用户名: 密码: 验证码:
冻土区埋地管道周围土壤水热力耦合作用的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国与俄罗斯,哈萨克斯坦等国家共同铺设的跨国输油管道工程现已陆续完成,从俄罗斯和哈萨克斯坦引进的石油及天然气管道都经过我国东北部冻土区。而在漠河——大庆段管道穿越我国东北多年冻土区,土壤的冻胀和融沉问题已成为影响此管道工程安全的重要因素。本文从传热学、渗流力学及冻胀力学三方面理论入手,系统地研究了季节冻土区土壤的热物性参数及其在不同条件下的变化情况,深入分析冻土的温度场、水分场之间的关系,以及埋地输油管道在冻土温度场、水分场和应力应变场多场耦合作用影响下发生的冻胀和融沉变形。
     主要研究成果总结如下:
     基于温度场方程的寒区埋地管道经济埋深的数值计算
     建立寒区埋地管道周围土壤温度场的非稳态控制方程,重点考虑埋地管道的初始条件和边界条件,即土壤周期性变化的初始温度、地表不同日平均温度、土壤是否冻结等因素对管道温度场的影响。对某埋地输油管道的土壤温度场发展情况进行了数值模拟,分析了相同时间内、不同埋设深度处土壤温度场的变化趋势,从而确定油气管道比较合适的埋设深度。研究了在非冻结状态和冻结状态时土壤温度场的变化情况。并通过不同深度管道年经济费用的对比,得到埋地管道较为经济的埋设深度。
     冻土区埋地管道周围土壤水热耦合问题的数值计算
     针对冻土区土壤中冻土和融土两种不同介质,考虑相变潜热和水分迁移,计算了冻土区埋地管道周围土壤的温度场,并对结果进行分析。结果表明,水分迁移和相变潜热对土壤中的传热有一定的影响,尤其对输油温度不稳定情况下影响显著。在冷热原油输送过程中,油品温度有较大变化,同时会引起周围温度场的变化,在计算中应考虑相变和水分迁移。
     沼泽发育冻土区埋地管道周围土壤水热耦合问题的数值计算
     建立作为多孔介质土壤水热耦合的数学模型和有限容积理论的质量守恒、动量守恒和能量守恒方程,并合理设定边界条件。计算出沼泽发育冻土在一段时间内的土壤温度场、融化圈曲线和水分迁移速度矢量图,得到冻土的冻融过程是受温度变化和水分迁移共同影响的结论。探求不同埋地管道保温层厚度对沼泽冻土区土壤冻融速度的影响关系。研究水分迁移速度与土壤温度、冻土融化的变化情况。分析土壤的孔隙率和渗透率对土壤温度场的影响。
     冻土区埋地管道周围土壤水热力耦合问题的数值计算
     分析冻土区土壤冻胀和融沉的机理,建立了冻土区土壤水热力耦合作用的数学模型,对模型进行离散化和有限元求解。探讨冻土的土壤温度、水分含量对冻结应力的影响和土壤冻结应力的计算方法,计算某埋地管道在运行一段时间后,土壤在地表大气温度影响下的温度场、水分场和冻胀应力应变场情况。研究埋地管道周围土壤发生的冻胀位移和冻胀应力。土壤的温度场、水分场和应力应变场具有密切的相互耦合关系。在埋地管道弯曲变形的基础上,计算出管道的弯曲应力和应变,并判断是否发生应力破坏。
At present, underground pipelines engineering constructed by China and Russia, Kazakhstan have been completed. The petroleum and natural gas pipelines all go through permafrost regions in northeastern China. The pipeline from desert-river to Daqing is in the permafrost regions. The soil frost heaving and thaw have already affected the safety of the pipeline engineering. This paper is depending on Chinese Petroleum Corporation Funded Project“Oil pipelines optimization and operation safety technology”. Based on the heat transfer, percolation mechanics and frost heaving mechanics theory, the thermal physical parameters under different conditions in seasonal frozen soil were systematically studied. The relation of the temperature field and water field was deeply analyzed. The frost heaving and thaw deformation of the underground oil pipeline caused by permafrost temperature, moisture and the stress and strain field couplings was stated. Main research results are as follows:
     Numerical calculation for economic buried depth of oil and gas pipelines in cold region based on temperature field equation
     Considered the initial soil temperature cyclical changes, the different average surface temperature and soil freeze conditions, the unsteady temperature field equation of underground oil pipeline soil was established. The temperature fields of underground pipeline in Daqing are calculated by using finite element method. The trend of temperature fields for a variety of buried depth was studied, and the more appropriate buried depth of pipelines was calculated. Not considering the soil freezing and non-frozen state effect on natural temperature, when the pipeline operation management analyzed. Numerical calculation for soil temperature field of underground pipeline considering effects of moisture in cold region Aimed to frozen and melted soil in the frozen soil area, and considering the latent heat of phase change and water movement, the frozen soil temperature field around underground pipeline is numerically calculated. The results show that the latent heat of phase change and water movement has certain effects on the soil temperature field. These factors should be considered in calculations.
