用户名: 密码: 验证码:
CO_2跨临界双级循环理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于节能减排的背景和发展趋势,CO_2制冷空调和热泵具有很好的应用前景。通过理论分析与试验测试相结合,本文重点对CO_2跨临界双级循环进行研究与分析,为探寻高效、稳定运行的CO_2跨临界循环方式提供基础资料。
     运用热力学方法,在三种CO_2跨临界单级循环基准上,分别对六种双级循环进行了理论分析。结果表明,带膨胀机双级循环性能普遍优于带节流阀循环,双级循环优于单级循环,中间冷却器和回热器对循环效率的提高都有贡献。考虑膨胀机设计和加工因素,作为应用基础研究的第一步,CO_2跨临界双级中间冷却器带节流阀循环TSCV+IC是一种有发展前景的CO_2跨临界循环方式。
     在现有条件下改制了一台CO_2双级活塞压缩机,并以其为对象进行了热力学和运动学计算,并就压缩过程的各种不可逆损失进行了计算。由于采用了双级压缩,在各种损失中,流动损失和摩擦损失所占比例较大,而泄漏损失和传热损失所占比例较小。
     基于双级循环系统及超临界和亚临界CO_2传热和流动过程分析,分别对CO_2跨临界双级循环高、低压级气体冷却器和中间冷却器进行了分析与结构设计,可为CO_2相关换热器的设计提供依据。
     对CO_2跨临界单级带回热器循环SCV+IHX和CO_2跨临界单级带节流阀循环SCV两种基准试验分别进行了性能对比测试,同时测试了气体冷却器、回热器和套管式蒸发器的性能,为CO_2跨临界双级循环设计和优化提供对比试验数据。
     CO_2跨临界双级循环试验测试表明,在中间压力或中间温度变化范围内,CO_2跨临界双级中间冷却器带节流阀循环TSCV+IC和CO_2跨临界双级两个气体冷却器带节流阀循环TSCV+TG存在最大制冷COPc和制热COPh,且每个循环最大制冷COPc和制热COPh对应的最优中间压力或最优中间温度分别基本相等。
     相同测试条件下,CO_2跨临界双级中间冷却器带节流阀循环TSCV+IC具有较高的性能。其中,制热量Qh和制冷量Qc分别比CO_2跨临界双级两个气体冷却器带节流阀循环TSCV+TG平均高约10%和6%,制热COPh和制冷COPc比双级循环TSCV+TG平均高约8%和5%。CO_2跨临界双级循环TSCV+IC和TSCV+TG的理论分析与试验测试结果比较吻合。
Based on international background of energy efficiency and emission reduction, the CO_2 transcritical cycle products of refrigeration air condition and heat pumps possess promising application prospect. In this dissertation, the performance comparison analysis of CO_2 transcritical two stage cycle was employed mainly by combining theoretical analysis and experimental study. Some fundamental data of investigating high efficiency and steady operation CO_2 transcritical cycle mode were obtained.
     On the background of three different kinds of CO_2 transcritical single stage cycle, the six kinds of CO_2 transcritical two stage cycle were analyzed and compared by thermodynamics in this dissertation. The results show that the COP of CO_2 transcritical two stage cycle with expander is better than the cycle with valve, and the performance of two stage cycle is also better than the single stage cycle. The intercooler and internal heat exchanger play an important role in developing cycle performance. As the applied fundamental research and synthetical consideration of factors of design and machining, the CO_2 transcritical two stage cycle TSCV+IC with intercooler and valve has a promising application prospect.
     A CO_2 two stage piston compressor was designed and machininged and the calculation of thermodynamics and kinematics were employed. The irreversible loss simulation analyses of two stage cycle indicate that the flow loss and frictional loss have the largest ratios, the leakage loss and heat transfer loss possess the smaller ratios.
     Due to CO_2 transcritical two stage cycle system constitutes, characteristic of supercritical and subcritical CO_2 heat transfer and pressure drop, the CO_2 gas cooler and intercooler were analysed and designed, respectively, and some significative assistance can be obtained for CO_2 exchanger.
