用户名: 密码: 验证码:
合成条件对碳热还原法制备TiB_2影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用XRD、SEM、热力学分析及TG-DSC等分析手段对碳热还原TiO_2,B_2O_3制备TiB_2进行系统的研究;利用全等温研究方法,对整个反应的机理进行了初步的探讨,研究了碳热还原法制备TiB_2过程动力学;全面研究了工艺因素对碳热还原制备TiB_2过程的影响。
     热力学分析表明:在碳热还原TiO_2和B_2O_3制取TiB_2的过程中,氧化钛的还原是分步进行的;中间氧化物的稳定存在区域与反应温度、炉内真空度和CO分压相关,因此,合理控制反应温度、炉内真空度和CO分压等因素对合成高纯TiB_2粉末非常重要;随着炉内CO分压的降低,反应开始温度逐渐降低,因此,在还原过程中对炉内抽真空换气,降低炉内CO的分压,从而降低起始反应温度。
     用全等温热重法测定反应试样的碳热还原TiO_2和B_2O_3制备TiB_2的动力学数据,钛白粉-石墨试样合成TiB_2在900-1300℃之间可以分为两个温度范围段。在第一阶段,900-1000℃试样单位面积的反应失重随时间的变化符合线性关系,即△W_t/A_t=K_(rea)t,整个反应的速率的速率由化学反应速率控制,这一阶段的表观活化能为109.467 KJ/mol,频率因子为131.76g~2·cm~(-4)·min~(-1);而第二阶段,1100-1300℃试样单位面积的反应失重与时间呈抛物线关系,即:(△W_t/A_t)~2=K_Dt,整个反应过程速率由碳的固相扩散速率控制,该阶段的反应表观活化能为22.281 KJ/mol,频率因子为33.35g~2·cm~(-4)·min~(-1)。
     研究了工艺因素对碳热还原制备TiB_2过程的影响,结果表明:(1)碳源对碳热还原制备TiB_2反应有重要的影响,且对最终产物的颗粒形貌有影响;(2)配碳量和配硼量对碳热还原制备TiB_2有非常重要的影响,直接影响TiB_2的生成率;(3)混料时间,烧成温度和烧结压力都对整个反应过程有着影响,长时间的混料,比较高的合成温度,尽可能的降低炉内的CO分压,会加速反应的进行,提高TiB_2的生成率。
The synthesis of TiB_2 by the carbothermal reduction of titania and borium oxides was studied in detail through the method of all-isothermal TG and by means of XRD、SEM、TG-DSC as well as on the basis of thermodynamical analysis in the paper.The mechanism for the carbothermal reduction process was expounded to some extent.The influence of the synthesis conditions on the process was discussed extensely.
     The reduction in steps of TiO_2 was acclaimed in the process of carbothermal reduction of TiO_2 and B_2O_3 from the thermodynamical analysis.The stable domains for the intermediate oxide phases and products as well as the forming temperature of TiB_2 were related strongly to the synthesis tempreture,and to the partial pressure of carbon monoxide.It is therefore important to control the reaction temperature,the vacuum pressure or the CO partial pressure and so on for the synthesis of high-purity TiB_2 power.The start reaction temperature will be cut down as soon as the CO partial pressur is maintained at lower level.The start temperature can be therefore put down by vacuum the furnace and/or by cutting down the CO partial pressure through ventilating to it.
     The kinetic data for the carbothernal reduction of TiO_2 and B_2O_3 were obtained by the proposed method of all-isothermal thermogravimetric.The synthesis process of TiB_2 from titanium dioxide and borium oxide as well as graphite in the range from 900 to 1300℃can be divided into two.In the first range,that is the temperature from 900℃to 1100℃,the weightloss on unit area will be increased with time linearly.Therefore the equation△W_t/A_t=K_(rea)t can be used as the dynamical curve,meaning that the total reaction rate is controlled by the chemical reaction rate.In fact the apparent activation energy for the process in this range is as large as 109.467 KJ/mol,the frequency factor 131.76 g~2·cm~(-4)·min~(-1).While in the second range,that is the temperature from 1100℃to 1300℃,the relationship between the weightloss on the unit area with time can be fitted by the parabolic equation:(△W_t/A_t) ~2=K_Dt,meaning that the tatal reaction rate is controlled by the diffusion rate of the reaction materials,with the apparent activation energy 22.281 KJ/mol,and the frequency factor 33.35 g~2·cm~(-4)·min~(-1).
     As the results of the research into the influence of synthesis conditions on the carbothermal reduction reaction,the following conclusions were approached.(1)The carbon sources are the most important factors for the formation of TiB_2,and exerts an strong influence on the appearance of products.(2)The quantity of the carbon and Boron put into the starting materials sets up an important influence to the synthesis of TiB_2, and has the direct impact on the purity of the product.(3)The mixing time,synthesis temperature and the total pressure in the furnace have also effects on the reaction.The rate of synthesis and the purity of TiB_2 can optimized by the longer mixing time,the higher synthesis tempreture and the lower CO pressure in the furnace.