     Numerical calculation for water and heat couplings of marsh developmental soil around underground pipelines in cold region
     The soil water and heat couplings mathematics model were established as porous medium. Based on the finite volume theory, the conservation of mass, momentum and energy conservation equations were put forward. The temperature field of marsh developmental frozen soil, the thaw curve and migration velocity vector diagram were numerically simulated in a period of time. The permafrost and thawing process were affected by temperature and moisture transfer. The relation of underground pipelines different insulation layer thickness and permafrost thawing process was studied. The influence of soil porosity and permeability was analyzed.
     Numerical simulation for couplings of water, temperature and stress fields of underground oil pipeline in cold region
     The mechanism of frozen soil frost heaving and thaw was analyzed. The mathematics model of couplings of water, temperature and stress fields was established in cold region. The model was discreted and calculated by finite elements method. The temperature, moisture and frost heaving stress and strain fields influented by the soil surface air temperature were numerically calculated during a period of time. The soil freezing displacement was studied. Soil deformation and frost heaving have close relationship with water ice transformation temperature. Based on the pipeline’s bending deformation, the stress and strain was calculated. Whether the stress destruction will happen was determined.
引文
1.陈肖柏,浏建坤,刘鸿绪等.土的冻结作用与地基[M].北京:科学出版社,2006.
    2.徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社, 2001.
    3. Bonaicina, C., Comini, G. and Fasana, A., et al. Numerical solution of phase-change problem [J]. int. j. Heat Mass Transfer, 1973,16(6): 1852-1832.
    4. Comini, G., Guidice S del, Lewis, R.W., et al. Finite element solution of nonlinear heat conduction problem with special reference to phase change [J].Inter. J. for numerical method in engineering,1974,8(6): 613-624.
    5.徐学祖,王家澄,王玉杰.单向冻结时土颗粒位移的热筛效应及对流迁移[J].冰川冻土,1996,18(3):252-255.
    6.徐学祖,王家澄,张立新等.温度梯度诱导薄膜水迁移机理[J].科学通报, 1997,42(9):956-959.
    7. Penner, E., Pressure developed during the unidirectional freezing of water saturated porous materials. Proceedings International Conference on Low Temperature Science. Sapporo: Hokkaido University, 1966,1:1401-1412.
    8. Miller, R.D., Freezing and heaving of saturated and unsaturated soils, Highway Research Record, 1972, 393:1-11.
    9. Miller, R.D., Freezing Phenomena in Soils, Application of Soil Physics, 1980, Charpter 11.
    10. Williams, P.J., Properties and behavior of freezing soil, Norwegian geotechnical Institute, 1967, Publ.72:1-119.
    11. Harlan,R.L., Analysis of coupled heat-fluid transport in partially frozen soil, journal Water Resources Research, 1973,19(5):1314-1323.
    12. James, Y., Norum, D.I., Heat and mass transfer in a freezing unsaturated porous medium. Water Resource Research, 1980, 16-40.
    13. Guymon,G., Berg,R and Hromadka,T., Mathematical model of frost heave and thaw settlement in pavements ,CRREL Report 1993,93-102.
    14. Luthin,J.N. and Taylor,G.S., A model for coupled heat and moisture transfer during soil freezing, Canadian Geotech.J.,1978,15:548-555.
    15. Gilpin,R.R., A model for the Prediction of Ice lensing and frost heave in soils, Water Resources Research, 1980, 16:918-930.
    16.王铁行.多年冻土地区路基计算原理及临界高度研究[D].长安大学博士学位论文,2000.
    17.徐学祖,邓友生.冻土中水分迁移的实验研究[M].北京.科学出版社, 1991.
    18.徐学祖.国外对冻土中水分迁移课题的研究[J].冰川冻土, 1982, 4(3):98-103.
    19.李述训,程国栋.冻融土中的水热输运问题[M].兰州:兰州大学出版社, 1995.
    20.王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场耦合问题研究[J].土木工程学报, 2003,36(12):93-97.