     The performance comparison testing of two kinds based experiment of CO_2 transcritical single stage cycle SCV+IHX with internal heat exchanger and CO_2 transcritical single stage cycle SCV with valve were executed, respectively. At the same time, the performance of gas cooler, internal heat exchanger and tube-in-tube evaporator were testing on the experimental bench of CO_2 transcritical single stage cycle SCV+IHX and single stage cycle SCV, and the beneficial test data was provided for research on the CO_2 transcritical two stage cycle.
     The two stage cycle TSCV+IC and cycle TSCV+TG of CO_2 transcritical experimental results show that the refrigeration COPc and heat COPh have the optimum value with the variation of system intermediate pressure and temperature. In the given experimental condition, the maximum of refrigeration COPc and heat COPh have the same optimum intermediate pressure and temperature, respectively.
     In same testing condition, the performance of CO_2 transcritical two stage cycle TSCV+IC is better than the two stage cycle TSCV+TG. The heat output Qh and refrigerating output Qc of two stage cycle TSCV+IC are average 10% and 6% bigger than the cycle of TSCV+TG, and the heat COPh and refrigerating COPc are 8% and 5% higher than the cycle TSCV+TG, respectively. The theoretical analysis and experimental testing of CO_2 transcritical two stage cycle TSCV+IC and cycle TSCV+TG are anastomotic.
引文
[1]刘万福,马一太.地球生命系统与可持续发展[J].天津大学学报, 2004, 37(4): 336-340.
    [2]恩格斯著,于光远等译.自然辩证法[M].北京:人民出版社, 1984.
    [3]蕾切尔·卡逊,吕瑞兰,李长生译.寂静的春天.长春:吉林人民出版社,1997.
    [4]丹尼斯·米都斯著.增长的极限[M].长春:吉林人民出版社,1998.
    [5]沃德·杜博斯.只有一个地球[M].长春:吉林人民出版社,1997.
    [6]布朗.一个可持续发展的社会[M].北京:中国环境科学出版社,1998.
    [7]联合国环境与发展大会-21世纪议程[M].北京:中国环境科学出版社,1993.
    [8] David W. Fahey. Ozone Depletion and Global Warming: Advancing the Science[C]. Tenth International Refrigeration and Air Conditioning Conference Sevententh International Compressor Engineering Conference, Purdue University, July 12-15, 2004.
    [9]刘圣春.超临界CO2流体特性及跨临界循环系统的研究[D].天津:天津大学, 2006.
    [10]王如竹.制冷学科进展研究与发展报告[R].北京:科学出版社, 2007.
    [11] Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament [J]. International Journal of Refrigeration, 1995, 18(3): 190-197.
    [12] Lorentzen G. Revival of carbon dioxide as a refrigerant [J]. International Journal of Refrigeration, 1994, 17 (5): 292-301.
    [13] Fagerli B. CO2 compressor development. Presentation on the CO2 workshop, Trondheim, 1997.
    [14] Petter Neksa, Filippo Dorin, et al. Development of two-stage semi-hermetic CO2-compressor [C]. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000:355-362.
    [15] Jurgen SUB, Horst Kruse. Heat transfer phenomena inside the cylinder of CO2 compressors and the influence on their efficiency [C]. The proceedings of the 2nd IIR-Gustav Lorentzen Conference on Natural Working Fluids, Norway, 1998.
    [16] Jurgen Sub, Horst Kruse. Efficiency of the indicated process of CO2 compressor [J]. International Journal of Refrigeration, 1998, 21(3): 194-201.
    [17] http://www.appliancemagazine.com/euro/editorial.php?article=397&zone=102&first=1.
    [18] http://www.obrist.at/productsandservices/index.html.
    [19] Heinz Baumann, Martin Conzett. Small oil free piston type compressor for CO2 [C]. Proceedings of the 2002 International Refrigeration Conference, Purdue,West Lafayette, C25-30.
    [20] Tadashi Yanagisawa, Mitsuhiro Fukuta, et al. Basic operating characteristics of reciprocating compressor for CO2 cycle [C]. 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, 2000: 331-338.
    [21] Masaya Tadano, Toshiyuki Ebara, et al. Development of the CO2 hermetic compressor [C]. The proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue,2000: 323-330.
    [22] Hyun Jin Kim, Kwang Myoung Cho, Jong Min Ahn. Performance Analysis of Orbiting Piston Compressor [C]. The 2th Asian Conference on Refrigeration and Air-conditioning ACRA2004. Beijing, China, 2004: 52-59.
