用户名: 密码: 验证码:
几类多重键化合物的结构与反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用量子化学计算方法预测了一类新的三键化合物XCNN (X=Ge, Sn, Pb),揭示了Ge2+N2双分子反应以及腈炔交叉置换反应(NACM)的反应机理。主要内容如下:
     i)利用CCSD(T)//B3LYP方法对[XCN2] (X=Ge, Sn, Pb)系列分子各个异构体的热力学和动力学稳定性进行了研究。发现XCNN是一个含有XC三键的异构体,稳定性非常好,有利于实验室探测与合成。我们的研究为将来该类新型三键化合物的合成提供了一种新思路。
     ii)利用CCSD(T)和B3LYP方法研究了Ge2和N2双分子反应的反应机理。IRC路径计算表明,文献所阐述的单重态反应机理是不正确的,正确的反应主通道为:3Ge2+N2 3c-GeNNGe CI 1Ge-cNNGe 1GeNNGe,需要经过一个三态-单态的圆锥交叉点CI。我们的结果很好地解释了文献报道的低温激光溅射实验,并为类似双分子反应如Si2/Sn2+N2的机理研究提供了参考。
     iii)在DFT方法下对NACM反应机理进行了理论研究。结果显示该反应遵循四元环机理,即通过不稳定的四元环异构体生成产物,与近期的实验现象吻合。计算结果有望为杂原子参与的新型多重键置换反应的设计提供了参考。
In this thesis, the structures and stability of [XCN2] molecules (X=Ge, Sn, Pb), reaction mechanisms of Ge2 with N2, and catalytic nitrile-alkyne cross-metathesis (NACM) have been investigated by means of the quantum chemical methods. The thermodynamical and kinetic stability of various [XCN2] isomers, singlet and triplet pathways as well as the singlet-triplet tunneling of the Ge2+N2 reaction, and two main evolution channels of the NACM reaction have been provided. The calculation results agree well with available experiments. The results of this thesis may provide useful information for the further theoretical and experimental studies on related systems. The main results are summarized as follows:
     1. The CCSD(T)//B3LYP method was applied to study the structures and energetics of various isomers and transition states on the [XCN2] potential energy surface. Five linear forms XNCN, XCNN, XNNC, NXCN, NXNC and two cyclic forms X-cCNN and X-cNCN were located as energy minima. The results showed that linear isomers XNCN, XCNN and XNNC each possess good kinetic stability, and thus are promising for laboratory characterization. The molecular orbital, hydrogenation heat and bond dissociation energy analysis all indicated that XCNN is associated with a XC triple bond. Moreover, XCNN is the most stable isomer after XNCN in both thermodynamics and kinetics. Our designed triply bonded molecules differ from the traditional alkynes and belong to a novel type. Taking GeCNN as an example, we proposed that the transiton metal carbonyl coordination can provide considerable stabilization to the designed XCNN structure for the sake of laboratory detection. Our computational work might provide new insights for future study of the XC triply bonded molecules.
     2. The CCSD(T)//B3LYP method was used to study the reaction of Ge2 with N2. A“singlet-triplet intersection mechanism”was disclosed. The starting reagent, triplet Ge2, initially reacts with the environmental gas N2 to form a triplet four-membered ring intermediate 3c-GeGeNN, which would undergo a singlet-triplet canonical intersection (CI) point to form a three-membered ring isomer 1Ge-cNNGe. Isomer 1Ge-cNNGe will further undergo a ring-opening to generate the singlet isomer 1GeNNGe as the enventual product. Thus, the main reaction channel can be written as: 3Ge2+N2 3c-GeNNGe CI 1Ge-cNNGe 1GeNNGe. Our computational results can reasonably explain the recent low temperature laser ablation experiment. By contrast, the careful IRC analysis showed that the two transiton states previously located are erroneously connected. Therefore, the previously proposed mechanism via a singlet reaction pathway (“singlet mechanism”) to form the singlet GeNNGe is incorrect. The present results could provide useful information for future mechanistic studies on the analogous bimolecular reactions such as Si2/Sn2+N2.