    21. Fremond, M., Mikkola, M. Thermo mechanical of freezing soil [A]. Proceedings of the Sixth International Symposium on Ground Freezing [C]. Rottendam: A.A. Balkema, 1991.
    22. Fremond, M., Lassoued, R., Raln falling on a frozen ground[A] Thimus, J. F., Ground Freezing 2000[C] Rotterdam; Balkema, 2000,25-30.
    23. Osokin, N.I., Samoilov, R.S., Sosnovskiy, A.V., Zndkov,V.A. Influence of snow cover properties on migration of moisture in the course of ground freezing[A] Thimus, J.F. Ground Freezing 2000[C] .Rotterdam;alkema. 2000, 51-54.
    24. Osokin, N.I., Samoilov, R.S., Sosnovskiy, A.V. et al. On evaluation of Influence of variability of snow cover properties on a freezing of grounds [J] Cryosphere of the Earth.1999,3(1):3-10.
    25. Goering, D.J., Instanes, A., Kundsen, S., Convective heat transfer in railway embankment ballast: [A]. Thimus, J.F. Ground Freezing 2000[C]. Rotterdam; Balkema, 2000, 3l-36.
    26.何平,程国栋,朱元林.土体冻结过程中热质迁移研究进展[J].冰川冻土, 2001, 23(1):92-98.
    27.胡和平,杨诗秀.土壤冻结时水热迁移规律的数值模拟[J].水利学报, 1992,7:1-8.
    28.李南生,孙焕纯,柴生.渠系基础冻结过程水热耦合问题数值分析[J].水利学报, 1997,3:43-48,
    29.毛雪松,胡长顺,窦明健等.正冻土中水分场和温度场耦合过程的动态观测与分析[J].冰川冻土, 2003,25(1):55-59.
    30.郭力,苗天德,张惠等.饱和正冻土中水热迁移的热力学模型[J].岩土工程学报, 1998,20(5):87-91.
    31. Liu Jiankun, Coupled problem of unsteady seepage of water and thermal transfer in roadbed on permafrost regions[A], Proceedings of International Symposium on Cold Regions Engineering, Harbin, China[C] Harbin: University of Harbin industry Technology Press, 1996:107-110.
    32.令锋,吴紫汪.渗流对多年冻土区路基温度场影响的数值模拟[J].冰川冻土, 1999,21(2):115-119.
    33.赖远明,刘松玉,邓学钧等.寒区大坝温度场和渗流场耦合问题的非线性数值模拟[J].水利学报, 2001,8:26-31.
    34.柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J].水力发电学报, 2000,68(1):27-35.
    35.陈建余,朱岳明,张建斌.考虑渗流场影响的混凝土坝温度场分析[J].河海大学学报(自然科学版), 2003,31(2):119-123.
    36.徐学祖,王家澄,张立新等.含盐正冻土的冻胀和盐胀[C].第五届全国冰川冻土学大会论文集.甘肃文化出版社. 1996.
    37. Hopke, S.W., A model for frost heave including over-burden. Cold Region Science Technology[J],1980,3(2):111-127.
    38. O’Neil, K, Miller.D, Exploration of a rigid ice model of frost heave. Water Resource Research[J],1985,21(3):218-296.
    39. Shen Mu, Branko Ladanyi, Modeling of coupled heat, moisture and stress field in freezing soil [J] Cold Region Science and Technology 1990,14: 237-240.
    40. Nixon, J. F. Discrete ice lens theory for frost heave in oils [J]. Can.Geotech.1991, 28:843-859.
    41. Padilla, F.T., Vileneuve, J.P. Modeling and experiments, studies of frost heave including solute effects[J].Cold Regions Science and Technology. 1992, 20:183-194.
    42.安维东,沈林,马巍等.冻土的温度、水分应力及其相互作用[M].兰州:兰州大学出版社,1989.
    43.李洪升,刘增利,李南生.基于冻土水分温度和外荷载相互作用的冻胀模式[J].大连理工大学学报,1998, 38(1):29-33.
    44.李洪升,刘增利,梁承姬.冻土水热力耦合作用的数学模型及数值模拟[J].力学学报, 2001, 33(5):621-629.
    45.梁承姬,李洪升.输冷管道附近土体冻结过程的水热力耦合数值模拟[J].上海海运学院学报, 2000,21(4):85-91.
    46.赖远明,吴紫汪,朱元林,朱林楠.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报, 1999,21(5):539-533.
    47. LaiYuanming, Wu ziwang, Zhu Yuanlin, et al. Nonlinear analysis for the coupled problem of temperature and seepage fields in cold regions tunnels [J].Cold Regions Science and Technology [J].1999, 29(1):89-96.