    [23] Xinmo Li, Ainong Geng, et al. Research on the Rotating Cylinder Compressor Used in Room Air Conditioner [C]. The 5th International Conference on Compressor and Refrigeration, Xi’an Jiaotong University, 2005: 57-63.
    [24] Ohkawa T, Kumakura E, et al. Development of the hermetic swing compressor for CO2 refrigerants [C]. The proceedings of the 16th international compressor engineering conference, Purdue, 2002: 841-852.
    [25] T. Sheiretov, W Van Glabbeek, C. Cusano. Simulative friction and wear study of retrofitted swash plate and rolling piston compressors. International Journal of Refrigeration, 1995, 18 (5):330-335.
    [26] YinRen Lee, WenFang Wu. On the profile design of a scroll compressor [J]. International Journal of Refrigeration, 1995, 18 (5):308-317.
    [27] Hiroshi Hasegawa, Mitsuhiro Ikoma, et al. Experimental and theoretical study of hermetic CO2 scroll compressor [C]. The proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, 2000: 347-353.
    [28] Yuanyang Zhao, Liansheng Li, et al. Research on Heat and Force Deformations of Large Delivery Scroll Air Compressor [C]. The 5th International Conference on Compressor and Refrigeration, Xi’an Jiaotong University, 2005: 249-255.
    [29] Yu Chen, Nils P. Halm, Eckhard A. Groll, et al. Mathematical modeling of scroll compressors-part I: compression process modeling [J]. International Journal of Refrigeration, 2002, 25 (6):731-750.
    [30] Chiachin Lin, Yuchoung Chang, Kunyi Liang, et al.Temperature and thermal deformation analysis on scrolls of scroll compressor [J]. Applied Thermal Engineering, 2005, 25 (11):1724-1739.
    [31] K. Endoh, T. Kouno, et al. Instant hot-water supply heat-pump water heater using CO2 refrigerant for home use [C]. The 7th IIR-Gustav Lorentzen Conference onNatural Working Fluids, Trondheim, Norway, 2006: 27-30.
    [32] Nikola Stosic, Ahmed Kovacevic, Ian K. Smith. An Investigation of Liquid Injection in Refrigeration Screw Compressors [C]. The 5th International Conference on Compressor and Refrigeration, Xi’an Jiaotong University, 2005: 91-101.
    [33] Huagen Wu, Jianfeng Li, Ziwen Xing. Theoretical and experimental research on the working process of screw refrigeration compressor under superfeed condition [J]. International Journal of Refrigeration, 2007, 30 (8):1329-1335.
    [34] N.Stosic, I.K.Smith, A.Kovacevic. Twin screw combined compressors and expanders for CO2 refrigeration systems. The proceeding of the sixteenth international compressor engineering conference, Purdue, 2002.
    [35] Yuan MA, Yanan GAN, Xueyuan PENG, et al. Modeling of a reciprocating compressor for transcritical CO2 heat pumps [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-8.
    [36]曾宪阳. CO2跨临界循环滚动活塞膨胀机和涡旋压缩机的研究[D].天津:天津大学, 2006.
    [37] Y. Chen, J. Gu. Non-adiabatic capillary tube flow of carbon dioxide in a novel refrigeration cycle [J]. Applied Thermal Engineering, 2005, 25:1670-1683.
    [38] Denso Corporation. Development of multi-function CO2 heat pump water heater. http://www.annex28.net/publications.htm
    [39] Jun Lan Yang, Yi Tai Ma, Min Xia Li, et al. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander [J]. Energy, 2005 (30):1162-1175.
    [40] Maurer T, Zinn T. Experimental Untersuchung von Entspannungsmaschinen mit mechanischer Leistungsauskopploung fuer die transkritische CO2-Kaeltemaschine. DKV Tagungsbericht Berlin, 1999, 26(1):304-318.
    [41] E. Tondell. Impulse expander for CO2 [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway, 2006: 107-110.
    [42] D.M. Robinson, E.A. Groll. Efficiencies of transcritical CO2 cycles with and without an expansion turbine [J]. International Journal of Refrigeration, 1998, 21(7): 577-589.