     3. The catalytic nitrile-alkyne cross-metathesis (NACM) was studied by meansof the DFT method. A four-membered ring (4MR) mechanism was revealed, i.e., a ring-closure process is initially proceeded to form a 4MR intermediate that can easily undergo the bond-rearrangement to form another 4MR intermediate, which would take ring-opening to generate the eventual products. The two 4MR intermediates are kinetically unstable and have little likelihood to be observed in laboratory. In addition, since the rate-determining step (ring-closure) needs to overcome high barriers, the overall reaction should be slow. The main reaction channel is: R: [W]N+CH3CCCH3?IM1?IM2?[W]CCH3+CH3CN [W]=(CH3O)3W.
     In principle, the NACM reaction should coexist with the AM reaction in experiments, and the former can provide necessary reagents for the latter. NACM is associated with high barrier and low speed, while AM is associated with relatively low barrier and high speed. Moreover, one drawback of the AM reaction is that when the concentration of reagent is high, the alkynes and (RO)3W≡CR′would polymerize to deactive the WC triply bonded catalysis. Thus, the NACM controls the concentration of AM, which will lower the happening possibility of side reactions of AM. As a result, the overall reaction yield is raised. Our results are consistent with the observed experimental phenomena and couldbe helpful for future design of more effective catalysts.
引文
1. Nguyen T., Sutton A. D., Brynda S., Fettinger J. C., Long G. J., Power P. P., Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. Science, 2005, 310, 844-847
    2. Landis C. R., Weinhold F., Origin of Trans-Bent Geometries in Maximally Bonded Transition Metal and Main Group Molecules. J. Am. Chem. Soc., 2006 128(22): 7335-7345
    3. Brynda M. Gagliardi L., Widmark P. O., Power P. P., Roos B. O., A Quantum Chemical Study of the Quintuple Bond between Two Chromium Centers in [PhCrCrPh]: trans-Bent versus Linear Geometry. Angew. Chem. Int. Ed., 2006, 45(23): 3804-3807
    4. Piro N. A., Figueroa J. S., McKellar J. T., Cummins C. C., Triple-Bond Reactivity of Diphosphorus Molecules. Science, 2006, 313, 1276-1279
    5. Power P P., Silicon, germanium, tin and lead analogues of acetylenes, Chem. Commun., 2003(17): 2091-2101
    6. Power P. P., Bonding and reactivity of heavier group 14 element alkyne analogues, Organometallics, 2007, 26(18): 4362-4372
    7. Spikes G. H., James Y. P., Fettinger C., Steiner J., Power P. P., Different reactivity of the heavier group 14 element alkyne analogues ArMMAr (M = Ge, Sn; Ar = C6H3-2,6(C6H3-2,6-Pri2)2) with R2NO. Chem. Comm., 2005, 6041-6043
    8. Spikes G. H., Power P. P., Lewis base induced tuning of the Ge¨CGe bond order in a ?°digermyne?±. Chem. Comm., 2007, 85-87
    9. Power P. P., |D-Bonding and the lone pair effect in multiple bonds between heavier main group elements, Chem. Rev., 1999, 99(12): 3463-3504.