    48. Lai Yuanming, Liu Songyu, Wu ziwang, et al. Approximate analytical solution for temperature fields in cold regions circu1ar tunnels [J]. Cold Regions Science and Technology. 2002, 34(1):43-49.
    49.赖远明,刘松玉,吴紫汪.寒区挡土墙温度场、渗流场和应力场耦合问题的非线性分析[J].土木工程学报, 2003,36(6):89-95.
    50.靳德武,牛富俊,陈志新等.土体冻融过程中渗流场、应力场、温度场耦合作用机理研究[J].煤田地质与勘探, 2003,31(5):40-42.
    51.仵彦卿,高荣芳.影响油气运移的应力场温度场渗流场耦合的连续介质模型[J].西安理工大学学报, 1997,13(3):204-209.
    52. Aboustit, B.L., Advani, S.H., Lee, J.K., et al. Finite element evaluation of thermo-elastic consolidation [A]. In: Proc.23rd U.S. Symp. Rock Mech.[C]. New York: [s.n.], 1982, 587-595.
    53. Noorished, J., Tsang C.F., Witherspoon P.A., Coupled thermal- hydraulic-mechanical phenomena in saturated fractured porous rocks : numerical approach [J]. J. Geophy. Res., 1984, 89(B12):10365-10373.
    54. Metigre, D.E., Thermo elastic response of fluid saturated porous rock [J]. J. Geophy. Res., 1986, 91(B9):9533-9542.
    55. Thomas, H.R., King, S.D., Coupled temperature/capillary potential variations in unsaturated soil [J]. J. Eng. Mech.,ASCE, 1991, 117(11): 2475-2491.
    56. Thomas, H.R., He Y., Analysis of coupled heat, moisture and air transfer in deformable unsaturated soil [J]. Geotechnique,1995, 45(4):677-689.
    57. Gatmiri, B., Delage, P, A new formulation of fully coupled thermal- hydro-mechanical behavior of saturated porous media-numerical approach [J].Int. J. Numer. Anal. Methods Geomech. 1997,21(3):199-225.
    58. Miao Tiande, Guo Li, Niu Yonghong. et al. Modeling on coupled heat and moisture transfer in freezing soil using mixture theory[J]. Science in China (Series D). 1999. 42(Suppl.): 9-l6.
    59.何平,程国栋,俞祁浩等.饱和冻土中水、热、力耦合模型[J].冰川冻土, 2002, 22(2):135-138.
    60.陈波,李宁,禚瑞花.多孔介质的变形场、渗流场、温度场耦合有限元分析[J].岩石力学与工程学报, 2001,20(4):467-472.
    61.李宁,陈波,陈飞熊.寒区复合地基的温度场、水分场与变形场三场耦合模型[J].土木工程学报, 2003,36(10):66-71.
    62.吴鸿庆.结构有限元分析[M].北京:中国铁道出版社,2002.
    63.龙驭球.有限元法概论[M].北京:高等教育出版社,1991.
    64.杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2007.
    65.郑平,马贵阳,冻土区埋地输油管道温度场数值模拟研究[J],油气储运,2006,25(8):26-28.
    66.赵松滨,包清林,林春文.永冻土地区管道设计原则[J],油气田地面工程,2004,23(1):41-41.
    67.万蔚杰,谢纯德,排水管道的管径与埋深及控制点技术措施[J],西北建筑工程学院学报,2000,17(1):60-63.
    68.葛志祥,地下燃气管道埋深的优化[J].煤气与热力,2004,24(5):273-275.
    69.董正远,埋地热油管道经济埋深的计算模型[J].油气储运,2007,26(9):13-16.
    70. R.J.汉克斯,G.L.阿希克洛夫特,杨诗秀译.应用土壤物理学-土壤水和温度的应用[M].北京:水利电力出版社,1984.
    71.朱春鹏,张喜发,张冬青等.季节性冻土地区道路冻深的研究[J] ,辽宁交通科技,2004,4:16-18.
    72.刘晓燕.特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D],大庆石油学院博士论文,2005.
    73.吴明,杨惠达,邓秋远.热油管道停输过程中土壤温度变化规律研究[J],西安石油学院学报(自然科学版),2002,17(4):51-55.
    74.邢晓凯,张国忠.埋地热油管道正常运行温度场的确定[J].油气储运,1999,18(12):28-30.
    75.卢涛,孙军生,姜培学.埋地热油管道预热启输过程外界气温及预热水温对土壤温度场的影响[J],太阳能学报,2006,27(10):1053-1057.