    [43] Bjφrn F. Feasibility study of using centrifugal compressor and expander in a car conditioner working with carbon dioxide as refrigerant [J]. ACRC, CR-23.
    [44] J. Nickl, G. Will, H. Quack, W.E. Kraus. Integration of a three-stage expander into a CO2 refrigeration system [J]. International Journal of Refrigeration, 2005(28): 1219-1224.
    [45]查世彤. CO2跨临界循环膨胀机的研究与开发[D].天津:天津大学, 2002.
    [46]李敏霞. CO2跨临界循环转子式膨胀机的分析与试验研究[D].天津:天津大学, 2003.
    [47]马一太,王洪利,曾宪阳. CO2跨临界循环滚动活塞膨胀机有限元分析[J].太阳能学报, 2008, 29(4): 383-390.
    [48]王洪利,马一太,李敏霞,汪耀东.汽液相变及亚稳态理论研究[J].工程热物理学报, 2008, 29(6): 901-904.
    [49] Bingchun, Y, Hansong, Z, et al. Development of rotary vane expander for CO2 transcritical refrigeration cycle [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway, 2006: 99-102.
    [50] Bo, Z, Xueyuan, P, et al. Design and experimental validation of the slider-based free piston expander for transcritical CO2 refrigeration cycle [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway, 2006: 103-106.
    [51] Jun, Y, Li, Z, Jiangping, C, Ping, L. Development of a combined compressor-expander for transcritical CO2 system [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-7.
    [52] Man-Hoe Kim, Jostein Pettersen, Clark W. Bullard. Fundamental process and system design issues in CO2 vapor compression systems [J]. Progress in Energy and Combustion Science, 2004(30): 119-174.
    [53] Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangers for CO2 air-conditioning systems [J]. International Journal of Refrigeration, 1998, 21(3): 180-193.
    [54] Yin Jian Min, Bullard CW, Hrnjak P S. R744 gas cooler development and validation [J]. International Journal of Refrigeration, 2001, 24: 692-701.
    [55] Yin Jian Min, Bullard CW, Hrnjak P S. Design strategies for R744 gas cooler [C]. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, 2000: 315-322.
    [56] Chang Yong Park, Pega Hrnjak. Effect of heat conduction through the fins of a microchannel serpentine gas cooler of transcritical CO2 system [J]. International Journal of Refrigeration, 2007(30): 389-397.
    [57] Pietro Asinari, Luca Cecchinato, Ezio Fornasieri. Effects of thermal conduction in microchannel gas coolers for carbon dioxide [J]. International Journal of Refrigeration, 2004(27): 577-586.
    [58] Skaugen G, Neksa P, Pettersen J. Simulation of transcritical CO2 vapor compression systems [C]. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Guangzhou, 2002: 68-75.
    [59] Hwang Yunho, Radermacher Reinhard. Theoretical evaluation of carbon dioxide refrigeration cycle [J]. International Journal of HVAC & Refrigeration Research, 1998, 4(3): 245-263.
    [60] Hongsheng Liu, Jiangping Chen, Zhijiu Chen. Experimental investigation of a CO2 automotive air conditioner [J].International Journal of Refrigeration, 2005 (28):1293-1301.
    [61] Pfafferott Torge, Schmitz Gerhard. Modeling and transient simulation of CO2-refrigeration systems with Modelica [J]. International Journal of Refrigeration, 2004, 27 (1): 42-52.
    [62] Man-Hoe Kim, Clark W. Bullard. Development of a microchannel evaporator model for a CO2 air-conditioning system [J]. Energy, 2001 (26): 931-948.
    [63] Honggi Cho, Keumnam Cho, Baek Youn, Jeunghoon Kim. An experimental study on the performance evaluation of prototype microchannel evaporators for the residential air-conditioning application [C]. The 3rd Asian Conference on Refrigeration and Air-conditioning, Gyeongju, 2006: 157-160.
    [64] Jan-Helge Donner, Jürren Fokken, Katharina Boeck, et al. CO2 release in vertical tube falling film evaporators [J]. Desalination, 2008 (222): 626-638.
    [65] Rin Yun, Yongchan Kim, Chasik Park. Numerical analysis on a microchannel evaporator designed for CO2 air-conditioning systems [J].Applied Thermal Engineering, 2007 (27):1320-1326.