引文
[1] Anonymous. Materialreview: Titaniumdiboride[J]. Am.Cera. Soc.Bull,2001,80(8):102-103
    [2]向新等.TiB_2及其复合材料研究进展[J].陶瓷学报,1999 20(2):112-117
    [3] R. G. Munro. Material properties of titanium diboride[J]. J. Res. Natl. Inst. Stand.Technol, 2000,105(5):709-720
    [4]向新,秦岩.TiB_2及其复合材料的研究进展[J].陶瓷学报,1996,20(2):112-118
    [5]章桥新.TiB_2的价电子结构及其性能研究[J].陶瓷学报,2000,21(3):159-162
    [6]向军辉,肖汉宁.TiB_2材料的研究现状及其应用[J].陶瓷工程,1996,30(4):40-43
    [7]乌稼史郎他.日本金属学会学报,1990,29(6):484
    [8]徐怡,李日升等.二硼化钛(TiB_2)的性能及其应用.中国陶瓷,1998,10(5):40-45
    [9] A Kulpa and T. Troczynski. Oxidation of TiB_2 powders below 900℃. J. AmCeram[J].Soc, 1996.Vol. 79 (2)
    [10]陈燕群.镁热还原自蔓延制备TiB_2的研究[D].西安建筑科技大学.2005
    [11]章桥新译.TiB_2系材料的开发[J].国外金属热处理.1993,14(2):1-4
    [12]肖汉宁等.原位合成TiB_2-SiC基复相陶瓷及其高温摩擦学性能的研究[J].中国陶瓷工业,2006,1(1):1-9
    [13]陈肇友.ZrB_2与TiB_2质耐火材料[J].耐火材料,2000,34(4):224-229
    [14]马爱琼,王臻.TiB_2及其单相陶瓷的制备[J].陶瓷,2005(5):10-15
    [15]HokeD A Amceram[R].Soc, 1995, Vol.78 (2): 275
    [16]B.Roebuckk and A.E.J.Forono Dev. Powder Metallury. 1988, Vol.20:451
    [17]Zhang G J, et al_J Am Ceram Soc, 1997, 32(8): 2093
    [18]Hirosaki.Kada A. J Am Ceram Soc, 1988, 71: 44
    [19]罗学涛,谢小林,袁润章.热压烧结TiB_2陶瓷的显微结构和力学性能研究[J].无机材料学报,2000,15(3):54
    [20]Balk S. Beeher P F[J]. J Am Ceram Soc, 1987, 70:527
    [21]Li Long-Hao, Hyoun Ee Kim, Eul Son Kang. J Euro Ceram Soc. 2002, 22:973
    [22]艾兴等,陶瓷刀具切削加工[M].北京:机械出版社,1996
    [23]唐建新等.原位合成TiB_2-TiC陶瓷基复合材料[J].材料工程,2001(2):12-15
    [24]Tadahiko atanabe. Kazuhisa Shoubu. J Am Ceram Soc, 1985. 68(2): C34
    [25]Tofizuka S. Harada .J. Nishio H. Ceram Eng Sci Proc.1990, 11(9-10): 1454
    [26]Eul son Kang et al. J Mme Sei, 1990, 25:580
    [27]Mestral et al J. Am Soc, 1996, 79:1267
    [28]Darren A Hoke. Marc A Meyers[J]. J Am Ceram Soc, 1995, 78(2): 375
    [29]李荣久.陶瓷一金属复合材料[M].北京:冶金工业出版社,1995.287
    [30]Nelson.D.F.PG.Commba[J]. Advanced Ceramics, 1983, 17:1301
    [31]Weon Ju Kim. Do-Hyeong Kim. J Mater Sci, 1996, 31:5805
    [32]Yuriditsky BY. Funk Y. Refractory M aterials and Hard Materials, 1990, 3:32
    [33]Jungling Th.Oberaeker R, Thummber F et al. ureless sintering of TiB_2-Fe materials[J]. Powder Me.Inter, 23(5)1991, 296-299.