    76.张国忠.埋地热油管道停输降温过程的研究[J],油气储运,2004,23(12):33 -37.
    77.雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988
    78.林家鼎,孙菽芬.土壤内水流动、温度分布及其表面效应的研究[J].水利学报,1983,7:1-8.
    79.蔡树英,张瑜芳.温度影响下土壤水分蒸发的数值分析[J],水利学报,1992,11:1-8.
    80.胡和平,雷志栋,杨诗秀.土壤冻结时水热迁移规律的数值模拟[J].水利学报,1992,7:1-8.
    81.黄兴法,曾德超.冻结期土壤水盐热运动规律的数值模拟[J].北京农业工程大学学报,1993,13(3):43-50.
    82.李长俊,江茂泽,纪国富.永冻区埋地热油管道热力计算[J].西南石油学院学报,2000,22(1):77-79.
    83.李杨.季节冻水水分迁移模型研究[D].吉林大学博士学位论文.2008.
    84.陈肖柏,刘鸿绪,刘建坤等.土的冻结作用与地基[M].北京:科学出版社,2006.
    85. Williams.P.J. Properties and behavior of freezing soils[J]. Norwegian Geotechnical Institute,1967,72:1-119.
    86. Williams.P.J. Moisture migration in frozen soil[J]. National Academy Press,Washington.D.C,1984.
    87.周英,申双和,杜军.土壤中水热运动耦合方程预报模型研究[J],南京气象学院学报,1995,18(1):79-86.
    88.周英,申双和.陕西泾阳年小麦农田蒸散[J].中国农业气象,1992,13(3):6-9.
    89.朱志武,宁建国,马巍.土体冻融过程中水、热、力三场耦合本构问题及数值分析[J].工程力学,2007,24(5):138-144.
    90.安维东.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1989.
    91. Kay B D M,Fuknda.The importance of water migration in the measurements of the thermal conductivity of unsaturated frozen soils[J].Cold Region Science and Technology,1981,5:95-106.
    92.吉延峻,金会军,张建明,何乃武.中俄原油管道沿线典型土样冻胀性的实验研究[J].冰川冻土,2008,30(2):296-300.
    93.王金香.多孔介质土壤热渗耦合模型及埋管周围土壤温度场数值模拟研究.大连理工大学硕士学位论文[D],2006.
    94.孔祥言.高等渗流力学[M].合肥:中国科学技术大学,1999.
    95. Roblee, L. H.S, Baird, RM and tiem, J. W. Radial porosity variations in packed beds[J]. American Institute of Chemical Engineers Journa1, 1958,4:460-464.
    96. Benenati, R. F, Brosilow, C. B. Void fraction distribution in packed beds[J]. American Institute of Chemical Engineers Journa1, 1962, 8: 359-361.
    97. Wu-Shung Fu,Hsin-Chien Huang.Effects of a random porosity model on heat transfer Performance of porous media. [J] Heat and Mass transfer, 1992, 42:13-25.
    98.庞鑫峰.埋地供热管道泄漏三维大地温度场仿真计算[D].大庆石油学院硕士学位论文,2006.
    99.李玉国,金会军,盛煜等.中国—俄罗斯原油管道工程(漠河—大庆段)冻土工程地质考察与研究进展[J] .冰川冻土,2008,30(1):170—175.
    100.Hopmans J W,Dane J H.Temperature dependence of soil water retention curves[J].Soil Science Society of America Journal,l986,50:562—567.
    101.张一平,白锦鳞,张君常等.温度对土壤水势影响的研究[J].土壤学报,l990,27(4):454-458.
    102.张富仓,张一平,张君常.温度对土壤水发保持影响的研究[J].土壤学报,1997,34(2):l60—169.
    103.陈情来.高纬度地区管道建设中的冻土工程地质问题研究[D].中国地质科学院博士学位论文,2007.
    104.梁翕章,唐智圆.世界著名管道工程[M].北京:石油工业出版社.2002.
    105.中华人民共和国国家标准.土工试验方法标准[M].GB/T50123一1999.
    106.铁道第三勘察设计院.冻土工程[M].北京:中国铁道出版社.2002.
    107.齐吉琳,程国栋,P.A.Vemeer.冻融作用对土工程性质影响的研究现状[J].地球科学进展,2005,20(8):887-893.
    108.韩天一.正冻土水热力耦合的数值机理研究[D].兰州大学硕士学位论文,2008.
    109.王连捷,吴珍汉,胡道功等.青藏高原移动冰丘引起输油管道拱曲的数值模拟[J].中国地质,2007,34(4):675-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700