    [66] Ortiz TM, Groll EA. Simulation of a 3-ton residential CO2 air conditioner [C]. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Guangzhou, China, 2002:39-46.
    [67] Guoliang Ding, Zhiguang Wu, Huifang Long. Simulation system for fin-and-tube heat exchanger based on graph theory, database and visualization technology [C]. The 3rd Asian Conference on Refrigeration and Air-conditioning, Gyeongju, 2006: 153-156.
    [68]杨俊兰. CO2跨临界循环系统及换热理论分析与试验研究[D].天津:天津大学, 2005.
    [69] Hwang Y, Radermacher R. Experimental evaluation of CO2 water heater [C]. Proceedings of the 3rd IIR-Gustav Lorentzen Conference on Natural Working Fluids. Oslo, Norway, 1998, 368-75.
    [70] Friedrich Kauf. Determination of the optimum high pressure for transcritical CO2 refrigeration cycles [J].International Journal of Thermal Sciences, 1999 (38): 325-330.
    [71] J. Sarkar, Souvik Bhattacharyya, M. Ram Gopal. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications [J]. International Journal of Refrigeration, 2004 (27):830-838.
    [72] J. Sarkar, Souvik Bhattacharyya, M. Ram Gopal. Transcritical CO2 heat pump systems: exergy analysis including heat transfer and fluid flow effects [J]. Energy Conversion and Management, 2005 (46):2053-2067.
    [73] S.D. White, M.G. Yarrall, D.J. Cleland, R.A. Hedley. Modeling the performance of a transcritical CO2 heat pump for high temperature heating [J].International Journal of Refrigeration, 2002 (25): 479-486.
    [74] Xianyang Zeng, Yitai Ma, Shengchun Liu, Hongli Wang. Testing and analyzing on P-V diagram of CO2 rolling piston expander. [C]. Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-9.
    [75] Li Minxia, Ma Yitai, Ma Lirong, et al. Experimental Comparison on Performance Characteristics of Two Carbon Dioxide Transcritical Expander [C]. The 2th Asian Conference on Refrigeration and Air-conditioning ACRA2004, Beijing, 2004: 46-51.
    [76] Petter Neksa, Havard Rekstad, G. Reza Zakeri, et al. CO2 heat pump water heater: characteristics, system design and experimental results [J]. International Journal of Refrigeration, 1998, 21 (3): 172-179.
    [77] Petter Neksa. CO2 heat pump systems [J]. International Journal of Refrigeration, 2002 (25): 421-427.
    [78] Shitong Zha, Armin Hafner, Petter Neksa. Investigation of R-744 Voorhees transcritical heat pump system [J]. International Journal of Refrigeration, 2007:1-7.
    [79] H.M. Getu, P.K. Bansal. Thermodynamic analysis of an R744-R717 cascade refrigeration system [J]. International Journal of Refrigeration, 2007:1-10.
    [80] Tzong-Shing Lee, Cheng-Hao Liu, Tung-Wei Chen. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems [J].International Journal of Refrigeration, 2006 (29): 1100-1108.
    [81] Keith W. Lindler. Use of multi-stage cascades to improve performance of thermoelectric heat pumps [J]. Energy Conversion and Management, 1998, 39(10):1009-1014.
    [82] S.G. Kim, M.S. Kim. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant [J]. International Journal of Refrigeration, 2002 (25): 1093-1101.
    [83] S F Pearson. Highly efficient water heating system [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway, 2006: 23-26.
    [84] K. Endoh, T. Kouno, M. Gommori, et al. Instant hot water supply heat pump water using CO2 refrigerant for home use [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 27-30.
    [85] R.Kern, J.B. Hargreaves, J.F. Wang, et al. Performance of a prototype heat pump water heater using carbon dioxide as the refrigerant in a transcritical cycle [C].The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 31-34.
    [86] W.Adriansyah, T.S. Purwanto, A. Suwono. Improvement of prototype of CO2 combined air conditioning and tap water heating plant [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 39-42.
    [87] A. Hafner, P. Neksa. Global environmental consequences of introducing R744 (CO2) mobile air conditioning [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 45-48.
    [88] J. Manzione, S. Collier, S. Memory, P. Hrnjak. An improved CO2 cooling system for the up-armored HMMWV [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 53-56.
