用户名: 密码: 验证码:
NiAPSO-34分子筛合成、表征及其催化乙醇脱水制乙烯反应性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯是一种重要的基本有机化工原料。本文对乙醇催化脱水制乙烯反应进行了研究。采用水热晶化合成法制备了系列NiAPSO-34分子筛催化剂,采用常压连续固定床反应器对催化剂的活性和稳定性进行了评价,对催化剂进行了XRD、FT-IR、NH_3-TPD、H_2-TPR、ESR、BET、TG-DTG、SEM和XPS表征,并对反应热力学和动力学进行了研究。
     研究表明,以30wt%的硅溶胶为硅源,拟薄水铝石为铝源,原料配比为P/Al=1,Si/Al=1,Ni/Al=0.015,R/Al=2,晶化时间60h,晶化温度为200℃条件下制备的NiAPSO-34(Ni0.015)催化剂具有较好的活性。其与HZSM-5分子筛相比,具有较高的稳定性。
     通过中心复合试验设计对反应条件进行筛选,得到了乙醇转化率、乙烯选择性和反应温度、乙醇与催化剂的接触时间、乙醇分压之间的数学模型关系。试验值和预测值高度一致(对于乙醇转化率,相关系数和调整相关系数分别为99.8%和99.7%;对于乙烯选择性,相关系数和调整相关系数分别为100%和99.9%)。根据得到的数学模型对反应条件进行求优计算,得出在反应温度为385°C,乙醇与催化剂的接触时间为3.3s,乙醇分压为0.57atm条件下,当乙醇的转化率为98.4%时,乙烯选择性最大,可以达到99.3%。
     对乙醇脱水的热力学分析表明,高温有利于目的产物乙烯的生成,低温有利于副产物乙醚的生成。通过对乙醇脱水动力学研究,得出乙醇脱水反应属于平行-连串反应机理,推导出了乙醇脱水生成乙烯和乙醚的动力学方程,采用禁忌遗传算法计算出乙醇脱水动力学模型参数,并得到了乙醇生成乙烯、乙醇生成乙醚和乙醚生成乙烯反应的活化能和乙醇、水和乙醚吸附在催化剂表面的吸附热。
Ethylene is an important material for the organic chemistry industry. Catalytic dehydration of ethanol to ethylene was studied in this thesis. A series of NiAPSO-34 catalysts were home-made by hydrothermal method and tested for dehydration of ethanol using fixed bed reactor. The catalyst samples were characterized by XRD、FT-IR、NH3-TPD、H2-TPR、ESR、BET、TG-DTG、SEM and XPS respectively. Reaction thermodynamics and kinetics were researched.
     Research showed that among the catalysts prepared by hydrothermal method, the Ni0.015 sample showed the best activity, whose preparation condition was as follow: 30wt% colloidal silica and pseudoboehmite were used as the sources of silicon and aluminum respectively; the molar ratio of the starting gel was P/Al=1, Si/Al=1, Ni/Al=0.015, R/Al=2; the crystallization temperature was 200°C and the crystallization time was 60h. Moreover, NiAPSO-34 catalyst showed better stability compared with HZSM-5 catalyst.
     Central composite experimental design was applied in catalytic dehydration of ethanol to optimize the reaction condition. The mathematical relationship of ethanol conversion and ethylene selectivity on the reaction temperature, residence time through catalyst bed, ethanol partial pressure can be approximated by polynomial models. Predicted values were found to be in good agreement with experimental values (R-Sq of 99.8% and R-Sq (adj) of 99.7% for ethanol conversion; R-Sq of 100% and R-Sq (adj) of 99.9% for ethylene selectivity). The result of optimization predicted by the model showed that ethylene selectivity presented the maximal result 99.3% at the optimal condition of reaction temperature 385°C, contact time with catalyst 3.3s, ethanol partial pressure 0.57atm, when ethanol conversion reached to 98.4%.
     Thermodynamics analysis for the reaction system showed that high-temperature was favorable to produce ethylene, but byproduct diethyl ether yield increased under low-temperature. Based on the kinetics research, dehydration of ethanol was parallel-consecutive reaction mechanism and the intrinsic kinetic models of dehydration of ethanol to ethylene and diethyl ether were gained. Kinetic parameters for dehydration of ethanol were calculated through tabu-hierarchy genetic algorithm. Activation energies of ethanol to ethylene, ethanol to diethyl ether, diethyl ether to ethylene and heats of adsorption of ethanol, water, diethyl ether were obtained.