    10. Takagi N., Nagase S., Do Lead Analogues of Alkynes Take a multiply Bonded Structure? Organometallics 2007, 26(15): 3627-3629
    11. Cui C., Olmstead M. M., Fettinger J. C. Spikes G. H., Power P. P., Reactions of the Heavier Group 14 Element Alkyne Analogues Ar??EEAr??(Ar??=C6H3-2,6(C6H3-2,y-Pri2)2; E=Ge, Sn) with Unsaturated Molecules: Probing the Character of the EE Multiple Bonds. J. Am. Chem.Soc., 2005, 127(49), 17530-17541
    12. Sugiyama Y., Sasamori T., Hosoi Y., Furukawa Y., Takagi N., Nagase S., Tokitoh N., Synthesis and Properties of a Germanium Analogue of an Alkyne. J. Am. Chem. Soc., 2006, 128(3): 1023-1031
    13. Pu L. Phillips A. D., Richards A. F., Stender M., Simons R. S., Olmestead M. M., Power P. P., Germanium and Tin Analogues of Alkynes and Their Reduction Products. J. Am. Chem. Soc., 2003, 125(28): 11626-11636
    14. Takagi N., Nagase S., Tin Analogues of Alkynes. Multiply Bonded Structures vs Singly Bonded Structures. Organometallics, 2007, 26(3): 469-471
    15. Karni M, Apeloig Y, Schr?der D, Zummack W, Rabezzana R, Schwarz H., HCSiF and HCSiCl: The first detection of molecules with formal C≡Si triple bonds, Angew. Chem. Int. Ed., 1999, 38(3): 331—335
    16. Bibal C., Mazieáres S., Gornitzka H., Couret C., A route to a germanium-carbon triple bond: First chemical evidence for a germyne, Angew. Chem. Int. Ed., 2001, 40(5): 952—954
    17. Setaka W., Hirai K., Tomioka H., Sakamoto K., Kira M., Stannaacetylene (RSn≡CR′) Showing Carbene-like Reaction Mode. J. Am. Chem. Soc. 2004, 126(9): 2696-2697
    18. Nguyen M. T., Sengupta D., Vanquickenborne L. G.., Can silacetylene be observed? A theoretical treatment of the tunneling effect, Chem. Phys. Lett., 1995, 244(1-2): 83—88
    19. Liao H. Y., Su M. D., Chu S. Y., A stable species with a formal Ge≡C triple bond– a theoretical study, Chem. Phys. Letter., 2001, 341(1-2): 122—128
    20. Stogner S. M., Grev R. S., Germyne, H–C≡Ge–H, and the excited states of 1-germavinylidene, H2C = Ge, J. Chem. Phys., 1998, 108(13): 5458—5464
    21. Ding Y. H., Li Z. S., Huang X. R., Sun J. Z., CCNN: The last kinetically stable isomer of cyanogen, J. Chem. Phys., 2000, 113(5): 1745—1754
    22. Ding Y. H., Li Z. S., Huang X.-R., Sun J. Z., SiCNN - A new stable isomer with Si≡C triple bonding, Chem. Eur. J., 2001, 7(7): 1539-1545
    23. Maier G., Hans Reisenauer P., Glatthaar J., Reactions of Silicon Atoms withNitrogen: A Combined Matrix Spectroscopic and Density Functional Theory Study. Organometallics 2000, 19(23): 4775-4783
    24. Bahou M., Sankaran K., Wu Y. J., LeeY. P., Isomers of Ge2N2 : Production and infrared absorption of GeNNGe in solid N2. J. Chem. Phys., 2003, 118(21): 9710-9718
    25. Himmel H. J., Reiher M., Intrinsic Dinitrogen Activation at Bare Metal Atoms. Angew. Chem. Int. Ed. 2006, 45, 6264-6288
    26. Srinivasan R., Braren B., Ultraviolet laser ablation of organic polymers. Chem. Rev. I989. 89(6), 1303-1316
    27. Vogel A., Venugopalan V., Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev. 2003, 103(2), 577-644
    28. Andrews L., Zhou M., Chertihin G. V., Bare W. D., Reactions of laser-ablated aluminum atoms with nitrogen during condensation at 10 K. Infrared spectra and density functional calculations for AlxNy molecular species. Low Temp. Phys., 2000, 26(9-10): 736-743
    29. Trost B. M., The atom economy--a search for synthetic efficiency. Science, 1991, 254, 1471-1477
    30. Mindiola D. J., Oxidatively Induced Abstraction Reactions. A Synthetic Approach to Low-Coordinate and Reactive Early Transition Metal Complexes Containing Metal-Ligand Multiple Bonds. Acc.Chem. Res., 2006, 39(11), 813-821
    31. Dewar. M. J. S., Multibond Reactions Cannot Normally Be Synchronous. J. Am.Chem. Soc., 1984, 106(1), 209-219
    32. Hoveyda A. H., Zhugralin A. R., The remarkable metal-catalysed olefin metathesis reaction. Nature, 2007, 450(8): 243-251
    33. Schrock R.R. Hoveyda A. H., Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew. Chem. Int. Ed., 2003, 42(38): 4592-4633.