    [89] J. Yang, Y. Ma, M. Li, et al. Simulation of transcritical carbon dioxide water to water heat pump system with expander [J]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 91-94.
    [90] Chaobin Dang, Koji Iino, Eiji Hihara. Flow visualization of supercritical carbon dioxide entrained with small amount of lubricating oil [J]. The 3rd Asian Conference on Refrigeration and Air-conditioning, Gyeongju, 2006: 235-238.
    [91] Neeraj Agrawal, Souvik Bhattacharyya. Studies on a two-stage transcritical carbon dioxide heat pump cycle with flash intercooling [J]. Applied Thermal Engineering, 2007 (27):299-305.
    [92] Honghyun Cho, Yongchan Kim, kook jeong Seo. Study on the performance improvement of a transcritical carbon dioxide cycle using expander and two stage compression [C]. The 2nd Asian Conference on Refrigeration and Air-conditioning, Beijing, 2004: 213-222.
    [93] Neeraj Agrawal, Souvik Bhattacharyya, J. Sarkar. Optimization of two-stage transcritical carbon dioxide heat pump cycles [J]. International Journal of Thermal Sciences, 2007 (46):180-187.
    [94] Alberto Cavallini, Luca Cecchinato, Marco Corradi, et al. Two-stage transcritical carbon dioxide cycle optimisation: A theoretical and experimental analysis [J]. International Journal of Refrigeration, 2005 (28):1274-1283.
    [95] A. Ouadha, C. Haddad, M. En-nacer, et al. Performance comparison of cascade and two stage refrigeration cycles using natural refrigerants [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-8.
    [96] A. Cavallini, M. Corradi, E. Fornasieri, et al. Experimental investigation on the effect of the internal heat exchanger and intercooler effectiveness on the energy performance of a two stage transcritical carbon dioxide cycle [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007,1-8.
    [97] Zhao Huixia, Liu Siguang, Ma Guoyuan. Performance analysis on two stage and binary cascade refrigeration system using substitute refrigerants [C]. The 2nd Asian Conference on Refrigeration and Air-conditioning, Beijing, 2004: 492-498.
    [98] Young-Soo Chang, Dong-Won Han. Performance simulation of gas cooler for CO2 heat pump system using two stage compressor [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-8.
    [99] Jong M. AHN, Woo Y. Kim, Hyunj. Kim, et al. Vapor injection in a CO2 twin rotary compressor [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-9.
    [100] Yunho Hwang, Xudong Wang, Reinhard Radermacher. Two stage cycle with vapor injection compressor [C]. The Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007, 1-6.
    [101] Hyun J. Kim, Jong M. Ahn, et al. Numerical Study on the Performance of a CO2 Twin Rotary Compressor with Inter-stage Cooling [C]. The 5th International Conference on Compressor and Refrigeration, Xi’an Jiaotong University, 2005: 198-206.
    [102] J.S.Baek, E.A.Groll, P.B.Lawless. Effect of pressure ratios across compressors on the performance of the transcritical carbon dioxide cycle with two stage compression and intercooling, Purdue University, 2002.
    [103] Zhaolin Gu, Hongjuan Liu, Yun Li. CO2 Two stage refrigeration system with low evaporating temperature of -56.6℃[C]. The proceedings of the 5th IIR-Gustav Lorentzen conference on natural working fluids, Guangzhou, 2002:226-330.
    [104] Dan Manole. On the optimum inter-stage parameters for CO2 transcritical systems [C]. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 1-8.
    [105] Jun Lan Yang, Yi Tai Ma, Sheng Chun Liu. Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander [J]. Energy, 2007 (32):237-245.
    [106]马一太,杨俊兰,刘圣春,管海清. CO2跨临界循环与传统制冷循环的热力学分析[J].太阳能学报,2005, 26(6): 836-841.
    [107] Samer Sawalha. Theoretical evaluation of transcritical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions [J]. International Journal of Refrigeration, 2008, 31 (3):516-524.
    [108] Liao SM, Zhao TS, Jakobsen A. A correlation of optimal heat rejectionpressures in transcritical carbon dioxide cycles [J]. Applied Thermal Engineering, 2000, 20(9): 831-841.