引文
[1]迟洪泉,国内外乙烯工业现状与展望,化工技术经济,2006,24(4):6~9
    [2]Nakamura D. N., Global ethylene capacity grows 4% in 2005, Oil & Gas Journal, 2006,3:44~56
    [3]徐克勋,精细有机化工原料及中间体手册,北京:化学工业出版社,1997. 88~89
    [4]李军,我国乙烯工业发展现状及展望,炼化广角,2003,11(10):42~46
    [5]Michael T. Devanney, Ethylene, CEH Report, Published September 2005
    [6]张海燕,黄志军,刘晓瑜等,乙烯原位共聚制线性低密度聚乙烯研究进展,精细石油化工进展,2006,7(10):27~31
    [7]沈菊华,国内外环氧乙烷生产发张概况,化工科技市场,2003,26(2):10~13
    [8]毛东森,卢立义,环氧乙烷生产技术的新进展,石油化工,1999,28:480~483
    [9]王瑾,张凤美,李明林等,苯和乙烯液相烷基化生产乙苯技术的工业应用,石油炼制与化工,2002,33(9):13~17
    [10]王利,陈福存,赵雪松等,LaZSM5-Al-Ml催化剂乙烯与甲苯烷基化制对甲基乙苯,天然气化工,2006,31(1):11~14
    [11]刘岭梅,乙烯氧氯化法率氯乙烯技术进展,中国氯碱,2007,4:14~15
    [12]李德华,我国聚氯乙烯德生产及市场,中国塑料,1996,10(3):1~4
    [13]黄云翔,本体法聚氯乙烯的制造、特性和用途,中国氯碱,1999,12:14~16
    [14]黄崇杏,杨崎峰,王双飞,聚偏二氯乙烯的性能及应用前景,造纸化学品,2002,7(4):43~44
    [15]左大经,聚偏二氯乙烯用途及生产技术,上海化工,22(6):40~43
    [16]潘爱祥,乙烯齐聚法制取线性α-烯烃技术进展,云南化工,2007,34(1):80~85
    [17]于部伟,张宝军,陈胜利等,乙烯齐聚合成α-烯烃用催化剂研究进展,2007,8(6):51~58
    [18]魏绍东,柳巨澜,醋酸乙烯生产技术进展及其市场前景,精细化工原料及中间体,2007,2:14~17
    [19]Okagami A., Matsuoka S., Process for manufacturing olefins by catalytic oxidation of hydrocarbons, US patent, 3,541, 179, 1970-11-07
    [20]Cory B. Phillips, Ravindra Datte. Production of ethylene from hydous ethanol on H-ZSM-5 under mild conditions, Ind. Eng. Chem. Res., 1997, 36: 4456-4475.
    [21]顾志华,乙醇制乙烯技术现状及展望,化工进展,2006,25(8):847~851
    [22]刘翠娟,祝红兵,高洪福,乙醇脱水反应的制约条件,佳木斯大学学报(自然科学版),2001,19(3):303~306
    [23]Blaszkowski S. R., Van Santen R. A., Density functional theory calculations of the activiation of methanol by a bronsted zeolitic proton, J. Phys. Chem., 1995, 99: 111728~11738
    [24]Blaszkowski S. R., Van Santen R. A., The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons, J. Am. Chem. Soc., 1996, 118: 5152~5153
    [25]Mirth G., Lercher J., Anderson M, etc. Adsorption complexed of methanol on zeolite ZSM-5, J. Chem. Soc. Faraday Trans., 1990, 86 (17): 3039~3044
    [26]Thursfield A., Anderson M. W., 1H, 2H and 13C solid-state NMR studies of methanol adsorbed on a series of acidic microporous zeotype materials, J. Phys. Chem. 1996, 100: 6698~2707
    [27]Aronson M. T., Gorte R. J., Farneth W. E., The influence of oxonium ion and carbenium ion stabilities on the alcohol/H-ZSM-5 interaction, J. Catal., 1986, 98: 434~443
    [28]潘履让,李赫晅,乙醇脱水制乙烯新型催化剂的研制(I),石油化工,1985,14(3):154~157
    [29]潘履让,蒋德林,李赫晅,乙醇脱水制乙烯新型催化剂的研制(II),石油化工,1986,15(3):155~159
    [30]赵本良,王静波,王春梅等,杂多酸催化剂催化乙醇脱水制乙烯,东北师大学报自然科学版,1997,3:41~43
    [31]Zaki T., Catalytic dehydration of ethanol using transition metal oxide catalysts, J. Colloid Inrterface Sci., 2005, 284: 606-613
    [32]Winter O., Ming-teck E., Make ethylene from ethanol, Hydrocarbon process, 1976, 11: 125-133.