    34. Singh R., Schrock R. R., Müller P., Hoveyda A. H., Synthesis of Monoalkoxide Monopyrrolyl Complexes Mo(NR)(CHR')(OR' ')(pyrrolyl): Enyne Metathesis with High Oxidation State Catalysts. J. Am. Chem. Soc., 2007, 129(42): 12654-12655
    35. Compain P., Olefin Metathesis of Amine-Containing Systems: Beyond the Current Consensus. Adv. Synth. Catal., 2007, 349, 1829-1846
    36. Binder J. B., Blank J. J., Raines R. T., Olefin Metathesis in Homogeneous Aqueous Media Catalyzed by Conventional Ruthenium Catalysts. Organic. Lett., 2007, 9(23): 4885-4888
    37. Chen W. Z., Protasiewicz J. D., Davis S. A., Updegraff J. B., Ma L. Q., Fanwick P. E., Ren T., Olefin Metathesis as an Inorganic Synthetic Tool: Cross and Ring Closing Metathesis Reactions of Diruthenium-Boundω–Alkene-α-carboxylates. Inorg. Chem.,2007, 46(9): 3775-3782
    38. Mortreux A., Blanchard M., Metathesis of alkynes by a molybdenum hexacarbonyl–resorcinol catalyst. J. Chem. Soc., Chem. Commun., 1974, 786-787
    39. Fischer E.O., Kreis G., Kreiter C. G., Mueller J., Huttner G., Lorenz H. trans-Halogeno[alkyl(aryl)carbyne]tetracarbonyl Complexes of Chromium, Molybdenum, and Tungsten - A New Class of Compounds Having a Transition Metal-Carbon Triple Bond. Angew. Chem., Int. Ed., 1973, 12(7), 564-565.
    40. Katz T. J., McGinnis J., Mechanism of the olefin metathesis reaction. J. Am. Chem. Soc., 1975, 97(6), 1592-1594.
    41. Schrock R. R., Czekelius C., Recent Advances in the Syntheses and Applications of Molybdenum and Tungsten Alkylidene and Alkylidyne Catalysts fot the Metathesis of Alkenes and Alkynes. Adv. Synth. Catal., 2007, 349, 55-77
    42. Zhu J., Jia G. C., and Lin Z. Y., Theoretical Investigation of Alkyne Metathesis Catalyzed by W/Mo Alkylidyne Complexes. Organometallics., 2006, 25(7), 1812-1819.
    43. Coutelier O., Mortreux A., Terminal Alkyne Metathesis: A Further Step Towards Selectivity. Adv.Synth. Catal., 2006, 348, 2038-2042.
    44. Geyer A. M., Gdula R. L., Wiendner E. S., Johnson M. J. A. Catalytic Nitrile-Alkyne Cross-Metathesis. J. Am. Chem. Soc., 2007, 129(13), 3800-3801.
    1. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    2. W. J. Hehre, L. Radom, P. v. R. Schleyer, et al., Ab Initio Molecular OrbitalTheory, John Wiley &Sons, Inc., 1986. (b) D.A. McQuarrie, Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    3.唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社, 1982. (b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社, 1985.
    4. P. O. Lowdin, Adv. Chem. Phys.,1959, 2, 207.
    5. J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp., 1977, 11, 149.
    6. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992, 96, 135.