    [109]杨俊兰,马一太,李敏霞,管海清,李丽新. CO2跨临界两级压缩及膨胀机循环的性能分析[J].天津大学学报,2005, 38(11): 996-1000.
    [110]缪道平.活塞式制冷压缩机.北京:机械工业出版社, 1992.
    [111]郁永章.活塞式压缩机.北京:机械工业出版社, 1982.
    [112] Jun-Hyeung Kim, Eckhard A. Groll. Feasibility study of a bowtie compressor with novel capacity modulation [J]. International Journal of Refrigeration, 2007, 30 (8):1427-1438.
    [113] Cristian Cuevas, Eric Winandy, Jean Lebrun. Testing and modelling of an automotive wobble plate compressor [J]. International Journal of Refrigeration, 2008, 31 (3):423-431.
    [114]吴业正.往复式压缩机数学模型及应用.西安:西安交通大学出版社, 1989.
    [115] C.D. Pérez-Segarra, J. Rigola, M. Sòria, A. Oliva. Detailed thermodynamic characterization of hermetic reciprocating compressors [J]. International Journal of Refrigeration, 2005 (28):579-593.
    [116] Changqing Tian, Xianting Li. Transient behavior evaluation of an automotive air conditioning system with a variable displacement compressor [J]. Applied Thermal Engineering, 2005, 25 (13):1922-1948.
    [117] Changqing Tian, Xianting Li, Chunpeng Dou. Experimental investigation and numerical simulation on the hysteresis zone of a variable displacement wobble plate compressor [J]. International Journal of Refrigeration, 2005, 28 (7):988-996.
    [118]吴丹青,丛敬同.压缩机簧片阀的数学模型与设计.北京:机械工业出版社, 1993.
    [119]马国远,李红旗.旋转压缩机.北京:机械工业出版社, 2001.
    [120] Eric Winandy, Claudio Saavedra O, Jean Lebrun. Simplified modelling of an open-type reciprocating compressor [J]. International Journal of Thermal Sciences, 2002, 41 (2):183-192.
    [121] K. Suefuji, M. Itagaki, A. Murayama, F. Harada. Development of a high efficiency refrigeration compressor [J]. International Journal of Refrigeration, 1981, 4 (5):255-264.
    [122] J.R. Cho, S.J. Moon. A numerical analysis of the interaction between the piston oil film and the component deformation in a reciprocating compressor [J]. Tribology International, 2005, 38 (5):459-468.
    [123]贾云华,姚喜贵,任成君.单、双曲柄连杆机构发动机摩擦损失理论计算和试验研究[J].小型内燃机, 1998, 27(3):17-20.
    [124]姚喜贵,姜洪业,曹国信.双曲柄机构柴油机燃烧过程和摩擦损失的研究[J].农业机械学报, 2000, 27(3):13-16.
    [125] B.S. Petukhov. Heat transfer in turbulent pipe flow with variable physical properties. Advances in heat transfer, 1970(6): 503-564.
    [126] Krasnoshechekov EA, Kuraeva IV, Protopopov VS. Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions. Teplofizika Vysokikh Temperature, 1970, 7(5):922-930.
    [127] Gnielinski V. New equation for heat and mass transfer in turbulent pipe and channel flow [J]. International Journal of Chemical Engineering, 1976, 16:359-368.
    [128] Fang XD. Modeling and analysis of gas coolers. ACRC, CR-16, 1999.
    [129] Churchill SW. Friction-factor equation spans all fluid-flow regimes. Chemical Engineering, 1977, 7:91-92.
    [130] Liao SM, Zhao TS. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini-micro channels. Transactions of the ASME Journal of Heat Transfer, 2002, 124:413-420.
    [131]Yoon SH, Kim JH, Hwang YW, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region. International Journal of Refrigeration, 2003, 26(8):857-864.
    [132] Yi Cheol Choi, Byung Ha Kang, Sukhyun Kim. Heat transfer correlation during supercritical cooling process of carbon dioxide in a horizontal tube. The 2nd Asian Conference on Refrigeration and Air-conditioning, Beijing, 2004: 313-320.
    [133] Baskov VL, Kuraeva IV, Protopopov VS. Heat transfer with the turbulent flow of a liquid at supercritical pressure in tubes under cooling conditions. Teplofizika Vysokikh Temperature, 1977, 15(1):96-102.