    [33]Sawane B., Saroru N., Shigeru T. ect. Ethanol conversion over ion-exchanged ZSM-5 zeolites, Appl. Catal., 1990, 59: 13-29
    [34]Chaudhuri S. N., Halik C., Lercher J. A. Reactions of ethanol over HZSM-5., J. Mol. Catal., 1990, 62: 289~295
    [35]Kojima M., Aida T., Asami T., Catalyst for obtaining ethylene from ethanol, US patent, 4,302,357, 1980-04-23
    [36]Pearson D. E., Process for catalytic dehydration of ethanol vapor to ethylene, US patent, 4,423,270, 1982-12-20
    [37]Mao R. L. V., Dao L. H., Ethylene light olefins from ethanol, US patent, 4,698,452, 1987-10-6
    [38]Mao R. L. V., Catalytic conversion of aqueous ethanol to ethylene, US patent, 4,873,392, 1989-10-10
    [39]Mao R. L. V., Nguyen T. M. Superacidic catalysts for low temperature conversion of aqueous ethanol to ethylene, US patent, 4,847,223, 1989-07-11
    [40]Nguyen. T. M., Mao R. L. V., Conversion of ethanol in aqueous solution over ZSM-5 zeolites., Appl. Catal. 58 (1990), 119-129
    [41]Uytterhoeven J.B., Jacobs J. M., Tastenhoye P. J. J., et al., Process for obtaining ethylene from ethanol, US patent, 4,737,214, 1988-04-12
    [42]Jacobs J. M., Jacobs P. A., Uytterhoeven J.B., Process for obtaining ethylene from ethanol, US patent, 4,670,620, 1987-06-02
    [43]Haggin J., Chem. Eng. News. 20 (1983) 36, June
    [44]Dutta P., Roy S. C., Nandi L. N., et al., Syntheesis of lower olefins form methanol and subsequent conversion of ethylene to higher olefins via oligomerisation, J. Mol. Catal. A: Chem., 2004, 223: 231~235
    [45]Dubois D. R., Obrzut D. L., Liu J., Conversion of methanol to olefins over Cobalt-, Manganese- and Nickel-incorporated SAPO-34 molecular sieves, Fule Process. Technol., 2003, 83: 203~218
    [46]Yun-Jo L., Seung-Chan B., Ki-Won J., Methanol coversion on SAPO-34 catalysts prepared by mixed template method., Appl. Catal., A: General, 2007, 329: 130-136.