    7. R. Krishnan, H. B. Schlegel and J. A. Pople, Thermodynamics of ionization of deuterium oxide, J. Chem. Phys., 1980, 72, 4654.
    8. B.R. Brooks, W.D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H.F. Schaefer, J. Chem. Phys., 1980, 72, 4652.
    9. E. A. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys., 1989, 90, 1752.
    10. K. Raghavachari and J. A. Pople, Int. J. Quant. Chem., 1981, 20, 167.
    11. J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys., 1987, 87, 5968
    12. J. Cioslowski, Chem. Phys. Lett., 1994, 219, 151.
    13. H. B. Schlegel, M. A. Robb, Chem. Phys. Lett., 1982, 93, 43.
    14. R. H. E. Eade, M. A. Robb, Chem. Phys. Lett., 1981, 83, 362.
    15. D. Hegarty and M. A. Robb, Mol. Phys. 1979, 38, 1795.
    16. J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quant. Chem. XIV, 1978, 545.
    17. R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem., 1978, 14, 516.
    18. G. E. Scuseria and H. F. Schaefer, III, J. Chem. Phys., 1989, 90, 3700.
    19. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
    20. G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys., 1988, 89, 7382.
    21. D. Hegarty and M. A. Robb, Mol. Phys., 1979, 38, 1795.
    22. R. H. E. Eade and M. A. Robb, Chem. Phys. Lett. 1981, 83, 362.
    23. H. B. Schlegel and M. A. Robb, Chem. Phys. Lett. 1982, 93, 43.
    24. F. Bernardi, A. Bottini, J. J. W. McDougall, M. A. Robb and H. B. Schlegel, Far. Symp. Chem. Soc. 1984, 19, 137.
    25. N. Yamamoto, T. Vreven, M. A. Robb, M. A. Robb and H. B. Schlegel,“A Direct Derivative MC-SCF Procedure”, Chem. Phys. Lett. 1996, 250, 373.
    26. M. J. Frisch, I. N. Ragazos, M. A. Robb and H. B. Schlegel,“An Evaluation of 3 Direct MCSCF Procedures”, Chem. Phys. Lett. 1992, 189, 524 .
    27. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864.
    28. W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
    29. J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    30. D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    31. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    32. J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett., 1992, 199, 557.
    33. B. G. Johnson and M. J. Frisch, J. Chem. Phys., 1994, 100, 7429.
    34. J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    35. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, L. A. Curtiss, J. Chem. Phys., 1989, 90, 5622 (G1); L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, J. Chem. Phys., 1991, 94, 7221 (G2); L. A. Curtiss, K. Raghavachari, J. A. Pople, J. Chem. Phys., 1993, 98, 1293 (G2(MP2)); B. J. Smith, L. Radom, J. Phys. Chem., 1995, 99, 6468 (G2(MP2, SVP)); A. M. Mebel, K. Morokuma, M. C. Lin, J. Chem. Phys., 1995, 103, 7414 (G2M(cc3)); L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys., 1998, 109, 7764 (G3) and the G3large basis set is downloaded from the website http://chemistry.anl.gov/compmat/ g3theory.htm. (G3); L. A. Curtiss, P. C. Redferm, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys., 1999, 110, 4703 (G2(MP2)); C. W. Bauschlicher, H. Partridge, J. Chem. Phys., 1995, 103, 1788 (G2(B3LYP/MP2/CC)); A. G. Baboul, L. A. Curtiss, P. C. Redfern, K.Raghavachari, J. Chem. Phys., 1999, 110, 7650 (G3//B3LYP); D. K. Hahn, S. J. Klippenstein, J. A. Miller, Faraday Discuss., 2001, 119, 79 (HL).
    36. C. F. Melius, J. S. Binkley, The 20th Symposium (International) on Combustion, The Combustion Institute. Pittsburgh, 1984, p.575.