    [134] Chaobin Dang, Eiji Hihara. Heat transfer coefficient of supercritical carbon dioxide. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Guangzhou, China, 2002:100-107.
    [135]魏东. CO2跨临界循环换热与膨胀机理的研究[D].天津:天津大学, 2002.
    [136] Stephan K, Abdelsalam M. Heat transfer correlations for natural convection boiling. International Journal of Heat Mass Transfer, 1980, 23:73-87.
    [137] Hwang Y, Kim B, Radermacher R. Boiling heat transfer correlation for carbon dioxide. Proceedings of International Conference on Heat Transfer Issues in Natural Refrigerant, College Park, 1997: 44-57.
    [138] Dongsoo Jung, Youngil Kim, Younghwan Ko, et al. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. International Journal of Refrigeration, 2003, 26:240-248.
    [139] S. Loebl, W.E. Kraus, H. Quack. Pool boiling heat transfer of carbon dioxide on a horizontal tube [J].International Journal of Refrigeration, 2005 (28): 1196-1204.
    [140] Veysel Ozceyhan, Sibel Gunes, Orhan Buyukalaca, et al. Heat transfer enhancement in a tube using circular cross sectional rings separated from wall [J]. Applied Energy, 2008 (85):988-1001.
    [141] Petrov N E, Popov V N. Heat transfer and resistance of carbon dioxide being cooled in the supercritical region [J]. Thermal Engineering (In Russian), 1985, 32(3):16-19.
    [142] Pettersen J, Rieberer R, Munkejord S T. Heat transfer and pressure drop for flow of supercritical and subcritical CO2 in micro-channel tubes. SIBTEF Energy Research Technical Report TR, 2000.
    [143] Hookyu Oh, Taeguen Yu. Heat transfer and pressure drop characteristics of supercritical CO2 in a helically coiled tube. The 3rd Asian Conference on Refrigeration and Air-conditioning, Gyeongju, 2006: 231-234.
    [144] Masafumi Katsuta, Shunta Yagi, Ryo Hang, et al. Evaporating heat transfer characteristics of R744. The 3rd Asian Conference on Refrigeration and Air-conditioning, Gyeongju, 2006: 239-243.
    [145] Akio Miyara. Pressure loss of evaporation and condensation inside herringbone micro-fin tubes. The 3rd Asian Conference on Refrigeration and Air-conditioning, Gyeongju, 2006: 281-284.
    [146] M. Poirier, D. Giguere, Z. Aidoun, M.Ouzzane. Prediction of the pressure drop of CO2 in an evaporator used for air cooling. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, 2006: 318-321.
    [147] Tefaruk Haktan?r, Mehmet Ardichoglu. Numerical modeling of Darcy–Weisbach friction factor and branching pipes problem. Advances in Engineering Software, 2004 (35):773-779.
    [148] Alfonso William Mauro, Jesus Moreno Quiben, Rita Mastrullo, et al. Comparison of experimental pressure drop data for two phase flows to prediction methods using a general model [J].International Journal of Refrigeration, 2007 (30):1358-1367.
    [149] Chang-Hyo Son, Seung-Jun Park. An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube [J]. International Journal of Refrigeration, 2006 (29): 539-546.
    [150] Chaobin Dang, Eiji Hihara. In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement [J]. International Journal of Refrigeration, 2004 (27): 736-747.
    [151] Rin Yun, Yongchan Kim, Min Soo Kim, Youngdon Choi. Boiling heat transferand dryout phenomenon of CO2 in a horizontal smooth tube [J].International Journal of Heat and Mass Transfer, 2003 (46): 2353-2361.
    [152] S.M. Liao, T.S. Zhao. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes [J].International Journal of Heat and Mass Transfer, 2002 (45): 5025-5034.
    [153] Pei-Xue Jiang, Run-Fu Shi, Yi-Jun Xu, et al. Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube [J]. International Journal of Supercritical Fluids, 2006 (38): 339-346.
    [154]孙方田.含油超临界CO2冷却换热理论与试验研究[D].天津:天津大学, 2007.
    [155] J. Steven Brown, Samuel F. Yana-Motta, Piotr A. Domanski. Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a [J]. International Journal of Refrigeration, 2002 (25): 19-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700