    [34]Angelini P, Becher P E, Becher P E et al. Processing and mierostruetural characterization of TiB_2 liquid phase sintered the Ni and Ni_3Al[J]. Materials Research Soc, 1984, 24:299-305
    [35]宋文杰,钟晖.TiB_2制备方法及其研究新进展[J].稀有金属与硬质合金,2005,33(2):47-53
    [36]N.J.Welham. Mechanical enhancement of the Carbothermic formation of TiB_2. Metallurgical and Materials Transactions, 2000 , 31 (1) : 283-289
    [37]Takeyasu,et al. Synthesis ofultrafine titanium diboride particles by rapid carbo thermal reduction in a particulate transport reactor. Journal of Materials Science,1997,3(2) :3933-3938
    [38]裴立宅等.碳热还原法合成B_4C及B_4C/TiB_2复合粉末的研究[J].陶瓷科学与艺术,2003,37(2):4-9
    [39]周书助,彭卫珍.硼热/碳热还原TiO_2合成高纯TiB_2粉末[J].硬质合金,2004,3(1):27-32
    [40]王兆文等.TiB_2粉末的研制[J].轻金属,1997,(8):28
    [41]刘希诚等.电弧炉碳热还原制取TiB_2[J].广东有色金属学报,1999,9(1):30
    [42]宋文杰,钟晖.真空碳热还原法制备高纯TiB_2粉末[J].稀有金属与硬质合金,2006,34(1):9-15
    [43]冯乃祥.铝电解[M].北京:化学工业出版社.2006
    [44]戴兴福.在石磨炉上附产TiB_2的实验与研究.轻金属,1997(12):41-45
    [45]Merzhanov A1G.Self-propagating High temperature Synthesis:Twenty Years of Search and Findings.In:Combustion and Synthesis of High temperature Materials[M]. Ed by Munir Z.A.VCH.New York,1990
    [46]Adv.Mater.Proc."News at a glance"[N]. 1990, 138(3): 19
    [47]傅正义,袁润章.TiB_2的SHS合成过程理论分析[J].硅酸盐学报,1993.21(6):541-545
    [48]赵昆渝,朱心昆.自蔓延高温合成制备TiB_2[J].粉末冶金技术,1997,15(1):26-29
    [49]Cirakoglu M, Bhaduri S. Combustion synthesis processing of functionally graded materials in the Ti-B binary system [J ]. Joumal of alloys and Compounds, 2002,347: 259-265
    [50]Radev D D, Marinov M. Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis[J]. Journal of Alloys and Compounds, 1996,244:48-51
    [51]徐强,张幸红,韩杰才‘等.SHS/PI-IIP法合成TiB_2陶瓷的研究[J].高技术通讯,2002,(8):71-74
    [52]S.G.Vadchenko, et al. Combustion modes of a strongly diluted Ti+2B system.Combustion Explosion and Shock Waves, 2003, 39(2): 159-166
    [53]D.D.Radev,et al. Mechanochemical synthesis and SHS ofdiborides of titanium and zirconium[J]. Journal of Materials Synthesis and Processing, 2001, 9(3):131-136
    [54]Wieslaw A.zdaniewski. Effect of segregated Cr on Degradation of (Ti, Cr) Exposed to Liquid Aluminum,J. zdaniewski.Soe. 1986,1777-1781
    [55]李庆余,赖延清.常温机械化学合成TiB_2.轻金属,2002(9):46-48
    [56]Riccardo Ricceri, Paolo Matteazzi. A fast and low-cost room temperature process for TiB_2 formation by mechanosynthesis. Materials Science and Engineering A 379(2004)341-346
    [57]K.Kudaka, et al.Synthesis of titanium carbide and titanium diboride by mechanochemical displacement reaction. Journal of Materials Science Letters, 2001 (20): 1619-1622
    [58]L.Lu, et al. Synthesis of titanium diboride TiB_2 and Ti-Al-B metal matrix composites.Journal of Materials Science, 2000(35):241-248
    [59]B.Yang ,Y.Q.wang, B.L.Zhou. The mechanism of formation of TiB_2 partieulation prepared by in situ reaction in molten Aluminum. ProQuest Science, 1998 (6)
    [60]庞前列,黄新.反应合成TiB_2工艺研究[J].硬质合金,1998,15(3):154-158
    [61]王化章等.氯化物熔体中电化学合成TiB_2[Jr].中国有色金属学报,1997,7(2):34-39
    [62]叶大伦.实用无机物热力学数据手册第二版[M].北京:冶金工业出版社,2001
    [63]于仁红.TiO_2碳热还原法制备TiN粉末及TiN-Al_2O_3复合材料研究[D]:西安:西安建筑科技大学,2005
    [64]王兆文,邱竹贤,李涯.二硼化钛粉末的研制[J].轻金属,1997,(8):28-33
    [65]周书助,彭卫珍.硼热/碳热还原TiO_2合成高纯TiB_2粉末[J].硬质合金,2004,21(1):27-32
    [66]曹林洪.Si_3N_4/β.Sialon结合刚玉质滑板性能研究[D].西安:西安建筑科技大学,1998
    [67]唐仕英.Al_2O_3—AlN/Al金属陶瓷中Al氮化的反应动力学研究[D].西安:西安建筑科技大学,2002
    [68]王黎.Al_2O_3-Si-Al系统中原位合成Sialon的动力学研究[D].西安:西安建筑科技大学,2003
    [69]赵薇.氮化钛粉末制备的动力学和热力学研究.西安:西安建筑科技大学,2004
    [70]梁英教等.无机物热力学数抓手册[M].沈阳:东北大学出版社.1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700