    37. P. E. M. Siegbahn, M. R. A. Blomberg, M. Svensson, Chem. Phys. Lett., 1994, 223, 35.
    38. K. Fukui, Int. J. Quantum. Chem., 1981, 15, 633.
    39. K. Fukui, A. Tachibana, K. Yamashita, Int. J. Quantum. Chem., 1981, 15, 621.
    1. Brook A.G.., Abdesaken F., Gutekunst B., Gutekunst G. R., Kallury K., A solid silaethene: isolation and characterization. J. Chem. Soc. Chem. Commun. 1981, 191-192
    2. West R., Fink M. J., Michl J., Tetramesityldisilene, a Stable Compound Containing a Silicon-Silicon Double Bond. Science 1981, 214, 1343-1344
    3. Power P. P.,π-Bonding and the lone pair effect in multiple bonds between heavier main group elements, Chem. Rev., 1999, 99(12): 3463-3504.
    4. Power P. P., Bonding and reactivity of heavier group 14 element alkyne analogues, Organometallics, 2007, 26(18): 4362—4372
    5. Karni M., Apeloig Y., Schr?der D., Zummack W., Rabezzana R., Schwarz H., HCSiF and HCSiCl: The first detection of molecules with formal C≡Si triple bonds, Angew. Chem. Int. Ed., 1999, 38(3): 331—335
    6. Bibal C., Mazieáres S., Gornitzka H., Couret C., A route to a germanium-carbon triple bond: First chemical evidence for a germyne, Angew. Chem. Int. Ed., 2001, 40(5): 952—954
    7. Setaka W., Hirai K., Tomioka H., Sakamoto K., Kira M., Stannaacetylene (RSn CR') Showing Carbene-like Reaction Mode. J. Am. Chem. Soc. 2004, 126(9): 2696-2697
    8. Karni M., Apeloig Y., Schr?der D., Zummack W., Rabezzana R., Schwarz H., HCSiF and HCSiCl: The first detection of molecules with formal C≡Si triple bonds, Angew. Chem. Int. Ed., 1999, 38(3): 331—335
    9. Stogner S. M., Grev R. S., Germyne, H–C≡Ge–H, and the excited states of1-germavinylidene, H2C=Ge, J. Chem. Phys., 1998, 108(13): 5458—5464
    10. Liao H. Y., Su M. D., Chu S. Y., A stable species with a formal Ge≡C triple bond– a theoretical study, Chem. Phys. Letter., 2001, 341(1-2): 122—128
    11. Liao H. Y., Su M. D., Chu, S. Y., Effects of Substituents on the Thermodynamic and Kinetic Stabilities of HCGeX (X = H, CH3, F, and Cl) Isomers. A Theoretical Study. Inorg. Chem., 2000, 39(16): 3522-3525
    12. Ding Y. H., Li Z. S., Huang X. R., Sun J. Z., CCNN: The last kinetically stable isomer of cyanogen, J. Chem. Phys., 2000, 113(5): 1745—1754
    13. Ding Y. H., Li Z. S., Huang X.-R., Sun J. Z., SiCNN - A new stable isomer with Si≡C triple bonding, Chem. Eur. J., 2001, 7(7): 1539-1545
    14. Huang M. J., Su M. D., A theoretical study of linear germacyanogen isomers. J. Organometal. Chem. 2002, 659(1-2): 121-124
    15. Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    16.印永嘉,大学化学手册,山东科学技术出版社,1985. p. 1024
    1 Power P P.,π-Bonding and the lone pair effect in multiple bonds between heavier main group elements, Chem. Rev., 1999, 99(12): 3463-3504.