    [47]Misook K., Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s), J. Mol. Catal., 2000, 160: 437~444
    [48]Inoue M., Dhupatemiya P., Phatanasri S., et al. Synthesis course of the Ni-SAPO-34 catalysts for methanol-to-olefin conversion, Microporous and Mesoporous Mater., 1999, 28: 19~24;
    [49]Misook K., Myeong-Heon U., Jong-Yul P., Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals (I): effect of preparation factors on the gel formation, J. Mol. Catal. A: Chem. 1999, 150: 195~203
    [50]Misook K., Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals (II): catalytic performance under various reaction conditions, J. Mol. Catal. A: Chem. 1999, 150: 205~212
    [51]Inui T., High potential of novel Zeolitic materials as catalysts for solving energy and environmental problems, Stud. Surf. Sci. Catal., 1997, 105: 1141~1468
    [52]Anderson M. W., Sulikowski B., Barrie P. J., et al. In situ solid-state NMR studied of the catalytic conversion of methanol on the molecular sivev SAPO-34, J. Phy. Chem. 1990, 94: 2730~2734
    [53]Prakash A. M., Unnnlkrishnan S., Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template, J. Chem. Soc. Faraday,1994, 90 (15): 2291~2296
    [54]Djieugoue M. A., Prakash A. M., Kevan L., Catalytic study of methanol-to-olefins conversion in four small-pore silicoaluminophosphate molecular sieves: influence of the structural type, nickel incorporation, nickel location, and nickel concentration, J. Phys. Chem. B, 2000, 104: 6452~6461
    [55]魏迎旭,张大治,许磊等,SAPO-34和MeAPSO-34在氯甲烷转化制烯烃中的应用,石油学报(石油加工),2006, 10:110~112
    [56]Zhu Z., Hartmann M., Kevan L., Catalytic conversion of methanol to olefins on SAPO-n (n=11, 34, and 35), CrAPSO-n, and Cr-SAPO-n molecular sieves, Chem. Mater. 2000, 12: 2781~2787
    [57]Misook T., Chul-Tae L., Synthesis of Ga-incorporated SAPO-34s (GaAPSO-34) and their catalytic performance on methanol conversion, J. Mol. Catal. A: Chem. 1999, 15: 213-222
    [58]闵恩泽,李成岳,绿色石化技术的科学与工程基础,北京:中国石化出版社,2002:P341
    [59]Brent M. L., Celeste A. M., Robert L., et al., Crystalline silicoaluminophosphates, US patent, 4,440,871, 1983-04-03
    [60]徐如人,庞文琴,屠昆岗等,沸石分子筛的结构与合成,吉林大学出版社,1987,87~89
    [61]李宏愿,梁娟,汪荣慧等,硅磷酸铝分子筛SAPO-34的合成,石油化工,1987,16(5):340~346
    [62]何长青,刘中民,杨立新等,三乙胺法合成磷硅铝分子筛SAPO-34的研究,天然气化工,1993,18(5):14~18
    [63]Ishihara T., Kagawa M., Hadama F., et al., Copper ion-exchanged SAPO-34 as a thermostable catalyst for selective reduction of NO with C3H6, J. Catal. 1997, 163: 93~102
    [64]Ishihara T., Kagawa M., Hadama F., et al., Copper ion exchanged silicoaluminophosphate (SAPO-34) as a thermostable catalyst for selective reduction of NOX with hydrocarbons, Stud. Surf. Sci. Catal., 1994, 84: 1493~1500
    [65]Ishihara T., Kagawa M., Mizuhara Y., et al., Selective reduction of nitrogen monoxide with propene over Cu-silicoaluminophosphate (SAPO) under oxidizing atmosphere, Chem. Lett., 1992: 2119~2122
    [66]Nishiguchi H., Kimura S., Ishihara T., et al., Selective reduction of NOx with C3H6 over Cu incorporated into silicoaluminophosphate (SAPO), Chem. Intermed, 1998, 24(4): 391~399
    [67]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学,北京:科学出版社,2004. 126~130
    [68]任永利,刘国柱,米镇涛,杂原子进入分子筛骨架结构的波谱学判据,化学通报,2004,6:433~438
    [69]徐如人,庞文琴,屠昆岗等,沸石分子筛的结构与合成,长春:吉林大学出版社,1987. 334~342
    [70]焦庆祝,庞文琴,杂原子ZSM-48型分子筛研究III.杂原子存在状态,物理化学学报,1991,7(6):662~665
