechanical Phenomena in Electronic Systems,I-THERM,2008:1203-1209.
    [70] Bash, Zhou Rongliang, Wang Zhikui, et al. Data center cooling management andanalysis-A model based approach. The28th Annual IEEE Semiconductor ThermalMeasurement and Management Symposium, SEMI-THERM2012,2012:98-103.
    [71] Herrlin. Rack cooling effectiveness in data centers and telecom central offices: TheRack Cooling Index (RCI). ASHRAE Transactions-Technical and Symposium Paperspresented at the2005Annual Meeting of the American Society of Heating,Refrigerating and Air-Conditioning Engineers,2005,111, PART2:725-731.
    [72] C.D. Patel, C.E. Bash, P.K. Sharma, et.al. Smart chip, system and data center enabledby advanced flexible cooling resources. The21st Annual IEEE SemiconductorThermal Measurement and Management Symposium,2005:78-85.
    [73] Zhou Rongliang, Wang Zhikui, Bash Cullen E, et.al. A holistic and optimal approachfor data center cooling management. Proceedings of the American Control Conference,2011:1346-1351.
    [74] V.J. Shah, C.D. Patel, C.E. Bash, et al. Impact of rack-level compaction on the datacenter cooling ensemble. The11th IEEE Intersociety Conference on Thermal andThermomechanical Phenomena in Electronic Systems, I-THERM,2008:1175-1182.
    [75] V.J. Shah, V.P. Carey, C.E. Bash et al. Exergy analysis of data center thermalmanagement systems. Journal Of Heat Transfer-transactions Of The Asme,2008,130(2).
    [76] V.J. Shah, C.E. Bash, C.D. Patel. Optimizing data center cooling infrastructures usingexergothermovolumes. The12th IEEE Intersociety Conference on Thermal andThermo mechanical Phenomena in Electronic Systems, ITherm2010,2010.
    [77] McAllister, Carey, Shah, et al. Strategies for effective use of exergy-based modelingof data center thermal management systems. Microelectronics Journal, vol39, n7, p1023-1029,2008.
    [78] Shah, Carey, Bash, et al. Exergy analysis of data center thermal management systems.American Society of Mechanical Engineers, Advanced Energy Systems Division(Publication) AES,2003,43:437-446.
    [79] Shah, Carey, Bash, et al. Development and experimental validation of an exergy-basedcomputational tool for data center thermal management. Proceedings of the ASMEHeat Transfer/Fluids Engineering Summer Conference2004,2004,1:965-971.
    [80] Shah, Van Carey, Bash, et al. Exergy-based optimization strategies formulti-component data center thermal management: Part I, analysis. Proceedings of theASME/Pacific Rim Technical Conference and Exhibition on Integration andPackaging of MEMS, NEMS, and Electronic Systems: Advances in ElectronicPackaging2005,2005, PART A:205-214.
    [81] Rambo, Joshi. Physical models in data center airflow simulations. American Societyof Mechanical Engineers, Heat Transfer Division,(Publication) HTD,2003,374(2):153-159.
    [82] Rambo, Joshi. Multi-scale modeling of high power density data centers. ASME2003.International Electronic Packaging Technical Conference and Exhibition,2003,11:521-527.
    [83] Wang Chengwei, Schwan, Wolf. An entropy based online anomaly tester for datacenter management.2009IFIP/IEEE International Symposium on Integrated NetworkManagement-Workshops,2009:79-80.
    [84]陈海波.运行阶段的建筑节能研究[硕士学位论文].北京:清华大学,2003.
    [85] Guo Z Y, Cheng X G, Xia Z Z. Least dissipation principle of heat transport potentialcapacity and its application in heat conduction optimization. Chin. Sci. Bull.,48(4):406-410,2003.
    [86] Guo Z Y, Zhu H Y, Liang X G. Entransy: a physical quantity describing heat transferability. Int. J. Heat Mass Transfer,2007,50:2545-2556.
    [87]程新广,孟继安,过增元.导热优化中的最小传递势容耗散与最小熵产.工程热物理学报,2005,26(6):1034-1036.
    [88]程新广.火积及其在传热优化中的应用[博士学位论文].北京:清华大学,2004.
    [89]朱宏晔.基于火积耗散的最小热阻原理[博士学位论文].北京:清华大学,2007.
    [90]夏再忠.导热和对流换热过程的强化与优化[博士学位论文].北京:清华大学,2001.
    [91]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[博士学位论文].北京:清华大学,2001.
    [92]陈群.对流传递过程的不可逆性及其优化[博士学位论文].北京:清华大学,2008.
    [93]刘晓华,江亿,张涛,等.建筑热湿环境营造过程中换热网络的匹配特性分析.暖通空调,2011,41(3):29-37.
    [94] Tao Zhang, Xiaohua Liu, Lun Zhang, et al. Match properties of heat transfer andcoupled heat and mass transfer processes in air-conditioning system. EnergyConversion and Management.2012,59:103-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700