    2 Jutzi P., Stable systems with a triple bond to silicon or its homologues: Another challenge, Angew. Chem. Int. Ed., 2000, 39(21): 3797—3800
    3 Widenbruch M., Some recent advances in the chemistry of silicon and its homologues in low coordination states, J. Organomet. Chem., 2002, 646(1-2): 39—52
    4 Power P P., Silicon, germanium, tin and lead analogues of acetylenes, Chem. Commun., 2003(17): 2091—2101
    5 Power P P., Bonding and reactivity of heavier group 14 element alkyne analogues, Organometallics, 2007, 26(18): 4362—4372
    6 Karni M, Apeloig Y, Schr?der D, Zummack W, Rabezzana R, Schwarz H., HCSiF and HCSiCl: The first detection of molecules with formal C≡Si triple bonds, Angew. Chem. Int. Ed., 1999, 38(3): 331—335
    7 Bibal C., Mazieáres S., Gornitzka H., Couret C., A route to a germanium-carbon triple bond: First chemical evidence for a germyne, Angew. Chem. Int. Ed., 2001, 40(5): 952—954
    8 Pu L. H., Twamley B., Power P. P., Synthesis and characterization of
    2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): A stable heavier group 14 element analogue of an alkyne, J. Am. Chem. Soc., 2000, 122(14): 3524—3525
    9 Nguyen M. T., Sengupta D., Vanquickenborne L. G.., Can silacetylene be observed? A theoretical treatment of the tunneling effect, Chem. Phys. Lett., 1995, 244(1-2): 83—88
    10 Liao H. Y., Su M. D., Chu S. Y., A stable species with a formal Ge≡C triple bond– a theoretical study, Chem. Phys. Letter., 2001, 341(1-2): 122—128
    11 Stogner S. M., Grev R. S., Germyne, H–C≡Ge–H, and the excited states of 1-germavinylidene, H2C = Ge, J. Chem. Phys., 1998, 108(13): 5458—5464
    12 Ding Y. H., Li Z. S., Huang X. R., Sun C. C., CCNN: The last kinetically stable isomer of cyanogen, J. Chem. Phys., 2000, 113(5): 1745—1754
    13 Ding Y. H., Li Z. S., Huang X. R., Sun C. C., SiCNN - A new stable isomer with Si≡C triple bonding, Chem. Eur. J., 2001, 7(7): 1539-1545
    14 Wadt W. R., Hay P J., Ab initio effective core potentials for molecularcalculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, 82(1): 284-298
    15 Cundari T. R., Stevens W. J., Effective core potential methods for the lanthanides, J. Chem. Phys., 1993, 98(7): 5555-5565
    16 Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    17我们这里假定PbC多重键完全分解所需的能量为键解离能,即M1PbCM2→M1Pb+CM2,每个碎片电子态为其基态.具体计算在CCSD(T)/B2//B3LYP/B1方法下进行,其中基组B1为Pb原子使用Lanl2dz基组,其他原子使用6-311+G(2d,2p),基组B2为Pb原子使用CEP-121g基组,其他原子使用6-311++G(3df,2dp)基组
    18 Landis C. R., Weinhold F., Origin of Trans-Bent Geometries in Maximally Bonded Transition Metal and Main Group Molecules, J. Am. Chem. Soc., 2006, 128(22): 7335-7345
    19 Cao X., Dolg M., Segmented contraction scheme for small-core lanthanide pseudopotential basis sets, J. Mol. Struct. (Theochem) 2002, 581(1-3): 139-147
    20 Scheller M. K., Cederbaum L. S., Bonding between C2 and N2: A Localization-InducedσBond, J. Am. Chem. Soc., 1990, 112(26):9484-9490
    1. Br?nstrup M., Gottfriedsen J., Kretzschmar I., Blanksby S. J., Schwarz H., Schumann H., PCCP does exist. Phys. Chem. Chem. Phys., 2000, 2, 2245-2250
    2. Maier G., Hans Reisenauer P., Glatthaar J., Reactions of Silicon Atoms with Nitrogen: A Combined Matrix Spectroscopic and Density Functional Theory Study. Organometallics 2000, 19(23): 4775-4783
    3. Bahou M., Sankaran K., Wu Y. J., LeeY. P., Isomers of Ge2N2 : Production and infrared absorption of GeNNGe in solid N2. J. Chem. Phys., 2003, 118(21): 9710-9718