    [71]Dongare N. K., Sabde D. P., Shaikh R. A., et al., Synthesis, characterization and catalytic properties of ZrAPO-5, Catal. Today, 1999, 49, (1~3): 267~276
    [72]Ulagappan N., Krishanasamy V., Titanium substitution in silicon-free molecular sieves : anatase-free TAPO4-5 and TAPO4-11 synthesis and characterisation for hydroxylation of phenol, J. Chem. Soc., Chem. Commun., 1995, 3: 373~374
    [73]赵杉林,张扬健,孙桂大等,钒硅MCM-41沸石分子筛微波合成与表征,燃料化学学报,1999,27(2):130~133
    [74]佟惠娟,李工,含铁和钒的ZSM-5型分子筛的合成、表征及催化性能,石油化工高等学校学报,2002,15(2):33~37
    [75]韩淑芸,周建容,郭晔等,磷酸锰铝分子筛MnAPO-5的合成、结构与性能研究,高等学校化学学报,1988,9(9):871~875
    [76]金向军,李晓萍,门勇等,M-HMS的合成、表征及在苯酚羟化反应中的催化性能,应用化学,2002,19(3):247~250
    [77]郭新闻,李光岩,王桂茹等,Ti-Al pentasil型分子筛的表征及其热稳定性能,催化学报,1995,16(4):280~286
    [78]Gontier S., Tuel A., Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase, Appl. Catal., 1996, 143(1): 125~135
    [79]Yuan Z. Y., Liu S. Q., Chen T. H., et al. Synthesis of iron-containing MCM-41, J. Chem. Soc., Chem. Commun., 1995, 9: 973~974
    [80]Zhang Z. R., Suo J. S., Zhang X. M., et al. Synthesis of highly active tungsten-containing MCM-41 mesoporous molecular sieve catalyst, J. Chem. Soc., Chem. Commun., 1998, 2: 241~242
    [81]袁忠勇,王敬中,付华等,含锡MCM-41型分子筛的合成与表征,石油学报(石油加工),1996,12(4):9~12
    [82]Chen Y. W., Lu Y. H., Characteristics of V-MCM-41 and Its Catalytic Properties in Oxidation of Benzene, Ind. Eng. Chem. Res., 1999, 38 (5): 1893~1903
    [83]袁忠勇,张怀彬,高铁男等,含双杂原子(Ti,V)新型中孔分子筛的合成与表征,石油学报(石油加工),1998,14(2):23~27
    [84]Cheng S. B., Wu W., Jin Z. M., Investigation of framework and extraframework Ti in TS-1 by using raman and XPS spectroscpoies,催化学报,19(4):293~294
    [85]李灿,辛勤,应品良等,一种紫外拉曼光谱仪,中国专利,CN1222674,1999-07-14
    [86]高铁男,袁忠勇,王敬中等,含硅和钴中孔磷酸铝分子筛的合成及其波谱学性质,南开大学学报(自然科学版),2001,34(6):20~24
    [87]Vieira A., Tovar M., Pfaff C. et al., A study of manganese silicoaluminophosphate molecular sieves, J. Mol. Catal., 1999, 144 (1): 101~116
    [88]Kim S. H., Kim S. D., Kim Y. C. at al., Synthesis and characterization of Ga-substituted MER-type zeolites, Micro. & Meso. Mater., 2001, 42 (1): 121~129
    [89]Cheng C. F., He H. Y., Zhou W. Z., et al., Synthesis and Characterization of the Gallosilicate Mesoporous Molecular Sieve MCM-41, J. Phys. Chem., 1996, 100 (1): 390~396
    [90]Sayari A., Danumah C., Moudrakovski I. L., Boron-Modified MCM-41 Mesoporous Molecular Sieves, Chem. Mater., 1995, 7 (5): 813~815
    [91]Liu H., Ernst H., Freude D., et al., In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite, Micro. & Mater., 2002, 54 (3): 319~330
    [92]董梅,王建国,孙子罕等,丝光沸石骨架中Fe的XAFS表征,化学学报,2000,58(11):1419~1423
    [93]Axon S. A., Fox K. K., Carr S. W., et al., EXAFS studies of iron-substituted zeolite ZSM-5, Chem. Phys. Lett., 1992, 189 (1): 1~6
    [94]Blasco T., Corma A., Navarro M. T., et al., Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures, J. Catal., 1995, 156 (1): 65~74
    [95]Sanker G., Rey F., Thomas J. M., et al., Probing active sites in solid catalysts for the liquid-phase epoxidation of alkenes, Chem. Commun., 1994, 19: 2279~2280
    [96]张春雷,吴志芸,ZSM-5沸石中V的还原性能,高等学校化学学报,1994,15(11):1670~1674
    [97]Karakhanov E. A., Yu F. T., Martynova S. A., et al., New catalytic systems for selective oxidation of aromatic compounds by hydrogen peroxide, Catal. Today, 1998, 44 (1~4): 189~198
    [98]刘持标,朱征凯,单永奎等,六方介孔硅酸盐的制备、表征及对苯酚羟化反应的催化作用,应用化学,1997,14(5):10~14
    [99]李钢,郭新闻,王祥生等,钛硅沸石的结晶动力学研究,催化学报,2000,21(1):64~66
    [100]汪正范,色谱定性与定量,北京:化学工业出版社,2000. 161~162
    [101]钟良秀,乙醇脱氢制乙酸乙酯反应尾气中微量有机组份的气相色谱分析,天然气化工,1995,20:50~52
    [02]Misook K., Tomoyuki I., Synthesis of NiAPSO-34 catalysts containing a larger concentration of Ni and effect of its sulfidation on methanol conversion, J. Mol. Catal. A: Chem., 1999, 144: 329~335
    [03]Ashtekar S., Chilukuri S. V. V., Chakrabarty D. K., Small-pore molecular sieveSAPO-34 and SAPO-44 with chabazite structure: a study of silicon incorporation, J. Phys. Chem., 1994, 98: 4878~4883
    [04]Briend M., Vomscheid R., Peltre M. J., et al., Influence of the choice of the template on the short- and long-term stability. J. Phys. Chem., 1995, 99: 8270~8276
    [105]Narchese L., Frache A., Gianotti E., et al., ALPO-34 and SAPO-34 synthesized by using morpholine as templating agent: FTIR and FT-Raman studies of the host-guest and guest-guest interactions within the zeolite framework, Micro. & Meso. Mater., 1999, 30: 145~153
    [106]Tan J., Liu Z., Xinhe B., et al., Crystallization and Si incorporation mechanism of SAPO-34, Micro. & Meso. Mater., 2002, 53: 97~108
    [107]Roque-Malherbe R., Lopez-Cordero R., Gonzales-Morles J. A., A comparative study of MeAPO molecular sieves with AFI structure type, Zeolite, 1993, 13 (6): 481~484
    [108]Yan X., Peter J. M., John M. T., Preparation and characterization of molecular sieves based on aluminium phosphate, Polyhedren, 8 (6): 819~826.
    [109]Richard G. B., Chemometrics: data analysis for the laboratory and chemical plant, John Wiley, 2003, 76~84
    [110]Box G. E. P., Hunter W. G., Hunter J. S., Statistics for experimenters: an introduction to design, data analysis and model building. John Wiley, 1978, 534~534
    [111]Maria-Elisa C., Devasish B., Manuel F. R.,et al., Optimization of a capillary zone electrophoresis method by using a central composite factorial design for the determination of codeine and paracetamol in pharmaceuticals, J. Chromatogr. B, 2006, 839: 95~101
    [112]Tsapatsaris S., Kotzekidou P., Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii, Int. J. Food Microbiol, 2004, 95: 157-168.
    [113]Adelaida A., Eduardo I. S., Maria I. G., Optimal experimental design applied to the dehydrochlorination of poly(vinyl chloride), Chemom. Intell. Lab. Syst., 2005, 77 (1~2): 247~250.
    [114]Ma Y. X., Zhang H., Analysis of Heat Transfer Performance of Oscillating Heat Pipes Based on a Central Composite Design, Chin. J. Chem. Eng., 2006, 14 (2): 223~228
    [115]顾志华,王艳丹,金照生等,乙醇脱水反应的热力学分析与实验研究,化学研究,2006,17(1):68~71
    [116]赵彦巧,陈吉祥,张继炎,二氧化碳加氢直接合成二甲醚反应体系的热力学,天津大学学报,2006,39(4):408~413
    [117]王松汉,石油化工设计手册,北京:化学工业出版社,2001,185~187
    [118]Blaszkowski S. R., Van Santen R. A., The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons., J. AM. Chem. Soc., 1996, 118: 5152~5153.
    [119]Chang C. D., Hydrocarbons from Methanol, New York: Marcel Dekker Inc., 1983. 21~25
    [120]Raymond L. V. M., Thanh M. N., at al., The bioethanol-to-ethylene (B. E. T. E.) process, Appl. Catal., 1989, 48:265~277
    [121]John B. B., Handing B., Rates of reaction in a recycling system dehydration of ethanol and diethyl ether over alumina, A. I. Ch. E. Journal, 1962, 8(1): 42~47
    [122]Roca F. F., Mourgve L. D., Trambouge Y., Catalytic dehydration of ethanol over silica-alumina, J. Catal., 1969, 14 (2): 107~113
    [123] Knojinger H., Kohne R., The dehydration of alcohols over alumina: the reaction scheme, J. Catal., 1966, 5 (2): 264~270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700