    4. Andrews L., Zhou M., Chertihin G. V., Bare W. D., Reactions of laser-ablated aluminum atoms with nitrogen during condensation at 10 K. Infrared spectra and density functional calculations for AlxNy molecular species. Low Temp. Phys., 2000, 26(9-10): 736-743
    5. Himmel H. J., Reiher M., Intrinsic Dinitrogen Activation at Bare Metal Atoms. Angew. Chem. Int. Ed. 2006, 45, 6264-6288
    6. Zhigilei L. V., Leveugle E., Garrison B. J., Yingling Y. G., Zeitman M. L., Computer Simulations of Laser Ablation of Molecular Substrates. Chem. Rev. 2003, 103(2), 321-348
    7. Srinivasan R., Braren B., Ultraviolet laser ablation of organic polymers. Chem. Rev. I989. 89(6), 1303-1316
    8. Bityurin N., Luk’yanchuk B. S., Hong M. H., Chong T.C., Models for Laser Ablation of Polymers. Chem. Rev. 2003, 103(2), 519-552
    9. Vogel A., Venugopalan V., Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chem. Rev. 2003, 103(2), 577-644
    10. Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,H. Nakai, M. Klene, X. Li, J. E.Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    1 Fischer E.O., Kreis G., Kreiter C. G., Mueller J., Huttner G., Lorenz H. trans-Halogeno[alkyl(aryl)carbyne]tetracarbonyl Complexes of Chromium, Molybdenum, and Tungsten - A New Class of Compounds Having a Transition Metal-Carbon Triple Bond. Angew. Chem., Int. Ed., 1973, 12(7), 564-565.
    2 Katz T. J., McGinnis J., Mechanism of the olefin metathesis reaction. J. Am. Chem. Soc., 1975, 97(6), 1592-1594.
    3 Balázs C., Gregoriades L. J., Scheer M., Triple Bonds between Transition Metals and the Heavier Elements of Groups 14 and 15. Organometallics 2007, 26(13), 3058-3015.
    4 Zhang W., Moore J. S., Alkyne Metathesis: Catalysts and Synthetic Applications. Adv. Synth. Catal., 2007, 349, 93-120.
    5 Krapp A., Pandey K. K., Frenking G., Transition Metal-Carbon Conplexes. A Theoretical Study., J. Am. Chem. Socs., 2007, 129(24), 7596-7610
    6 Zhu J., Jia G. C., and Lin Z. Y., Theoretical Investigation of Alkyne Metathesis Catalyzed by W/Mo Alkylidyne Complexes. Organometallics., 2006, 25(7), 1812-1819.
    7 Coutelier O., Mortreux A., Terminal Alkyne Metathesis: A Further Step Towards Selectivity. Adv.Synth. Catal., 2006, 348, 2038-2042.
    8 Geyer A. M., Gdula R. L., Wiendner E. S., Johnson M. J. A. CatalyticNitrile-Alkyne Cross-Metathesis. J. Am. Chem. Soc., 2007, 129(13), 3800-3801.
    9 Schrock R.R. Hoveyda A. H., Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew. Chem. Int. Ed., 2003, 42(38), 4592-4633.
    10 Schrock R. R., Czekelius C., Recent Advances in the Syntheses and Applications of Molybdenum and Tungsten Alkylidene and Alkylidyne Catalysts fot the Metathesis of Alkenes and Alkynes. Adv. Synth. Catal., 2007, 349, 55-77
    11 Schrock R. R., Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture 2005). Adv. Synth. Catal., 2007, 349, 41-53.
    12 Wadt W. R., Hay P. J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 1985, 82(1), 284-298.
    13 Cao X., Dolg M., Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. (Theochem) 2002, 581(1-3), 139-147
    14 Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    15 Dewar M. J. S., Multibond reactions cannot normally be synchronous. J.Am. Chem. Soc., 1984, 106(1): 209-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700